Transforming Data by Calculation

J.N. Oliveira

Ref. [O108b] — 2008

J.N. Oliveira. Transforming Data by Calculation. March 2008. GTTSE’07. Post-proceedings revised version
intended for Springer LNCS publication. (Submitted).

Transforming Data by Calculation

José N. Oliveira

Dep. Informatica, Universidade do Minho, 4700-320 Bragartugal,
jno@di.uminho.pt

Abstract. This paper addresses the foundations of data-model tramsfion. A
catalog ofdata mappingss presented which includes abstraction and representa-
tion relations and associated constraints. These ardigdlsith an algebraic style
via the pointfree-transforma technique whereby predicates are lifted to binary
relation terms (of the algebra of programming) in a two-letgle encompassing
both data and operations. This approach to data calculatioich also includes
transformation of recursive data models into “flat” dat&bashemes, is offered

as alternative to standard database design from abstratglsnd he calculus is
also used to establish a link between the proposed tranafmmal style and bidi-
rectionallensegdeveloped in the context of the classieaw-update problem

Keywords: Theoretical foundations; mapping scenarios; transfdonat design;
refinement by calculation.

1 Introduction

Watch yourself using a pocket calculator: once a digit kgyréssed, the corresponding
digit is displayed on the LCD display:

digits

display < > press

binary

This illustrates the main ingredients of one’s everydagrattion with machines: the
abstract objects one has in mind (eg. digits, numbers, et} to beepresentednside
the machine before this can perform useful calculationssggare root, as displayed
in the diagram below.

However, it may happen that our calcu-

lator is faulty. For instance, sometimes the digits digits
digit displayed is not the one whose key was

. . . . display press
just pressed; onothingat all is displayed; or

even the required operation (such as triggered binary binary

by the square root key) is not properly com- ~_

puted. Itis the designer’s responsibility to en- va

sure that the machine we are using never mis-
behaves and can thus be trusted.

2 J.N. Oliveira

When using machines such as computers or calculators, suédé®ntractingne-
chanical services. Inside the machine, the same subctingaocess happens again
and again: complex routines accomplish their tasks by sutbacting (simpler) rou-
tines, and so on and so forth. So, the data representaticessdlustrated above for
the (interaction with a) pocket calculator happens insidemmes every time a routine
is called: input data are to be made available in the apptgpformat to the subcon-
tracted routine, the result of which may need to change foagain before it reaches
its caller.

Such datarepresentl/retrieve processes (analogue to theess/display process
above) happen an uncountable number of times even in sirofilease systemsSub-
contractingthus being the essence of computing (as it is of any orgarseetbty),
much trouble is to be expected onegresentl/retrieve contracts fail: the whole ser-
vice as subcontracted from outside is likely to collapse.

Three kinds of fault have been identified above: loss of adaafusion among data
and wrong computation. The first two have to do witita representatioand the third
with data processingHelping in preventing any of these from happening in sofewa
designs is the main aim of this paper.

We will see that most of the work has to do witlata transformationa technique
which the average programmer is often unaware of using whiimgy in an ‘ad hoc’
way, middleware code to “bridge the gap” between two diffiétechnology layers. The
other part of the story — ensuring the overall correctnessoftfvare subcontracts —
has to do witldata refinementa well established branch of the software sciences which
is concerned with the relationship between (stepwise)iipgtion and implementation.

Structure and aims of the pap€rhis paper is organized as follows. Section 2 presents
the overall spirit of the approach and introduces a simplaing example. Section
3 reviews the binary relation notation and calculus, ref@ro as thepointfree (PF)
transform Section 4 shows how to denote the meaning of data in termscbfgnified
notation. Section 5 expresses data impedance mismatch PRfstyle. While sections
6 to 8 illustrate the approach in the context of (databadajio@al modeling, recur-
sive data modeling is addressed from section 9 onwards. Wkeshow how to handle
cross-paradigm impedance by calculation (section 10) amdtb transcribe operations
from recursive to flat data models (section 11). Section I#tesses related work. It
establishes a link between data mappings and bidirectiensésieveloped in the con-
text of theview-update problerand reviews work on a library for data transformations
(2LT) which is strongly related to the current paper. Fipadection 13 concludes and
points out a number of research directions in the field.

2 Context and Motivation

On data representationThe theoretical foundation afata representationan be writ-
ten in few words: what matters is tim® loss/no confusioprinciple hinted above. Let
us explain what this means by writingR a to denote the fact thatatumc represents
datuma (assuming that andc range over two given data typelsandC, respectively)
and the converse faatR° ¢ to denote that is the datum represented byThe use of

GTTSE’'07 — post-refereeing version (March 2008) 3

definite article the’ instead of ‘a” in the previous sentence is already a symptom of the
no confusionprinciple — we want to represenvnly onedatum of interest:

(Ve,a,a : cRa AN cRad =a=4d) 1)

Theno lossprinciple means that no data are lost in the representatimreps. Put
in other words, it ensures that every datum of intesgstrepresentable by sonae

MVa = (3¢ =t ¢cRa)) 2

Above we mention the converd®® of R, which is the relation such thai R°)c
holds iff ¢ R a holds. Let us use this rule in re-writing (1) in termsiof= R°:

Ve,a,a 2w aFeNad Fesa=ad)

This means that’, the converse o, can be thought of as aabstraction relation
which isfunctional(or deterministic): two outputs, a’ for the same input are bound
to be the same.

Before going further, note the notation convention of wtithe outputs o’ on
the left hand side and its inputs on the right hand side, agesigd by the usual way
of declaring functions in ordinary mathematigs= f x, wherey ranges over outputs
(cf. the vertical axis of the Cartesian plane) andver inputs (cf. the other, horizontal
axis). This convention is adopted consistently throughibisgttext and is extended to
relations, as already seen abdve

Expressed in terms df, (2) becomesv a :: (3¢ :: a F ¢)), meaning thaf’ is
surjective every abstract datumis reachable by

In general, it is useful to let the abstraction relatiomo be larger thafz°, provided
that it keeps the properties identified above (being funetiand surjective) and that it
staysconnectedo R. This last property is written as

MVa,c:: cRa=aFc)
or, with less symbols, as
R°CF Q)
by application of the rule which expresses relational isiduo:
RCS = (Vba::bRa=bSa) 4)

(ReadR C S as “R is at mostS”, meaning thatS is either more defined or less
deterministic tharR.)

To express the fact thdR?, F') is a connectedepresentation/abstraction pair we
draw a diagram of the form

5
AL ¢ (5)

F

! The fact thaiu F cis written instead of. = F c reflects the fact thak' is not a total function,
in general. See more details about notation and termindloggction 3.

4 J.N. Oliveira

where A is the datatype of datto be representednd C is the chosen datatype of
representation’ In the data refinement literaturg,is often referred to athe abstract
typeandC' asthe concrete ondecaus€’ contains more information thas, which is
ignoredby F' (a non-injective relation in general). This explains whys referred to as
theabstraction relatiorin a (R, F) pair.

Layered representationln general, it will make sense to chain several layers of ab-
straction as in, for instance,

R R’
17 < Cul < o ©)
_/ \/
F F’

where letters/, M and D have been judiciously chosen so as to suggest the words
interface middlewareanddataware respectively.
In fact, data become “more concrete” as
they go down the traditional layers of soft-
ware architecture: the contents of interactive,
handy objects at the interface level (often pic-

tured as trees, combo boxes and the like) be-
come pointer structures (eg. in C++/C#) as
they descend to the middleware, from where
they are channeled to the data level, where
they live as persistent database records. A
popular picture of diagram (6) above is given

in figure 1, where layers, M and D are rep-
resented by concentric circles.
As an example, consider an interfad@ (

providing direct manipulation of pedigree Fig 1.|ayered software architecture.
trees, common in genealogy websites:

Margaret, b. 1923 Luigi, b. 1920 @)
\ /
Mary, b. 1956 Joseph, b. 1955
\ /

Peter, b. 1991

Trees — which are the users’ mental model of recursive sirast— become pointer
structures (figure 2a) once channeled to the middlew&fg Eor archival purposes,
such structures are eventually buried into the datawasd [&9) in the form of very
concrete, persistent records of database files (cf. figure 2b

Modeling pedigree trees will be our main running exampletighout this paper.

2 Diagrams such as (5) should not be confused with commutditagams expressing properties
of the relational calculus, as in eg. [11], since the ordegnin the diagram is an ordering on
objects and not on arrows.

GTTSE’'07 — post-refereeing version (March 2008) 5

. Margaret

1923

NIL

NIL

Mary

1956 [ID] Name][Birth |
NIL 1| Joseph| 1955
NIL 2| Luigi | 1920

Joseph 3 |Margaret 1923

4| Mary | 1956

1955 5| Peter | 1991
[]
.
Peter 5 [Father |1
1991 5 [Mother | 4
o 1 |Father 2
. 1 |Mother |3
Luigi

1920

NIL

NIL

(@) (b)

Fig. 2. Middleware (a) and dataware (b) formats for family tree skendata (7).

Mapping scenarios.Once materialized in some technology (eg. XML, C/C++/Java,
SQL, etc), the layers of figure 1 stay apart from each otheiffardnt programming
paradigms(eg. markup languages, object-orientated databasesionsladatabases,
etc) each requiring its own skills and programming techegju

As shown above, different data models can be compared viaaaben/ repre-
sentation pairs. These are expected to be more complex badsvdé models under
comparison belong to different paradigms. This kind of ctamity is a measure of
the impedance mismatches between the various data-modelidhglata-processing
paradigms?, in the words of reference [43] where a thorough accountisrgof the
many problems which hinder software technology in this eespQuoting [43]:

3 According to [3], the labeimpedance mismatakas coined in the early 1990's to capture (by
analogy with a similar situation in electrical circuits)ettiechnical differences between the
object and relational technologies. Other kinds of impedamismatch are addressed in [69,
43].

6 J.N. Oliveira

Whatever programming paradigm for data processing we chodeta has the
tendency to live on the other side or to eventually end ugett{er) This myriad

of inter- and intra-paradigm data models calls for a good arstanding of

techniques for mappings between data models, actual dathpperations on

data. (...)

Given the fact that IT industry is fighting with various impede mismatches
and data-model evolution problems for decades, it seeme &afe to start a

research career that specifically addresses these problems

The same reference goes further in identifying three majreidients (levels) imap-
ping scenarios

— thetype-levemapping of a source data model to a target data model;
— two maps (“map forward” and “map backward”) between soutegget data;
— thetranscription levelmapping of source operations into target operations.

Clearly, diagram (5) can be seen as a succinct presentdtibe two first ingredi-
ents, the former being captured by theordering on data models and the latter by the
(R, F) pair of relations. The third can easily be captured by pgttimo instances of
(5) together, in a way such that the input and output typesgifen operation, sag,
arewrappedby forward and backward data maps:

R
T
8
A\g/c (8)
B

R P

N
< D
_/
F/
The (safe) transcription @ into P can be formally stated by ensuring that the picture
is a commutative diagram. A typical situation arises whieand B are the same (and
so areC and D), andO is regarded as a state-transforming operation of a software
component, eg. one of its CRUD (“Create, Read, Update anet®gloperations. Then

the diagram will ensure correct refinement of such an og@ratcross the change of
state representation.

Data refinement.The theory behind diagrams such as (8) is knowdata refinement
It is among the most studied formalisms in software desigomnand is available from
several textbooks — see eg. [38, 50, 20].

The fact that state-of-the-art software technologies tdenforce such formal de-
sign principles in general leads to the unsafe technologgwive live on today, which
is hindered by permanent cross-paradigm impedance mibmatese (untyped) data
mappings, unsafe CRUD operation transcription, etc. Whhis so? Why isn’t data
refinement widespread? Perhaps because it is far too corapiscipline for most
software practitioners, a fact which is mirrored on its giroterminology — cf.down-
ward, upwardrefinement [31]forwards backwardsrefinement [31, 72, 49]5,SP,S€
refinement[21] and so on. Another weakness of these thésttiesir reliance omvent

GTTSE’'07 — post-refereeing version (March 2008) 7

& verify (proof) development strategies which are hard to master and géveo/once
facing “real-sized” problems. What can we do about this?

The approach we propose to follow in this paper is differearfthe standard in two
respects: first, we adoptteansformationaktrategy as opposed to invention-followed-
by-verification; second, we adoptcalculationalapproach throughout our data trans-
formation steps. What do we mean by “calculational”?

Calculational techniquesLet us briefly review some background. The idea of using
mathematics to reason about and transform programs is amnelénd can be traced
back to the times of McCarthy’s work on the foundations of poter programming
[47] and Floyd’s work on program meaning [26]. A so-calf@dgram transformation
school was already active in the mid 1970s, see for instafeeances [16, 19]. But pro-
gram transformation becomealculationalonly after the inspiring work of J. Backus
in hisalgebra of (functional) program&] where the emphasis is put on the calculus of
functional combinators rather than on thaotation and its variables, points This is
why Backus’ calculus is said to mint-free

Intensive research on the (pointfree) program calculajgproach in the last thirty
years has led to thelgebra of programmingliscipline [11,5]. The priority of this
discipline has been, however, mostly on reasoning ablmdrithmsrather thardata
structures Our own attempts to set upcalculus of data structuredate back to [52—
54] where the<-ordering and associated rules are defined. The approaskykg was
not agile enough. It is only after its foundations are sténetie pointfree style [55, 57]
that succinct calculations can be performed to derive dgieesentations.

Summary.We have thus far introduced the topic of data representéténed in two
contexts, one practical (data mapping scenarios) and tiex titeoretical (data refine-
ment). In the remainder of the paper the reader will be prexdyidith strategies and tools
for handling mapping scenarios by calculation. This is pdex by the section which
follows, which settles basic notation conventions and e a brief overview of the
binary relational calculus and the pointfree-transformigch is essential to understand
ing data calculations to follow. Textbook [11] is recommedas further reading.

3 Introducing the Pointfree Transform

By pointfree transfornj61] (“PF-transform” for short) we essentially mean thewen
sion of predicate logic formulae into binary relations by oeing bound variables and
quantifiers — a technique which, initiated by De Morgan in 1860s [62], eventually
led to what is known today as thagebra of programming11, 5]. As suggested in
[61], the PF-transform offers to the predicate calculustwha Laplace transform [41]
offers to the differential/integral calculus: the posktpiof changing the underlying
mathematical space in a way which enables agile algebrkoalation.

Theories “refactored” via the PF-transform become moreeg@nmore structured
and simpler [59-61]. Elegant expressions replace lengihmilee and easy-to-follow
calculations replace pointwise proofs with lots of ” notation, case analyses and nat-
ural language explanations for “obvious” steps.

8 J.N. Oliveira

The main principle of the PF-transform is tHaverything is a binary relation”
once logical expressions are PF-transformed; one thereaforts to the powerful cal-
culus of binary relations [11, 5] until proofs are dischatge solutions are found for
the original problem statements, which are mapped baclgiodaf required.

Relations. Let arrow B<— A denote a binary relation on datatypégsource) and
B (target). We will say thaB<——A is thetypeof R and writeb R a to mean that

pair (b,a) isin R. Type declaration8<2—A and A—2~ B will mean the same.
RUS (resp.RN S) denotes the union (resp. intersection) of two relatifrendS.

T is the largest relation of its type. Its dual is the smallest such relation (the empty

one). Two other operators are central to the relationalubagc composition g - S)

and converseR°). The latter has already been introduced in section 2. Csitipo is

defined in the usual way(R - S)c holds wherever there exists some mediatirgyich

thatbRa A aSc. Thus we get one of the kernel rules of the PF-transform:

b(R-S)e = (3a :: bRa A aSc) 9
Note that converse is an involution
(R°)° =R (10)
and commutes with composition:
(R-5)°=8°-R° (11)

All these relational operators arg-monotonic, whereC is the inclusion partial
order (4). Composition is the basis of (sequential) fagation. Everywherd = R - S
holds, the replacement @f by R - S will be referred to as a “factorization” and that of

R - S by T as “fusion”. Every relationB<—— A allows for two trivial factorizations,
R =R-ids andR = idp - R where, for everyX, idx is the identity relation mapping
every element ofX onto itself. (As a rule, subscripts will be dropped whereypes
are implicit or easy to infer.) Relational equality can beabished byC-antisymmetry:

R=S = RCSASCR (12)

Coreflexives and ordersSome standard terminology arises from thlerelation: a

(endo) relationA<2—A (often called arorder) will be referred to ageflexiveiff

id C R holds and asoreflexiveff R C id holds. Coreflexive relations are fragments
of the identity relation which model predicates or sets.yT&e denoted by uppercase
Greek letters (egb, ¥) and obey a number of interesting properties, among which we
single out the following, which prove very useful in caldidas:

bV =dNY =V-P (13)
P = (14)

The PF-transform of a (unarpyedicatep is the coreflexived, such that

bPpa=(b=a) A (pa)

GTTSE’'07 — post-refereeing version (March 2008) 9

that is, the relation that maps everyhich satisfie® (and only such:) onto itself. The
PF-meaning of a s&f is @,.qcs, thatis,b &5 a meangb =a) A a € S.

Preorders are reflexive and transitive relations, wheiis transitive iff R - R C
R holds. Partial orders are anti-symmetric preorders, whgteeing anti-symmetric
meansRk N R° C id. A preorderR is anequivalencef it is symmetric, that is, if
R=R"°.

Taxonomy.Converse is of paramount importance in establishing a wadenomy of
binary relations. Let us first define two important notiorte kernelof a relationR,

kerR %' R°.Randits dualimg R e R. R°, theimageof R *. From (10, 11) one

immediately draws

ker(R°) =img R (15)
img (R°) = kerR (16)

Kernel and image lead to the following terminology:

| || Reflexive | Coreflexive|

ker R entireR injective R (17)
img R|| surjectiveR | simpleR

In words: a relationR is said to beentire (or total) iff its kernel is reflexive and to be
simple(or functional) iff its image is coreflexive. Dually is surjectiveiff R° is entire,
andR is injectiveiff R° is simple.

Recall that part of this terminology has already been meetidn section 2. In this
context, let us check formulae (1,2) against the definitiapdured by (17). We shall do
it for (1) as warming-up exercise in pointfree-to-pointe/conversion:

(Ve,a,a : cRa AN cRa =a=ad)
= { rules of quantification [5] and converse

(Va,a" : (e aR°c A cRd): a=ad)

{ (9) and rules of quantificatior}
(Va,a’ :: a(R°-R)d =a=ad)

{ (4) and definition of kernel}
kerR Cid

Exercise 1.Derive (2) from (17).
]

Exercise 2.Resort to (15,16) and (17) to prove the following four ruléshaimb:

4 As explained later on, these operators are relational siies of two concepts familiar from
set theory: the image of a functiofy which corresponds to the set of glsuch that(3 = ::
y = f z), and the kernel of,, which is the equivalence relatioa(ker fla = fb = fa.
(See exercise 3.)

10 J.N. Oliveira

binary relation

—~ ~
injective entire simple surjective
~ ~ ~ — ~ ~
representation function abstraction
~ —~ ~ ~
injection surjection
~ —

bijection

Fig. 3. Binary relation taxonomy

— converse ofnjectiveis simple(and vice-versa)
converse oentireis surjective(and vice-versa)
smaller than injective (simple) is injective (simple)
larger than entire (surjective) is entire (surjective)

A relation is said to be dunctioniff it is both simple and entire. Following a
widespread convention, functions will be denoted by lowseccharacters (ed, g, ¢)
or identifiers starting with lowercase characters. Fumcsipplication will be denoted
by juxtaposition, egf « instead off (a). Thusbfa means the same &s= f a.

The overall taxonomy of binary relations is pictured in fig@rwhere, further to the
standard classes, we atzbresentationsind abstractions As seen already, these are
the relation classes involved i-rules (5). Because af-antisymmetryjmg F' = id
whereverF' is anabstractionandker R = id whereverR is arepresentation

Bijections (also referred to as isomorphisms) are funsti@bstractions and rep-
resentations at the same time. A particular bijectioidiswhich also is the smallest
equivalence relation on a particular data domain.bSd,a means the same as-= a.

Functions and relations.The interplay between functions and relations is a rich part
of the binary relation calculus [11]. For instance, the RErsform rule which follows,
involving two functions {, g) and an arbitrary relatio®

b(f°-R-g)a=(fb)R(ga) (18)

plays a prominent role in the PF-transform [4]. The poineadgfinition of the kernel
of a functionf, for example,

bkerfla = fb= fa (29)
stems from (18), whereby it is easy to see thas the kernel of every constant function,
1< A included. (Function — read “!” as “bang” — is the unique function of its

type, wherel denotes the singleton data domain.)

Exercise 3.Given a functionB<f—A, calculate the pointwise version (19) kér f and
show thatmg f is the coreflexive associated to predicate= (3 a :: b= f a).
O

GTTSE’'07 — post-refereeing version (March 2008) 11

Given two preorders andC, one may relate arguments and results of pairs of
suitably typed functiong andg in a particular way,

ST = < (20)

in which case botlf, g are monotone and said to Balois connected-unctionf (resp.
g) is referred to as theower (resp.uppei adjoint of the connection. By introducing
variables in both sides of (20) via (18), we obtain, foradindb

(fO)Ea = b<(ga) (21)

Quite often, the two adjoints asectionof binary operators. Given a binary opera-
tor 6, its two sectiongaf) and(6b) are unary functiong andg such that, respectively:

f=(ah) = fb=abb (22)
g=(0b) = ga=abb (23)

Galois connections in which the two preorders are relatiausion £, C :=
C, ©) and whose adjoints are sections of relational combinaaparticularly inter-
esting because they express universal properties abduicentbinators. Table 1 lists
connections which are relevant for this paper.

(fR)CS=RC(99)
Description ‘ f ‘ g ‘ Obs.
converse ()° ()°
shuntingrule (h) | (R®) h is a function
“converse’shuntingrule| (-h°) | (-h) h is a function
domain) (T9) left C restricted to coreflexives
range P (-T) left C restricted to coreflexives
difference =R)|(RU)

Table 1. Sample of Galois connections in the relational calculug déneral formula given on
top is a logical equivalence universally quantified $@and R. It has a left part involving lower
adjoint f and a right part involving upper adjoipt

It is easy to recover known properties of the relation caisitom table 1. For
instance, the entry markedHuntingrule” leads to

h-RCS=RCh°-S (24)
for all h, R andS. By taking converses, one gets another entry in table 1, lyame

R-WCS=RCS h (25)

12 J.N. Oliveira

These equivalences are popularly known as “shunting r{il&g’ The fact thaat most
and equality coincide in the case of functions

fCog=f=9g=f2y (26)

is among many beneficial consequences of these rules (sgd Bg.

It should be mentioned that some rules in table 1 appear iritdrature under
different guises and usually not identified as GCBor a thorough presentation of the
relational calculus in terms of GCs see [1,5]. There manyadvantages in such an
approach: further to the systematic tabulation of opesafof which table 1 is just a
sample), GCs have a rich algebra of properties, namely:

— both adjointsf andg in a GC are monotonic;

— lower adjoint f commutes with join and upper-adjoiptcommutes with meet,
wherever these exist;

— two cancellation laws holdb < ¢g(f b) and f (g a) C a , respectively known as
left-cancellationrandright-cancellation

It may happen that a cancellation law holds up to equalityifstancef (g a) = a, in
which case the connection is said togmrfecton the particular side [1].

Simplicity. Simple relations (that is, partial functions) will be pauiarly relevant in
the sequel because of their ubiquity in software modelingpdrticular, they will be
used in this paper to model datientityand any kind of data structure “embodying a
functional dependency” [59] such as eg. relational daglasles, memory segments
(both static and dynamic) and so on.

In the same way simple relations generalize functions @@)shuntingrules (24,
25) generalize to

S-RCT=(5S)-RCS°-T 27)
R-S°CT=R-6SCT-S (28)

for S simple. These rules involve tlemainoperator {) whose GC, as mentioned in
table 1, involves coreflexives on the lower side:

SRCO=RCT & (29)

R R

We will draw harpoon arrows3 AorA B to indicate thatR is simple.
Later on we will need to describe simple relations at poiséatevel. The notation we
shall adopt for this purpose is borrowed from VDM [38], whitiie known asmapping
comprehensiorThis notation exploits the applicative nature of a simglationS by
writing bSa asa € dom S A b= S a, where A should be understood non-strict
on the right argumerftanddom S is the set-theoretic version of coreflexivé above,
thatis,

08 = dsdom S (30)

5 For instance, thehuntingrule is calledcancellation lawin [72].
6 VDM embodies a logic of partial functions (LPF) which takbistinto account [38].

GTTSE’'07 — post-refereeing version (March 2008) 13

holds (cf. the isomorphism between sets and coreflexiveshis way, relatiort itself
can be written aga — S a | a € dom S} and projectionf - S - g° as

{ga— f(Sa)|aecdomS} (31)
providedy is injective (thus ensuring simplicity).

Exercise 4.Show that the union of two simple relatiod$ and N is simpleiff the following
condition holds:

M-N°Cid (32)

(Suggestion: resort to universal propef@ U S) C X = R C X A S C X.) Furthermore
show that (32) converts to pointwise notation as follows,

(MVa = a€(domMndom N)= (M a)= (N a))

— a condition known as (magpmpatibilityin VDM terminology [25].
O

Exercise 5.1t will be useful to order relations with respect to how defirieey are:

R<XS=§RC6S (33)
FromT = ker! draw another version of (33R < S = |- R C!. .S, and use it to derive
R-f°XS=R=XS-f (34)

O

Operator precedencen order to save parentheses in relational expressionsefireed
the following precedence ordering on the relational oppesadeen so far:

>0, p>()>n>U

Example:R -6 S°NT UV abbreviate$(R - (6 (S°)))NT)UV.

Summary. The material of this section is adapted from similar seaion[60, 61],
which introduce the reader to the essentials of the PFfvams While the notation
adopted is standard [11], the presentation of the assdaateulus is enhanced via the
use of Galois connections, a strategy inspired by two (stiublished) textbooks [1,
5]. There is a slight difference, perhaps: by regarding theeulying mathematics as
that of atransformto be used wherever a “hard” formulaneeds to be reasoned about,
the overall flavour is more practical and not that dfiree art only accessible to the
initiated — an aspect of the recent evolution of the calcalusady stressed in [40].

The table below provides a summary of the PF-transform wilesn so far, where
left-hand sides are logical formulag)and right-hand sides are the corresponding PF
equivalents[i]):

7 To use the words of Kreyszig [41] in his appreciation of thglaae transform.

14 J.N. Oliveira

Y | [¥]
Va,b : bRa=bSa)) RCS
(Va :: fa=ga) fCy
Ma = aRa) idC R
(3a = bRa ANaSc)| bR-95)c (35)
bRa ANbSa b(RNS)a
bRaVbSa b(RUS)a
(fb) R(ga) b(f°-R-g)a
TRUE bTa
FALSE bla
Exercise 6.Prove that relational composition presenadisrelational classes in the taxonomy
of figure 3.
m|

4 Data structures

One of the main difficulties in studying data structuringis humber of disparate (inc.
graphic) notations, programming languages and paradigmbas to deal with. Which
should one adopt? While graphical notations such as the UMl 4re gaining adepts
everyday, it is difficult to be precise in such notations leseatheir semantics are, as a
rule, not formally defined.

Our approach will be rather minimalist: we withap such notations to the PF-
notation whose rudiments have just been presented. By the Ymmap” we mean a
light-weight approach in this paper: presenting a fullynfiat semantics for the data
structuring facilities offered by any commercial languagenotation would be more
than one paper in itself.

The purpose of this section is two fold: on the one hand, tevdtmw~ overwhelm-
ing data structuring notations can be even in the case oflsiodgta models such as
our family tree (running) example; on the other hand, to show to circumvent such
disparity by expressing the same models in PF-notatioticRir emphasis will be put
on describing Entity-relationship diagrams [30]. Latenamwill go as far as capturing
recursive data models by least fixpoints over polynomiatsynce again we warn the
reader that types and data modeling constructs in curregrgmming languages are
rather more complex than their obvious cousins in mathesafior the sake of sim-
plicity, we deliberately don’t consider aspects such as-stointness, lazy-evaluation,
infinite data values [65] etc.

Back to the running exampldRecall the family tree displayed in (7) and figure 2. Sup-
pose requirements ask us to provide CRUD operations on aalgegyyedatabase col-
lecting such family trees. How does one go about descrilhiagitita model underlying
such operations?

The average database designer will approach the modehtitg-relationshidER)
diagrams, for instance that of figure 4(a). But many othehsregard this notation too
old-fashioned and will propose something like the UML degrof figure 4(b) instead.

GTTSE’'07 — post-refereeing version (March 2008) 15

Parent
®
s — 0:2 Individual
T~ ID: String
Individual Name: String
of — 0:n — Birth: Date
(@ (b)

Fig. 4. ER and UML diagrams proposed fgenealogiesUnderlined identifiers denote keys.

Uncertain of what such drawingstually meanmany a programmer will prefer to
go straight into code, eg. C

typedef struct Gen {

char *name /+* name is a string * [

int birth / * birth year is a number */

struct Gen *mother; / * genealogy of mother (if known) */
struct Gen +father; / * genealogy of father (if known) */
s

— which matches with figure 2a — or XML, eg.

<l-- DTD for genealogical trees -->
<IELEMENT tree (node+)>
<IELEMENT node (name, birth, mother?, father?)>
<IELEMENT name (#PCDATA)>
<IELEMENT birth (#PCDATA)>
<IELEMENT mother EMPTY>
<I[ELEMENT father EMPTY>
<IATTLIST tree

ident ID #REQUIRED>
<IATTLIST mother

refid IDREF #REQUIRED>
<IATTLIST father

refid IDREF #REQUIRED>

— or plain SQL, eg. (fixing some arbitrary sizes for datatypes

CREATE TABLE INDIVIDUAL (
ID NUMBER (10) NOT NULL,
Name VARCHAR (80) NOT NULL,
Birth NUMBER (8) NOT NULL,
CONSTRAINT INDIVIDUAL_pk PRIMARY KEY(ID)

);

16 J.N. Oliveira

CREATE TABLE ANCESTORS (

ID VARCHAR (8) NOT NULL,
Ancestor VARCHAR (8) NOT NULL,
PID NUMBER (10) NOT NULL,

CONSTRAINT ANCESTORS_pk PRIMARY KEY (ID,Ancestor)
);

— which matches with figure 2b.
What about functional programmers? By looking at pedigree {7) where we
started from, an inductive data type can be defined, eg. ikéflas

data PTree = Node {
name [Char],
birth :: Int ,
mother :: Maybe PTree,
father :: Maybe PTree

}
whereby (7) would be encoded as data value

(36)

Node
{name = "Peter", birth = 1991,
mother = Just (Node
{name = "Mary", birth = 1956,
mother = Nothing,
father = Nothing}),
father = Just (Node
{name = "Joseph", birth = 1955,
mother = Just (Node
{name = "Margaret", birth = 1923,
mother = Nothing, father = Nothing}),
father = Just (Node
{name = "Luigi", birth = 1920,
mother = Nothing, father = Nothing})})}

Of course, the same tree can still be encoded in XML notatipuging DTD

<l-- DTD for genealogical trees -->
<IELEMENT tree (name, birth, tree?, tree?)>
<IELEMENT name (#PCDATA)>
<IELEMENT birth (#PCDATA)>

As well-founded structures, these trees can be prettytgutias in (7). However,
how can one ensure that the sapmmt-family-treeoperation won't loop forever while
retrieving data from eg. figure 2b? This would clearly hapgeby mistake, record
in figure 2b were updated fol | Father [5 |: Peter would become
a descendant of himself!

Several questions suggest themselves: are all the abavendatels “equivalent”?
If so, in what sense? If not, how can they be ranked in termsjoélity”? How can we
tell apart theessencef a data model from its technology wrapping?

GTTSE’'07 — post-refereeing version (March 2008) 17

To answer these questions we need to put some effort in dagsgithe notations
involved in terms of a single, abstract (ie. technology¥re®fying notation. But syntax
alone is not enough: the ability t@asonin such a notation is essential, otherwise
different data models won't be comparable. Thus the readon w what follows, we
choose the PF-notation as unifying framewbrk

Recordsareinhabitants of products.Broadly speaking, a database is that part of an
information system which collecfscts or recordsof particular situations which are
subject to retrieving and analytical processing. But, watrecord?

Any row in the tables of figure 2b is a record, iecords a factFor instance, record
| 5 [Peter | 1991 | tells: Peter, whose ID number is 5, was born in 198imathemati-
cian would have writteli5, Peter, 1991) instead ofirawingthe tabular stuff and would
have inferred5, Peter,1991) € IN x String x IN from5 € IN, Peter € String and
1991 € IN, where, given two typed and B, their (Cartesian) produet x B is the set
{(a,b) |a € ANb e B}.So records can be regardedagleswhich inhabitproducts
of types.

Product datatypel x B is essential to information processing and is available in
virtually every programming language. In Haskell one v&{#&,B) to denoted x B,
for A andB two given datatypes. This syntax can be decorated with nagges

data C = C { first :: A, second :: B}

as is the case ®Tree (36). In the C programming language, thex B datatype is

realized using “struct™s, eg.
struct { A first; B second; };

The diagram aside is suggestive of what

A<—"1 AxB—"2 . p productd x B actually mean$, whereR and
S are relations, the two projections, m, are
ANES) S such that

mi(a,b) =a A ma(a,b)=b (37)
and relation R, S) 10 establishes the following relationship among three objedt, c:
(a,b){R,S)¢ = aRcANbSc (38)

A special case ddplit will be referred to aselational product

RxSY (R 7,8 m) (39)

8 The “everything is a relation” motto implicit in this apprciais also the message of Alloy [36],
a notation and associated model-checking tool which has fisecessful imlloyinga number
of disparate approaches to software modeling, namely rarikhtation, object-orientation,
etc. Quoting [36](...) “the Alloy language and its analysis are a Trojan harae attempt to
capture the attention of software developers, who are mimetthe tar pit of implementation
technologies, and to bring them back to thinking deeply abaderlying concepts”

® Understanding the full meaning of this diagram is defereedection 7 and, in particular, to
exercise 27, in which the corresponding universal properiyferred.

10 Read(R, S) as“split of R andS” . This construct is also known adark algebra[28].

18 J.N. Oliveira

So we can add two more entries to table (35):

Y | [v]
aRec ANbSc| (a,b){R,S)c
bRa A dSc|(b,d)(R x S)(a,c)

As another example of PF-transformation, we calculate B&dtsion of (38):
(38)
= { projections (37)}
(a,b){R,S)e = mi(a,b) Rc A ma(a,b)Sc
{ (18) twice }
(a,b){R,S)c = (a,b)(m}-R)e A (a,b)(ns - S)e

= { introducen (35) ; remove variableg

(R,Sy=m}-RN7§-S (40)
Note that binary product can be generalized tary product4; x As x ... x A,
involving projections{m}izlyn such thatr; (a1, ..., a,) = a;.

Exercise 7.Identify which types are involved in the following bijectis:

flatr(a, (b,c)) = (a,b,c) (42)
flatl((b,c),d) = (b,c,d) (42)

o
Exercise 8.Show that the side condition of the followirsglit-fusionlaw *
(R,S) T=(R-T,8-T) <« R-(imgT)CRVS-(imgT)CS (43)

can be dispensed with in (at least) the following situatiq@a$ 7" is simple; (b)R or S are
functions.
ad

Exercise 9.Write the following cancellation law with less symbols assog thatR < S and
S =< R (33) hold:

m(R,S)y=R-6S A m-(R,S)=S-6R (44)
O

1 Theorem 12.30 in [1].

GTTSE’'07 — post-refereeing version (March 2008) 19

Data type sums.The following is a declaration of a date type in Haskell whish
inhabited byeither Booleans or error strings:

data X = Boo Bool | Err String

If one queries a Haskell interpreter for the types of Bo® andErr constructors, one
gets two functions which fit in the following diagram

Bool . Bool + String S String
k \L[W
X

whereBool + String denotes the sum (disjoint union) of typBsol andString, func-
tionsiy, io are the necessaigjectionsand|[Boo , Err] is an instance of th&either”
relational combinator :

R.S]=(R-i)U(Si) o A— L sA+B<~2 B (45)

In pointwise notation|R , S| means
¢[R,SJlx = (Ja = cRa AN x=1d1a)V(Ib : cSa N x=izb)

In the same wagplit was used above to define relational prodlict S, eithercan
be used to defineelational sums

R+S=li1-R,is- S| (46)

As happens with products, + B can be generalized to-ary sumA4; + As +...+ A,
involving n injections{i;},_, ..

In most programming languages, sums are not primitive aad teesbe programmed
on purpose, eg. in C (using unions)

struct {
int tag; / * eg. 1,2 =/
union {
A ifA;
B ifB;
} data;
b

where explicit integer tags are introduced so as to modetiignsiy, is.

20 J.N. Oliveira

(Abstract) pointers.A particular example of a datatype sumlis- A, whereA is an
arbitrary type and is the singleton type. The “amount of information” in this#iof
structure is that of a pointer in C/C++: one “pulls a rope” aitther gets nothingl{

or something useful of typd. In such a programming context “nothing” above means
a predefined value N. This analogy supports our preference in the sequel fords
canonical inhabitant of datatype In fact, we will refer tol + A (or A + 1) as the
“pointer to A” datatype'?. This corresponds to tHdaybe type constructor in Haskell.

Polynomial types, grammars and languag@&gpes involving arbitrary nesting of prod-
ucts and sums are callpdlynomialtypes, egl + A x B (the “pointer to struct” type).
These types capture the abstract contents of generativentaes (expressed in ex-
tended BNF notation) once non-terminal symbols are ideutifiith types and terminal
symbols are filtered. The conversion is synthesized by th@fimg table,

BNF NOTATION POLYNOMIAL NOTATION

alp — a+ 3

af — ax 3 47
€ — 1

a — 1

applicable to the right hand side of BNF-productions, wher@ range over sequences
of terminal or non-terminal symbols, stands foremptyand a ranges over terminal

symbols. For instance, productidh — ¢|a A X (whereX, A are non-terminals and

a is terminal) leads to equation

X=1+4AxX (48)

which hasA* — the “sequence ofi” datatype — as least solution. Sintet A x X
can also be regarded as instance of the “pointer to strut¢t®na one can encode the
same equation as the following (suitably sugared) typeadatibn in C:

typedef struct x {
A data;
struct x *next;
} Node;

typedef Node *X;

Recursive typesBoth the interpretation of grammars [70] and the analystatétypes
with pointers [71] lead to systems of polynomial equatidhat is, to mutually recursive
datatypes. For instance, the tiypedes above lead tdVode = A x X and toX =
1+ Node. Itis the substitution ofVode by A x X in the second equation which gives
raise to (48). There is a slight detail, though: in dealinthwecursive types one needs
to replaceequality of types byisomorphisnof types, a concept to be dealt with later

2 Note that we are abstracting from the reference/derefersamantics of @ointer as under-
stood in C-like programming languages. This is why we reder + A as anabstractpointer.
The explicit introduction of references (pointers, keyeritities) is deferred to section 9.

GTTSE’'07 — post-refereeing version (March 2008) 21

on in section 5. So, for instance, tR§reedatatype illustrated above in the XML and
Haskell syntaxes is captured by the equation

PTree = Ind x (PTree 4+ 1) x (PTree+ 1) (49)

whereInd = Name x Birth packages the information relative to name and birth
year, which don’t participate in the recursive machinerg are, in a sense, parameters
of the model. Thus one may wri8Tree = G(Ind, PTree), in which G abstracts the
particular pattern of recursion chosen to model familydree

GXY)E X x(Y+1)x (Y +1)
whereX refers to the parametric information aldto the inductive part®.

Let us now think of the operation which fetches a particuldividual from a given
PTree. From (49) one is intuitively led to an algorithm whiehiherfinds the individual
(Ind) at the root of the trear tries and finds it in the left sub-tre@{"ree) or tries and
finds it in the right sub-treelT'ree). Why is this strategy “the natural” and obvious
one? The answer to this question leads to the notion of geatgmbershipvhich is
introduced below.

Membership.There is a close relationship between #t@apeof a data structure and
the algorithms which fetch data from it. Put in other wordgery instance of a given
datatype is a kind oflata containemwhose mathematical structure determines the par-
ticular membershipests upon which such algorithms are structured.

Sets are perhaps the best known data containers and purgst stuitive notion
of membership: everybody knows whate S means, wherevei is of type A and
S of type P A (read: “the powerset of”). Sentencer € S already tells us that (set)

membership has typel<e—73A. Now, lists are alsaontainer typesthe intuition
being thata belongs (or occurs) in liste A* iff it can be found in any of its positions.

In this case, membership has tyﬁece—A* (note the overloading of symbal). But
even producd x A has membership toa:is a member of a paifz, y) of type A x A
iff it can be found in either sides of that pair, thatis (z,y) meansu = 2V a = y.
So it makes sense to defingganericnotion of membership, able to fully explain the
overloading of symbo above.

Datatype membership has been extensively studied [320].1B6low we deal with
polynomial type membership, which is what it required irsthaper. A polynomial type
expression may involve the composition, product, or sumtbéopolynomial types,
plus the identity [d X = X) and constant types (X = K, whereK is any basic
datatype, eg. the Booleans, the natural numbers, etc).riéenembership is defined,
in the PF-style, over the structure of polynomial types éds\ics:

e 1 (50)
e < id (51)
13 Types such a®T'ree, which are structured around another datatypeQgfvhich captures its
structural “shape” are often referred totam-level typesn the literature [66].

22 J.N. Oliveira

def

€rxG = (€F-m) U (€g - m2) (52)
€ric < [eF , € (53)
crc ¥ eg-er (54)

Exercise 10.Calculate the membership of tyfeX = X x X and convert it to pointwise
notation, so as to confirm the intuition above that (z,y) holds iffa =z Vva =y.
]

Generic membership will be of help in specifying data stuues which depend on
each other by some form oé&ferential integrityconstraint. Before showing this, we
need to introduce the important notionreference or identity.

Identity. Base clause (51) above clearly indicates that, sooner er;, kquality plays
its role when checking for polynomial membership. And edyalf complex objects
is cumbersome to express and expensive to calculate. Merezhecking two objects
for equality based on their properties alone may not worknay happen that two
physically different objects have the same propertiesiveg.employees with exactly
the same age, hame, born in the same place, etc.

This identificationproblem has a standard solution: one associates to thetebjec
in a particular collectiondentifierswhich are unique in that particular context, cf. eg.
identifierID in figure 2b. So, instead of storing a collection of objectésafy) typeA in
a set of (say) typ@ A, one stores an association of unique names to the origifedtsh
usually thought of in tabular format — as is the case in figure 2

However, thinking in terms offabular relationsexpressed by sets of tuples where
particular attributes ensure unique identificatiras is typical of database theory [46],
is neither sufficiently general nor agile enough for reasgipiurposes. References [57,
59] show that relationasimplicity *° is what matters in unique identification. So it
suffices to regard collections of uniquely identified objedtas simple relations of

type
K—A (55)

where K is a nonempty datatype ddeys or identifiers. For the moment, no special
requirements are put oid. Later on,K will be asked to provide for a countably infinite
supply of identifiers, that is, to behave suchnasural number objectdo in category
theory [48].

Below we show that simplicity and membership are what is ireguof our PF-
notation to capture the semantics of data modeling (grapimotations such &sntity-
Relationshipdiagrams and UML class diagrams.

Entity-relationship diagrams.As the name tells, Entity-Relationship data modeling
involves two basic conceptentitiesandrelationships Entities correspond toounsin
natural language descriptions: they describe classesjeétstwhich have identity and

¥ These attributes are known lesys
15 Recall that a relation is simple wherever its image is coxifée(17).

GTTSE’'07 — post-refereeing version (March 2008) 23

Book Borrower
ISBN PID
Title Reserved Name
Author[0-5] | ON Date ON| Address
Publisher Phone
id: ISBN id: PID

Fig. 5. Sample of GER diagram (adapted from [30]). Underlined iifiems denote keys.

exhibit a number of properties or attributes. Relationsltugn be thought of agerbs
they record (the outcome of) actions which engage diffezatities.

A few notation variants and graphical conventions existtifi@se diagrams. For its
flexibility, we stick to thegeneric entity-relationshifGER) proposal of [30]. Figure 5
depicts a GER diagram involving two entitilBook andBorrower. The latter pos-
sesses attributddame Address Phoneand identityPID. As anticipated above where
discussing how to model object identity, the semantic moti&lorrower is a simple
relation of typeTr;p — TName X TAddress X TPhone, Where byT, we mean the
type where attribute takes values from. For notation economy, we will drop The
notation and refer to the typg, of attributea by mentioningz alone:

Borrowers def PID — Name x Address x Phone

Entity Book has a multivalued attributé\(ithor) imposing at most 5 authors. The
semantics of such attributes can be also captured by (Nessteple relations:

Books ¥ ISBN — Title x (5 = Author) x Publisher (56)
Note the use of numbérto denote the initial segment of the natural numbé¥g (p
to 5, that is, sef1,2,...,5}.

Books can be reserved by borrowers and there is no limit totimber of books
the latter can reserve. The outcome of a reservation at eylartdate is captured by
relationshipReservedSimple relations also capture relationship formal semanthis
time involving the identities of the entities engaged. lis tase:

Reserved < ISBN x PID — Date

Altogether, the diagram specifies datatype " Books x Borrowers x Reserved
inhabited by triples of simple relations.

In summary, Entity-Relationship diagrams describe dataletsowhich are con-
cisely captured by simple binary relations. But we are noiedget: the semantics of the
problem include the fact that onbxkistingbooks can be borrowed iynownborrowers.
So one needs to impose a semantic constraint (invarian@atygeDb which, written
pointwise, goes as follows

$(M, N, R) %<

Vi,p,d : dR(i,p)= 3z = a Mi) AN Jy = y M p)) (57)

24 J.N. Oliveira

wherei, p, d range oved SBN, PID and Date, respectively.

Constraints of this kind, which are implicitly assumed whieterpretingrelation-
shipsin these diagrams, are known iagegrity constraintsBeing invariants at the se-
mantic level, they bring along with them the problem of emsyitheir preservation by
the corresponding CRUD operations. Worse than this, ttefinition in the predicate
calculus is not agile enough for calculation purposes.dsdtan alternative?

Space constraints preclude presenting the calculatiochwtduld show (57gquiv-
alentto the following, much more concise PF-definition:

def

HM,NR)® R- <M AN R-€° <N (58)
cf. diagram
ISBN <—"1 [SBN x PID % pID
M R N
thle X (5 — Namex
Author) x Date Addressx
Publisher Phone

To understand (58) and the diagram above, the reader muast ttee definition of the
=< ordering (33) — which compares the domains of two relationgréd inspect the

c=m

types of the two membershipgSBN<——I1SBN x PID in the first instance and

c=mo

PID<——ISBN x PID inthe second. We check the firstinstance, the second being
similar:

ISBN<S—ISBN x PID
= { polynomial decomposition, membership of product (32)
(€1d -m1) U (€Epip -m2)
= { (50) and (51) }
id-m UL-mo
= { trivia }
Uyt
Multiplicity labels 0:N in the diagram of figure 5 indicatedtthere is no limit to the
number of books borrowers can reserve. Now suppose theyidezrees the following
rule: borrowers can have at most one reservation actinehis case, label 0:N on the

Book side must be restricted to 0:1. These so-called many-toedaonships are once
again captured by simple relations, this time of a diffesdatpe:

Reserved & PID — ISBN x Date (59)

Altogether, note how clever use of simple relations dispengith explicit cardinality
invariants, which would put spurious weight on the data nhadewever, referential

GTTSE’'07 — post-refereeing version (March 2008) 25

integrity is still to be maintained. The required patterroice again nicely built up

around membershipgp(M, N, R) def (€-R)°* <M A R =N, see diagram:

ISBN <—"_ [SBN x Date —2— PID

M N
Title x (5 — Namex
Author) x Addressx
Publisher Phone

In retrospect, note the similarity in shape between theagrdims and the corre-
sponding Entity-Relationship diagrams. The main advantsfghe former resides in
their richer semantics enabling formal reasoning, as wk séain the sequel.

Name spaces and “heapsRelational database referential integrity can be showrto b
an instance of a more general issue which traverses congdutim end to endname
spacereferential integrity (NSRI). There are so many instandd$®RI thatgenericity

is the only effective way to address the toicThe issue is that, whatever programming
language is adopted, one faces the same (ubiquitous) sigritegredients: (a) source
code is made of units; (b) units refer to other units; (c)singed to be named.

For instance, a software package is a (named) collectionoofutes, each module
being made of (named) collections of data type declaratiohgariable declarations,
of function declarations etc. Moreover, the package warpile in case name spaces
don't integrate with each other. Other examples of nhameespaequiring NSRI are
XML DTDs, grammars (where nonterminals play the role of ng)netc.

In general, one is led to heterogeneous (typed) collectibfimutually dependent)
name spacesicely modeled as simple relations again

Ni — Fi(Ti,Nl, e ,Nj, e ,an)
whereF; is a parametric type describing the particular pattern tvigkpresses how
names of typeV; depend on names of typ@§ (j = 1, n;) and wherél; aggregates all
types which don'’t participate in NSRI.

Assuming that all such; have membership, we can draw diagram

Si
N;

Fi(Ti, N1,...,Nj, ..., Ny,)
lGi,j
€i,55:
N;

whereeg; ; - S; is a name-to-name relation, dependence grapiOverall NSRI will
hold iff

<VZ,] bt (Giyj . Si)o = SJ> (60)

18 For further insight intmamingsee eg. Robin Milner’s interesting esdAfhat’s in a name? (in
honour of Roger Needharayailable fromhttp://www.cl.cam.ac.uk/"rm135

26 J.N. Oliveira

which, once the definition ordet (33) is spelt out, converts to the pointwise:
Vn,m : née domS;: me;; (Sin)=me domS;)

Of course, (60) includes self referential integrity as acigdease { = 7).
NSRI also shows up at low level, where data structures sucacdmesaindheapscan

also be thought of as name spaces: at such a low level, nagmaearory addresseBor
H

instance, IV F (T,IN) models a heap “of shapé’whereT is some datatype
of interest and addresses are natural numhais A heap satisfies NSRI iff it has no
dangling pointers. We shall be back to this model of heapswdigzussing how to deal
with recursive data models (section 9).

Summary. This section addressed data-structuring from a doublepoaw. the one
of programmers wishing to build data models in their chosem@mmming medium
and the one of the software analyst wishing to bridge betweedels in different no-
tations in order to eventually control data impedance mismal he latter entailed the
abstraction of disparate data structuring notations irdoramon unifying one, that of
binary relations and the PF-transform. This makes it pdess$thstudy data impedance
mismatch from a formal perspective.

5 Dataimpedance mismatch expressed in the PF-style

Now that both the PF-notation has been presented and tlagupteation to describing
the semantics of data structures has been illustrated, evMeedter positioned to restate
and study diagram (5). This expressesdhta impedance mismatdtietween two data
modelsA and B as witnessed by aonnectedepresentation/abstraction paRr, F).
Formally, this means that:

— R is arepresentatiorkér R = id)
— F'is an abstractionifig ' = id) (61)
— R andS are connected? C F*°

The higher the mismatch betwedrand B the more complexR, F') are. The least
impedance mismatch possible happens between a datatyjtselhd

A (62)

Another way to read (62) is to say that theordering on data models ieflexive It
turns up thak is alsotransitive

R S SR
47 < papT < eooaT < g (63)

GTTSE’'07 — post-refereeing version (March 2008) 27

that is, data impedances compose. The calculation of (68)rigediate: composition
respects abstractions and representations (recall sg8rand F' - G, S - R) are con-
nected:

S-RC(F-Q)°

= { converses (11)}
S-RCG°-F°

<= { monotonicity }
SCG° ANRCF°

{ sinceS, G andR, F' are assumed connect¢d

TRUE

Right-invertibility. A most beneficial consequence of (61) is thyht-invertibility prop-
erty

F-R=id (64)
which, written in predicate logic, expands to
(Va';a :: (b 2 d FbAbRa) = d =a) (65)
The PF-calculation of (64) is not difficult:
F-R=1id
{ equality of relations (12)}
F-RCid NidCF-R
{ img F = id andker R = id (61) }
F-RCF-F° NR°-RCF-R
{ converses}
F-RCF-F° N RP-RCR°-F°
= { (F-) and(R°-) are monotone}
RCF° NRCF®°
= { trivia }
RCF°
{ RandF are connected (61}

TRUE

Clearly, thisright-invertibility property matters in data representatichC F - R en-
sures theno lossprinciple andF' - R C id ensures thao confusionprinciple.

28 J.N. Oliveira

While (as we have just seeh)- R = id is entailed by (61), the converse entailment
does not holdF' - R = id ensuresk a representation ankl surjective, but not simple.
It may be also the case that- R = id and R C F*° does not hold, as the following
counter-example show® = !°andL c I C .

Exercise 11.The reader may be interested to compare the calculatioaluste with the corre-
sponding proof carried out at pointwise level using quagdifogic expressions. This will amount
to showing that (65) is entailed by tip@intwisestatement of R, F') as a connected abstraction/
representation pair.

ad

Exercise 12.Consider two data structuring patterrippinter to struct” (A x B + 1) and
“pointer in struct” ((A 4+ 1) x B). The question is: which of these data patterns represents
the other? We suggest the reader checks the validity of

R
/\
AxB+1 < (A+1)x B (66)
v
!

where g f [i1 x id , (i2,!°)] andf = R°, that is, f satisfying clauseg (i1 a,b) = i1(a,b)
and f(i2 NIL,b) = i2 NiL, where NL denotes the unique inhabitant of type 1.
O

Right-invertibility happens to bequivalentto (61) wherever both the abstraction
and the representation diections say f, r:

4 < ¢
\7/

for=id (67)

Let us show thatf - » = id is equivalent tor C f° and entailsf surjective and-
injective:
f-r=1id
{ @6}
f-rCid
= { shunting (24)}

rC f°

= { composition is monotonic}

f-rCf-fe Nre-rCre-fe

{ f-r=id; converseg
WdC f-f° Nr°-rCid
= { definitions }

f surjective A r injective

GTTSE’'07 — post-refereeing version (March 2008) 29

The right invertibility property is a handy way of spottirgrules. For instance, the
following cancellation properties of product and sum hdldl]f

m(f,9)=Ff.m(f9)=9g (68)
l9.fl-ii=g,l9,fl-i2=f (69)
Suitable instantiations of, g to the identity function in both lines above lead to
1 - (id, g) = id , mo - (f,id) = id
lid, f] - iy =id , [g ,id] - ig = id

Thus we get — via (67) — the following-rules

(id,g) (fsid)
/\ /N
A < Ax B B < AxB (70)
_/ _/
T T T
A < A+ B B < A+ B (71)
_/ _/
lid ,f] lg »id]

which tell the two projections surjective and the two injens injective (as expected).
At programming level, they ensure that adding entriesstimact or (disjoint)union

is a valid representation strategy, provided functigng are supplied by default [17].
Alternatively, they can be replaced by the top relatioimeaning adon’t carerepre-
sentation strategy). In the case of (71), evemill work instead of f, g, leading, for
A =1, to the standard representation of datatylpey a “pointerto A”:

Exercise 13.Show thatid , 1] =45 and that | ,id] = 3.
O

Isomorphic data typesAs instance of (67) considgrandr such that both

r f
/\ /\
A < C N A < C
_/ _/
f T

hold. This is equivalent to
rCf° A fCre
= { converses ; (12)}

r°=f (72)

30 J.N. Oliveira

Sor (a function) is the converse of another functipnrhis means that both are bijec-
tions (isomorphisms) — recall figure 3 — since

fis anisomorphism= f°is a function (73)
In a diagram:
r=f°
A /;\ C
\f;o/

IsomorphismA = C corresponds toninimalimpedance mismatch between types
A andC'in the sense that, although the format of data changes, dat&«sion in both
ways is wholly recoverable. That is, two isomorphic typeandC are “abstractly” the
same. Here is a trivial example

swap

/\
Ax B = Bx A (74)
_/

swap

where swap is the name given to polymorphic functidm., 7r1). This isomorphism
establishes theommutativityof x, whose translation into practice is obvious: one can
change the order in which the entries isteuct (eg. in C) are listed; swap the order
of two columns in a spreadsheet, etc.

The question arises: how can onedegtainthat swap is an isomorphism? A con-
structive, elegant way is to follow the advice of (73), whagbpeals to calculating the
converse ofwap,

swap®
= { (40) }
(w] - ma Ny - mp)°

{ converses}

g+ T N T] - T

{ (40) again}
swap

which isswap again. Saswap is its own converse and therefore an isomorphism.

Exercise 14.The calculation just above was too simple. To recognize thveep of (73), prove
the associative property of disjoint union,

A+ (B+C) = (A+B)+C (75)

f=[id+i1 ,ig-ia]

GTTSE’'07 — post-refereeing version (March 2008) 31

by calculatingthe functionr which is the converse of.

Appreciate the elegance of this strategy when compared &t isltonventional in discrete
maths: to provef bijective, one would have to either proyeinjective and surjective, dnvent
its conversef° and prove the two cancellatiorfs f° = id andf° - f = id.

O

Exercise 15.The following are known isomorphisms involving sums anddoiats:

Ax(Bx(C) 2 (AxB)xC (76)
A > Ax1 77)

A 2 1xA (78)

A+B = B+ A (79)
Cx(A+B) ¥ CxA+CxB (80)

Guess the relevant isomorphism pairs.
O

Exercise 16.Show that (73) holds, fof a function (of course).
O

Relation transposesOnce again let us have a look at isomorphism pairf) in (72),
this time to introduce variables in the equality:

ro=f
{ introduce variables}
Va,c = c(r®)a=cfa)
{ (18) }

NVa,e i re=a =c=fa)

This is a pattern shared by many (pairs of) operators in tladioeal calculus, as is
the case of eg. (omitting universal quantifiers)

k=AR = R= € -k (81)
where/ converts a binary relation intihe correspondinget-valued function [11], of

k=totS = S= 14k (82)
——
untot k

wheretot totalizesa simple relatiors into the correspondingMaybe-function”’, and
of
k=curry f = f=ap-(kxid) (83)
———
uncurry k

17 See [60]. This corresponds to the view that simple relataes‘possibly undefined” (ie. par-

o

tial) functions. Also recall thatl<—— A + 1 is the membership ai/aybe.

32 J.N. Oliveira

wherecurry converts a two-argument functighinto the correspondinginary func-
tion, forap(g, z) = g x.

These properties of, tot andcurry are normally referred to asniversal proper-
ties because of their particular pattern of universal quastiiic which ensures unique-
ness'8. Novice readers will find them less cryptic once further (ufifeed) variables are
introduced on their right hand sides:

k=AR = (Vba : bRa=be (ka))
kE=totS = (Vbya = bSa=(i1b) =ka)
k=curry f = (Vbya = f(b,a)=(kb)a)

In summary,A, tot and curry are all isomorphisms. Here they are expressed=by
diagrams,

untot=(13-)

(PB)*

(€)
T T

= A—B (B+1)4
v

@

tot (84)

uncurry

—T T
(BA)C o BCxA
_/

curry

where the exponential notatidn® describes the datatype of all functions frafnto
Y.

Exercise 17.(For Haskell programmers) Inspect the typeflg lookup and relate it to
that oftot. (NB: flip is available fromGHC.Base andlookup from GHC.ListA .)
O

Exercise 18.The following is a well-known isomorphism involving expantils:
((m1-),(m2-))
/\
v

(BxC)* BA x4 (85)

(=)
Write down theuniversal propertycaptured by (85).

O

Exercise 19.Relate functionp2p p)b def if b then (m p) else (w2 p) (readp2p as“pair

to power”) with isomorphism
Ax A

1%

A? (86)

Since exponentials are inhabited by functions and thesseial cases of rela-
tions, there must be combinators which express functiotexrins of relations and vice
versa. Isomorphismd andtot (81, 82) already establish relationships of this kind. Let
us see two more which will prove useful in calculations tddal

18 Consider, for instance, the right to left implication of J8this tells that, givery, curry f is
the onlyfunction satisfyingf = ap - (k x id).

GTTSE’'07 — post-refereeing version (March 2008) 33

“Relational currying”. Consider isomorphism
(C— A)F = BxC— A (87)

and associated universal property,
k=R=(Na,byc:: a(kb)c=aR(b,c) (88)

where we suggest thdt be read R transposed”R is thus a relation-valued function
which expresses a kind @klection/projectiormechanism: given some particulay,
R by selects the “sub-relation” ak of all pairs(a, c) related toby.

This extension o€urryingto relations is a direct consequence of (81):

BxC—A
>~ { A/(e)(8L,84)}
(,PA)BXC

{ curry/uncurry }

~J

(PA)°)”
= { exponentials preserve isomorphisnjs
(C— A

The fact that, for simple relations, one could have resabee to théll aybe-transpose
(82) instead of the power transpose (81), leads to the csiocithat relational “curry-
ing” preserves simplicity:

(C— A)F = BxC—A (89)

Since all relations are simple in (89), we can use notatioweotion (31) in the follow-
ing pointwise definition of\/ (for M simple):

Mb={c— M(@®,c)|(,c)€dom M AV =b} (90)
This rule will play its role in multiple (foreign) key synthis, see section 6.

Sets are fragments of “bang”We have already seen that sets can be modeled by core-
flexive relations, which are simpl€haracteristic functiongre another way to repre-
sent sets:

Ap.{a€Alp a}
T
9A ~ PA cf. p=(eS) = S={a|lpa} (91)
_/

AS.(Aa.a€S)

34 J.N. Oliveira

Here we see the correspondence between set comprehendiamearbership testing
expressed by-valued functions, ie. predicates. By combining t&untotisomor-
phism (84) with (91) we obtain

s2m
T
PA = A1 (92)
_/
dom
wheres2m S = ! - &5 anddom is defined by (30). This shows that every fragment of

bang(!) models a set®.

Exercise 20.Show that “obvious” facts such @&= {a|a € S} andpx =z € {a|p a} stem
from (91). Investigate other properties of set-comprelwenshich can be drawn from (91).
O

Relators and<-monotonicity. A lesson learned from (67) is that right-invertible func-

tions (surjections) have d-rule of their own. For instance, predicate: e #0

over the integers is surjective (onto the Booleans). Thusldams can be represented
by integers,2 < Z — a fact C programmers know very well. Of course, one expects
this“to scale up”: any data structure involving the Booleans (eg. trees of&wots) can
be represented by a similar structure involving integegstfees of integers). However,
what does the word “similar” mean in this context? Typicashen building such a
tree of integers, a C programmer looks at it and “sees” tfeeiith the same geometry
where the integers have been replaced by tfi@nages.

In general, letA and B be such thatd < B and letG X denote a type parametric
on X. We want to be able tpromotethe A-into-B representation to structures of type
G:

R GR
/\ /\
A < B = GA < GB
\/ _/
F GF

The questions arise: does this hold #oty parametric typez we can think of? and
what do relation& R andG F' actually mean? Let us check. First of all, we investigate
conditions for(G F, G R) to be connected to each other:

GRC (GF)°

<= { assume5(X°) C (GX)°, forall X }
GR C G(F°)

<= { assume monotonicity ¢ }
RCF°

{ Ris assumed connected o }

TRUE

19 Relations at mosbang(!) are referred to asght-conditionsin [32].

GTTSE’'07 — post-refereeing version (March 2008) 35
Next, G R must be injective:

(GR)° - GRC id
<= { assum€G X)° C G(X°) }
(GR°)-GRC id
<= { assumdGR) - (GT) CG(R-T) }
G(R°-R) Cid
= { assumeGid C id and monotonicity ofs }
R°-RCid
{ Risinjective }

TRUE

The reader eager to pursue checking the other requiremeetstire, F' surjective, etc)
will find out that the wish list concerning will end up being as follows:

Gid = id (93)
G(R-S) = (GR)-(GS) (94)
G(R°) = (GR) (95)
RCS=GRCGS (96)

These turn up to be the properties ofedator [6], a concept which extends that of a
functorto relations: a parametric datatyfeis said to be a relator wherever, given a
relation R from A to B, G R extendsR to G-structures. In other words, it is a relation
fromG Ato G B, cf.

A GA (97)
Rl lGR
B GB

which obeys the properties above (it commutes with the itfemtith composition and
with converse, and it is monotonic). Onée S above are restricted to functions, the
behaviour ofG in (93, 94) is that of a functor, and (95) and (96) become dtivi-
the former establishing th& preserves isomorphisms and the latter thaireserves
equality (Leibniz).

Itis easy to show that relators preserve all basic propeofieslations as in figure 3.
Two trivial relators are thédentity relator Id, which is such thatd R = R and the
constantrelatorK (for a given data typd() which is such thaK R = idx . Relators
can also be multi-parametric and we have already seen twesét produck x S (39)
and sumRk + S (46).

36 J.N. Oliveira

The prominence of parametric tygeX = K — X, for K a given datatypé< of
keys leads us to the investigation of its properties as a relator

B e K —~RB
Rl lK—\R
C e K—~C

where we define relatioA” — R as follows:

NK-RME5M=6NANN-M°CR (98)
So, wherever simpl&/ andM are(K — R)-related, they are equally defined and their
outputs areR-related. WhereveR is a functionf, K — f is a function too defined by
projection

(K—=~fM=f-M (99)
This can be extended to a bi-relator,
(g—=fM=f-M-g° (100)
providedy is injective — recall (31).

Exercise 21.Show that instantiatio := f in (98) leads taV C f- M andf- M C N inthe
body of (98), and therefore to (99).
O

Exercise 22.Show that K — _) is a relator.
o

Indirection and dereferencinglndirection is a representation technique whereby data
of interest stored in some data structure are replaced kyemtes (pointers) to some
global (dynamic) store — recall (55) — where the dataatiallykept. The represen-
tation implicit in this technique involves allocating fresells in the global store; the
abstraction consists in retrieving data by pointer deesfeing.

The motivation for this kind of representation is well-knovthe referent is more
expensive to move around than the reference. Despite bedtiginderstood and very
widely used, dereferencing is a permanent source of emgpsdagramming: it is im-
possible to retrieve data from a non-allocated reference.

To see how this strategy arises, consiBen (97) the datatype
of interest (archived in some parametric container of tgpeg. IV GIN
binary trees ofBs). Let A be the natural numbers arstbe sim-
ple. Since relators preserve simplicifyS will be simple too, as
depicted aside. The meaning of this diagram is that of degja B GB
generic function (saymap) which, giving.S simple, yieldsG S
also simple. Semap has type

(N — B) — (GIV — GB) (101)

S

in the same way thBmapfunction of Haskell clasEunctor has type

GTTSE’'07 — post-refereeing version (March 2008) 37

fmap :: (a -> b) -> (g a -> g b)

(Recall that, once restricted to functions, relators ddi@evith functors.)

From (89) we infer thatmap can be “uncurried” into a simple relation of type
(N — B) x GIN) — G B which is surjective, for finite structures. Of course we
can replacelN above by any data domain, s&y (suggestive okey), with the same
cardinality, that is, such thdt = IN. Then

R

/\
GB < (K ~B)xGK (102)
k/

Dref

holds for abstraction relatioRref such thatDref = rmap, that is, such that (recalling

(88))
y Dref (S,z) = y(GS)x

for S astoreandz a data structure of pointers (inhabitant®f).
Consider as example the indirect representation of firsts bf Bs, in which fact
" Dref (S,1) instantiates td'(S™*)!, itself meaning

I'(S*)l = lengthl = lengthl A
(Vi : 1<i<lengthl: li€domS A (I'i)=S5(l1))

So, wherevet’ S*[holds, no referenckin list [can live outside the domain of stose
kel=(3b : bSk) (103)

wheree denotes finite list membership.

Exercise 23.Check that (103) PF-transformste - [)° < S, an instance of NSRI (60) where
[denotes the “everywhei® constant function.
]

Exercise 24.Define a representation functienC Dref° (102) forG X = X*.
O

SummaryThis section presented the essence of this paper’s apptoaeta calcula-
tion: a preorder<) on data types which formalizes data impedance mismataring
of representation/abstraction pairs. This preorder ispadible with the data type con-
structors introduced in section 4 and leads to a data stingtgalculus whose laws
enable systematic calculation of data implementations fadstract models. This is
shown in the sections which follow.

6 Calculating database schemes from abstract models

Relational schema modeling is central to the “open-end¢dfimapping issues” iden-
tified in [43]. In this section we develop a number<irules intended for cross-cutting

38 J.N. Oliveira

impedance mismatch with respect to relational modelingpthrer words, we intend
to provide a practical method for inferring the schema of &lase which (correctly)
implements a given abstract model, including the stepwis¢hesis of the associated
abstraction and representation data mappings and comat&ants. This method will
be shown to extend to recursive structures in section 9.

Relational schemes “relationally” Broadly speaking, a relational databaseistaple
of tables, where each table is a relation involving valueslléuples. The latter are vec-
tors of values which inhabit “atomic” data types, that isjetthold data with no further
structure. Since many such relations (tables) exkiyjit they can be thought of &im-
ple relations In this context, let

n

RDBT ¥ H(ﬁ K; — ﬁ Dy) (104)
k=1

i=1 j=1

denote thegeneric typeof a relational database [2]. EvelyD BT-compliant tupledd
is a collection ofn relational tables (index = 1, n) each of which is a mapping from
a tuple ofkeys(index) to a tuple ofdata of interes{index k). Wherevem,; = 0 we
have]_[gz1 Dy = 1, meaning — via (92) — dinite setof tuples of type]_[;.‘;1 K;.
(These are calletklationshipsin the standard terminology.) Wherevwer = 1 we are
in presence of a singleton relational table. Last but nat)edl K ; andD), are “atomic”
types, otherwiséb would fail first normal form (LNF) compliance [46].

Compared to what we have seen so far, typl@ BT (104) is “flat”; there are no
sums, no exponentials, no room for a single recursive da¢atyhus the mismatch
identified in [43]: how does one map structured data (eg.@@do XML) or a text gen-
erated according to some grammatr, or even a collection etcobjpes, intaRD BT?

We devote the remainder of this section to a numbetafiles which can be used
to transform arbitrary data models into instances of “flal) BT'. Such rules share the
generic pattermd < B (of which A = B is a special case) whei® only contains
products and simple relations. So, by successive applitati such rules, one is lead
— eventually — to an instance @&t D BT'. Note that (87) and (92) are already rules of
this kind (from left to right), the latter enabling one to gietof powersets and the other
of (some forms of) exponentials. Below we present a few malessrof this kind.

Getting rid of sums.It can be shown (see eg. [11]) that thither combinator{R , S]
as defined by (45) is an isomorphism. This happens becaussarsways (uniquely)

project a relation(B + C’)L>A into two componentsB—R>A and C—>~ A,
such thafl’ = [R, S]. Thus we have

.
— T
(B+C)— A o~ (B — A) x (C — A) (105)
'\—/
-

which establishes universal property

T=[R,S] = T-ii=R AT -iy=S5 (106)

GTTSE’'07 — post-refereeing version (March 2008) 39

When applied from left to right, rule (105) can be of help im@ving sums from
data models: relations whose input types involve sums aaayal be decomposed into
pairs of relations whose types don’tinvolve (such) sums.

Sums are a main ingredient in describing #estract syntaof data. For instance,
in the grammar approach to data modeling, alternative Iwesof a production in ex-
tended BNF notation map to polynomial sums, recall (47).3@ication of rule (105)
removes such sums with no loss of information (it is an isgrhi@m), thus reducing
the mismatch between abstract syntax and relational dsgabadels.

The calculation of (105), which is easily performed via tlmvpr-transpose [11],
can alternatively be performed via thaybetranspose [60] — in the case of simple
relations — meaning that relationgither preserves simplicity:

(B+C)— A ~ (B — A) x (C — A) (107)
]

What about the other (very common) circumstance in whichssaatur at the output
rather than at the input type of a relation? Another sum-igkion rule is applicable to
such situations,

Ay
Ao (B+C) = (A-B)x(A—0) (108)
\g/
where
MRNY G MUy N (109)
Ay MY @S- M,ig - M) (110)

However, (108) does not hold as it stands for simple reIatidnecauséZ does not
preserve simplicity: the union of two simple relations i$ always simple. The weakest
pre-condition for simplicity to be maintained is calculdges follows:
Lo
M X N is simple
= { definition (109) }
(i1 - M Uig - N) is simple

{ simplicity of union of simple relations (32}

- M) - (ip - N)° Cid

—~
~

{ converses ; shunting (24, 25)
M- N° Cif -io
= {i-ip=1;(0728)}

40 J.N. Oliveira

OM-dNC L
{ coreflexives (13)}
SMNSN =1 (111)

Thus,M % N is simple iff M and N are domain-disjoint.

Exercise 25.Show thatX Ay = id holds. (NB: propertyid + id = id can be of help in the
calculation.)
O

Exercise 26.Do better than in exercise 25 and show thais the converse of\ ., of course
finding inspiration in (73). Universal property (106) wilbfsen calculations if meanwhile you

show that(M B N)° = [M°,N°] holds.
]

Getting rid of multivalued typesRecall the Books type (56) defined earlier on. It
deviates fromRD BT in the second factor of its range typge,— Author, whereby
book entries are bound to record up to 5 authors. How do we withethis situation?
Books is an instance of the generic relational type—~ (D x (B — C)) for arbitrary
A, B,C andD, where entryB — C generalizes the notion of a multivalued attribute.
Our aim in the calculations which follow is to split this réén type in two, so as to
combine the two keys of type4$ and B:

A= (Dx(B—=0))

= { Maybe transpose (84)}
(Dx (B—=C)+14

< {6}
(D+1) x (B—C)*

i~ { splitting (85) }
(D+1)* x(B—=C)"

= { Maybe transpose (84, 87}
(A=D)x (AxB—C)

Altogether, we can rely or-rule

n

//—\
A= (Dx (B—=0)) < (A= D)x (AxB—=0C) (112)
<~ - 7.
™,
where the “nested join” operatot, is defined by

MM, N = (M,N) (113)

GTTSE’'07 — post-refereeing version (March 2008) 41

—recall (89) — and\,, is
Ny M = (m1 - M, usc(ma - M)) (114)
whereusc (="undo simple currying”) is defined in comprehension niotatas follows,
use M & {(a,b) — (M a)b|a € dom M,b € dom(Ma)} (115)

sinceM is simple. (Details about the calculation of this abstattirepresentation pair
can be found in [64].)

Example.Let us see the application &f-rule (112) to theBooks data model (56). We
document each step by pointing out the involved abstrattdpnesentation pair:

Books = ISBN — (Title x (5 — Author) x Publisher)
= { r =id — {(m1,m3),m2), fi =id — (m1 - m1, 72, M2 - T1) }
ISBN — (Title x Publisher) x (5 — Author)
<2 { ro =24, fo =M, cf (112) }
(ISBN — Title x Publisher) x (ISBN x 5 — Author)
= Bookss

SinceBooks, belongs to th&k D BT class of types (assumid@ BN, T'itle, Publisher
and Author atomic) it is directly implementable as a relational dasghschema.

Altogether, we have been able to calculatg@e-levelmapping between a source
data model Books) and a target data modeBpokss). To carry on with thenapping
scenarioset up in [43], we need to be able to synthesize the two datas rtffapap
forward” and “map backward”) betweeBooks and Bookss. We do this below as an
exercise of PF-reasoning followed by pointwise transtatio

Following rule (63), which enables composition of repréagans and abstractions,
we synthesize = A,,-(id — ({m1,73), m2)) as overall “map forward” representation,
andf = (id — (m - m,m2, 72 - m1)) - X, as overall “map backward” abstraction. Let
us transcribe to pointwise notation:

r M = Ap((id — ({1, m3), 72)) M)
= {(100) }
An(((m1,73), 72) - M)
= {14}
(w1 - {{m1,73), ma) - M, usc(ma - ({71, 73), wa) - M))
= { exercise 8 ; projectiong
({m1,7m3) - M, usc(ma - M))
Thanks to (31), the first componentin this pair transformsdimtwise
{isbn +— (w1 (M isbn), w5(M isbn)) | isbn € dom M}

42 J.N. Oliveira

and the second to

{(isbn,a) — ((we - M) isbn)a | isbn € dom M, a € dom((mwe - M)isbn)}

using definition (115).
The same kind of reasoning will lead us to overall abstradfimap backward”)f:

f(M,N)

= (Zd4 <7T1 © T, T2, T * 7T1>)(MMn N)
{ (100) and (113)}

(my - 1, o, o -) - (M, N)
= { exercise 8 ; projectiong
(my-m - (M,N), 7o - (M,N), 75 -7 - (M, N))
= { exercise 9N is a function }
(my - M,N -6 M, 7y - M)
= {©0}
{isbn — (w1 (M isbn), N', wo(M isbn)) | isbn € dom M}

whereN’ abbreviate§n — N(i,n) | (i,n) € dom N A i =isbn}.

The fact thatN is preconditioned by M in the abstraction is a clear indication
that any addition taV of authors of books whos&SBN don't participate inM is
doomed to be ignored when ‘backward mapping” the data. Tgptaens why a foreign
key constraint must be added to any SQL encodinBafk s, eg.:

CREATE TABLE BOOKS (

);

ISBN VARCHAR (...) NOT NULL,
Publisher VARCHAR (...) NOT NULL,
Title VARCHAR (...) NOT NULL,

CONSTRAINT BOOKS PRIMARY KEY(ISBN)

CREATE TABLE AUTHORS (

):

ISBN VARCHAR (...) NOT NULL,
Count NUMBER (...) NOT NULL,
Author VARCHAR (...) NOT NULL,
CONSTRAINT AUTHORS_pk PRIMARY KEY (ISBN,Count)

ALTER TABLE AUTHORS ADD CONSTRAINT AUTHORS_FK

FOREIGN KEY (ISBN) REFERENCES BOOKS (ISBN);

It can be observed that this constraint is ensured by repiasen » (otherwise
right-invertibility wouldn’t take place). Constraints tfis kind are known asoncrete
invariants We discuss this important notion in the section which foo

GTTSE’'07 — post-refereeing version (March 2008) 43

Summary.This section described the application of the calculuothiced in section
5 to the transformation of abstract data models targetedlational database imple-
mentations. It also showed how more elaborate laws can lieddrom simpler ones
and how to synthesize composite “forward” and “backwardadaappings using the
underlying relational calculus. We proceed to showing hotake further advantage of
relational reasoning in synthesizing data type invariantsiled by the representation
process.

7 Concrete invariants

The fact thatR and F' are connected (61) in every-rule (5) forces the range at to
be at most the domain df, p R C § F'. This means that the representation spdgke (
can be divided in three parts:

— insidep R — data insidep R are referred to asanonical representativethe pred-
icate associated to R, which is the strongest property ensured by the representa-
tion, is referred to as the inducedncrete invariantor representation invariant

— outsided F' — data outside) F' areillegal data: there is no way in which they
can be retrieved; we say that the target modetasupted (using the database
terminology) once its CRUD drives data into this zone.

— insided F' and outsidep R — this part contains data values whi¢hnever gen-
erates but which are retrievable and therefore regarddédgas representatives;
however, if the CRUD of the target model lets data go into #oise, the range of
the representation cannot be assumed as concrete invariant

The following properties of domain and range

0R=KkerRnNid (116)
pR=imgRNid (117)
p(R-S)=p(R-pS) (118)
S(R-S)=0(R-S) (119)

help in inferringconcrete invariantsin particular those induced by-chaining (63).
Concrete invariant calculation, which is in general naiditj is softened wherever
<-rules are expressed by GCA In this case, the range of the representation (concrete

invariant) can be computed as coreflexivef N id, that is, predicaté

b r(fr)=2 (120)

As illustration of this process, consider law

((m1-),(m2-))
//\
A—BxC < (A= B)x (A—0C) (121)
_/
0

20 Of course, these have to perfect(62) on the source (abstract) side.
21 See Theorem 5.20 in [1].

44 J.N. Oliveira

which expresses the universal property of $pét operator, a perfect GC:
XC(RS) = m-XCRA®Mm-XCS (122)
Calculation of the concrete invariant induced by (121)de#:
¢(R,S)
= { (120, 121)}
(R, S) = (m1 - (R, S),m2 - (R, 5))
{ (49) }

R=R-6SNS=S5-0R
= {6XCod=XCX &}

ORCOS NISCHR
{ @2}
SR=05S

In other words: if equally define® andS are joined and then decomposed again, this
will be a lossless decomposition [59].
Similarly, the following concrete invariant can be showrntidd for rule (1122

HM,N) ' N. e <M (123)

Finally note the very important fact that, in the case<efules supported by perfect
GCs, the source datatype is actualpmorphicto the subset of the target datatype
determined by theoncrete invarian{as range of the representation functfén

Exercise 27.Infer (122) from (40) and universal property
XC(RNS)=(XCR)A(XCS)
|

Exercise 28.Show that (111) is the concrete invariant induced by rul@)1dom left-
to-right, in case all relations are simple.
a

Concrete invariants play an important role in data refindmntear instance, Morgan
[50] takes them into account in buildirfgnctional abstractionsf the formaf - @44,
where (entire) abstraction functiarf is explicitly constrained by concrete invariant
dti. In the section which follows we show how such invariantglielcalculating model
transformations. The reader is also referred to [8] for at&ery of invariants in gen-
eral.

22 See [64] for details.
23 See theJnity of oppositesheorem of [5].

GTTSE’'07 — post-refereeing version (March 2008) 45

8 Calculating model transformations

References [30] and [44] postulate a number of model trameftion rules (concerning
GERs in the first case and UML class diagrams in the secondhwine are in position
to calculate. We illustrate this process with rule 12.2 @f][3he rule which converts a
(multivalued) attribute into an entity type:

A].L A’ EA3
A2 o (A L on 1:n— K8
A3[0:N] A2 A3
TAL id: Al id: K3

The PF-semantics of entit% are captured by simple relations from identity to
attributesA, and As, this one represented by a powerset due to being [0:N]:

Al — AQ X PAg

The main step in the calculation is the creation of the newtyeBA3 by indirection —
recall (102) — whereafter we proceed as before:

Ay — Ay x PA;
<1 {(202)}
(K3 — A3) x (A1 = A X PK3)
= {02}
(K3 — A3) x (A1 — Az x (K3 — 1))
<3 {(112) }
(K3 — A3) x ((A1 = A3) x (41 x K3 — 1))

>, { introduce ternary produc}
(Al — AQ) X (A1 X K3 — 1) X (Kg - Ag)
Al rA EA3

The overall concrete invariant is
¢(M,RRN)=R-€°<M AN R-€°<XN
— recall eg. (123) — which can be further transformed into:
$(M,R.NY=R-€°<M N R-€° <N
= { (52,51) }
R-m <M ANR-75 XN
{ 6o}
RM -m1 NRXN-my

46 J.N. Oliveira

In words, this means that relationshi(rA in the diagram) must integrate referentially
with M (A’ in the diagram) on the first attribute of its compound key aith W (EA3
in the diagram) wrt. the second attribute.

The reader eager to calculate the overall representatibalastraction relations will
realize that the former is a relation, due to the fact thatetla@e many ways in which
the keys of the newly created entity can be associated tesaitithe A3 attribute.
This association cannot be recovered once such keys araebstfrom. So, even re-
stricted by the concrete invariant, the calculated modslisly a valid implementation
of the original, but not isomorphic to it. Therefore, theershould not be regarded as
bidirectional.

9 On the impedance of recursive data models

Recursive data structuring is a source of data impedancmaif because it is not
directly supported in every programming environment. While funwigrogrammers
regard recursion athe natural wayto programming, for instance, database program-
mers don't think in that way: somehow trees have to give rooffat data. Somewhere
in between is (pointer-based) imperative programming &vjdab oriented program-
ming: direct support for recursive data structures doessxiit, but dynamic memory
management makes it possible to implement them as heajpusgsiinvolving pointers
or object identities.

In this section we address recursive data structure reqasa in terms of non-
recursive ones. In a sense, we want to show how to “get away nedursion” [57]
in data modeling. It is a standard result (and every a progrars experience) that
recursive types using products and sums can be implemesteg! pointerd71]. Our
challenge is to generalize this result and present it in @utational style.

As we have seen already, recursive (finite) data structuedsast solutions to equa-
tions of the formX = G X, whereG is a relator. The standard notation for such a
solution isuG. (This always exists whe is regular [11], a class which embodies all
polynomialG.)

Programming languages which implement datatyfealways do so byrapping
it inside some syntax. For instance, the Haskell declaratiodatatypePTree (36)
involves constructoNode and selectoraame, birth , mother andfather , which
cannot be found in equation (49). But this is precisely why #yuation expresses
isomorphism and not equality: constructor and selectorsciyzate in two bijections
which witness the isomorphism and enable one to construictspect inhabitants of
the datatype being declared.

The general case is depicted in the diagram aside,
wherein embodies the chosen syntax for constructing out
inhabitants ofiG andout = in® embodies the syntaxfor - — > GG
destructing (inspecting) such inhabitants. For instance! ~—__ H
thein bijection associated witRTree (36) interpreted in
as solution to equation (49) is

in((n,b),m, f) < Nodenbm f (124)

GTTSE’'07 — post-refereeing version (March 2008) 47

Programs handlingG can be of essentially two kinds: either they read (parse, in-
spect)uG-structures (trees) or they actually build such structutée former kind is
known asfolding and the latter asinfolding and both can be pictured as diagrams
exhibiting their recursive (inductive) nature:

out mn

G ————= G uG uG <—— GuG
fold Rl lG(.fold R) wunfold RT TG(unfold R)
A GA A————=GA

Both fold andunfold are instances of a more general, binary combinator known as
hylomorphisnj11], which is normally expressed using the bracketed raidt_, _] of
(126) below to save parentheses:

unfold R = [in,R] (125)
fold S =] R,out]

As fixed points (126), hylomorphisms enjoy a number of sdeddlision properties,

two of which are listed below for their relevance in calcidas to follow?2*:

c~—2 GeC

v GV
B~—">—¢B [S,H]=(uX = S-(GX)-H) (126)
[S,H] G[S,H]

K" e V. SH]|C[T,H]<V-SCT-(GV) (127)
[SSH]-R=[S,U]«<H-R=(GR)-U (128)

R GR

A——>GA

In (liberal) Haskell syntax we might write the type of thejfold combinator as
something like

unfold :: (@ ->ga ->a->mug

assuming only functions involved. If we generalize thesgitaple relations, we obtain
the following type for functiorunfold

(A = pG)A=C4

which, thanks to (87), “uncurries” intgA — G A) x A) — uG.
Let us temporarily assume that there exists a datafymeich that simple relation
Unf, of type (K — GK) x K) — uG and such thal/nf = unfold, is surjective.

24 These and other properties of hylomorphisms arise from tveefful ;-fusiontheorem [5]
once the relational operators involved are identified agtawdjoints in GCs, recall table 1.

48 J.N. Oliveira

Then we are in condition to establish theequation which follows,

R
__——(K - GK)xK
e < —_— (129)
_/ uheapu

Unf

whereK can be regarded as a data typéleap addresses’or “pointers”, and K —
G K a datatype ofz-structurecheaps?®®. So, assertiont Unf (H,k) means that, if
pair (H, k) is in the domain ofUnf, then the abstract value= (unfold H)k will
be retrieved — recall (88). This corresponds to derefergnkiin H and carrying on
doing so (structurally) while building (vin) the tree which corresponds to such a walk
through the heap.

Termination of this process requirésto be free of dangling references — ie. sat-
isfy the NSRI property (60) — and to be referentially acyclidis second require-
ment can also be expressed via the membership relationiatezbevith G: relation

K<™ K on references must be well-founded [23].

Jourdan [39] developed a pointwise proof of the surjectgsofUnf (129) for K
isomorphic to the natural numbers a@golynomial (see more about this in section 13).
The representation relatiaR, which should be chosen among the entire sub-relations
of Unf°, is an injectivefold (since converses of unfolds are folds [11]). Appendix A
illustrates a strategy for encoding such folds, in the cdsé polynomial andK the
natural numbers.

“De-recursivation” law (129) generalizes, in the generic$tyle, the main result
of [71] and bears some resemblance (at least in spirit) va#fiinctionalization” [35],

a technique which is used in program transformation and datign. The genericity of
this result and the ubiquity of its translation into praetie- cf. name spaces, dynamic
memory management, pointers and heaps, database filest abjetime systems, etc
— turns it into a useful device for cross-paradigm transfations. For instance, [57]
shows how to use it in calculating a universal SQL represemtéor XML data.

The sections which follow will illustrate this potentialhile stressing on genericity
[37]. Operations of thalgebra of heapsuch as eglefragmen{cf. garbage-collectioh
will be stated generically and be shown to be correct witlpeesto the abstraction
relation.

10 Cross-paradigm impedance handled by calculation

Let us resume work on the case study started in section 2 aadtyfamow how to map
the recursive datatyf@Tree (36) down to a relational model (SQL) via an intermedi-
ate heap/pointer representation.

Note that we shall be crossing over three paradigms — fumatiomperative and
database relational — in a single calculation, using theesamtation:

PTree

25 Technically, this view corresponds to regarding heaps aiefirelationalG-coalgebras.

GTTSE’'07 — post-refereeing version (March 2008) 49

Il

) { r=out, fi =in, for GK % Ind x (K +1) x (K + 1) —cf. (49, 124) }
nG
<5 { Ry = Unf°, F; = Unf —cf. (129) }
(K—=Indx (K+1)x (K+1))x K
= { rs = (id = flatr®) x id , f3 = (id — flatr) x id —cf. (41) }
(K = Indx (K+1)x (K+1))) x K
4 { ra = (id — id x p2p) x id , f+ = (id — id x p2p°) x id — cf. (86) }

(K —=1Indx (K+1)?)xK
=5 { r5 = (id — id x tot°) x id , f5 = (id — id x tot) x id — cf. (82) }
(K—=Indx(2—=K))x K
<6 {16 =20n, fo =X, —cf. (112) }
(K—=Ind)x (Kx2—=K))x K
7 { r7 = flatl, fr = flatl® —cf. (42) }
(K—Ind) x (Kx2—~K)x K
=3 { sincelnd = Name x Birth (49) }
(K — Name x Birth) x (K x2 =~ K)x K (130)

In summary:

— Step 2 moves from the functional (inductive) to the poiriased representation. In
our example, this corresponds to mapping inductive treto(ff)e heap of figure 2a.

— Step 5 starts the move from pointer-based to relationaddaspresentation. Iso-
morphism (82) betweeMaybefunctions and simple relations (which is the main
theme of [60]) provides the relevant data-link between wWeeparadigms: pointers
“become” primary/foreign keys.

— Steps 7 and 8 deliver an RDBT structure (illustrated in figrlg made up of two
tables, one telling the details of each individual, and theeorecording its im-
mediate ancestors. The 2-valued attribute in the seconelitadicates whether the
mother or the father of each individual is to be reached. Tilvd factor in (130) is
the key which gives access to the root of the original tree.

In practice, a final step is required, translating the refal data into the syntax
of the target relational engine (eg. a script of SISERT commands for each rela-
tion), bringing symmetry to the exercise: in either way \Wards or backwards), data
mappings start byemovingsyntax and close bytroducingsyntax.

Exercise 29.Let f1.7 denote the composition of abstraction functigias (- - -) - f7. Show that
(id — m1) - w1 - far is the same as;.
]

50 J.N. Oliveira
11 On the transcription level

Our final calculations have to do with what the authors of jd8htify as tharanscrip-
tion level the third ingredient of anapping scenarioThis has to do with diagram (8):
once two pairs of data maps (“map forward” and “map backwafd’R and F’, R’
have been calculated so as to represent two source datatygekB, they can be used

to transcribe a given source operatiBFkO—A into some target operatioD<LC’.

How do we establish tha® correctly implementsO? Intuitively, P must be such
that the performance @ and that ofP (the latterwrappedwithin the relevant abstrac-
tion and representation relations) cannot be distingdishe

O=F-P-R (131)

Equality is, however, much too strong a requirement. In, fénetre is no disadvantage
in letting the target side of (131) be more defined than thecsooperatiorD, provided
both are simplé&®:

OCF .-P-R (132)
Judicious use of (27, 28) will render (132) equivalent to
O-FCF.P (133)

providedR is chosen maximalf = F°) andF' < P. This last requirement is obvious:
P must be prepared to cope with all possible representatieiheded byR = F°.

In particular, wherever the source operat@ris aquery, ie. F/ = id in (133), this
shrinks toO - F C P. In words: wherever the source quepydelivers a resulb for
some input:, then the target quetly must deliver the samiefor any target value which
represents.

Suppose that, in the context of our running example (pedigees), one wishes to
transcribe into SQL the query which fetches the name of thegmevhose pedigree tree
is given. In the Haskell data modeTree , this is simply the (selector) functiotume.
We want to investigate how this function gets mapped to Idesszls of abstraction.

The interesting step is,, whereby trees are represented by pointers to heaps. The
abstraction relatiorU/nf associated to this step is inductive. Does this entail itideic
reasoning? Let us see. Focusing on this step alone, we waonht® equatiomame -
Unf C Hname for unknownHname — a query of type((K — GK) x K) —
Name.

Simple relation currying (89) makes this equivalent to firgdH name such that,
for every heag, name - (Unf H) C Hname H holds, thatispame - (unfold H) C
Hname H. Since bothunfold H and Hname H are hylomorphisms, we write them
as suchpame - [in,H] C [T, H], so thatl’ becomes the unknown. Then we

28 Staying within this class of operations is still quite gealeit encompasses all deterministic,
possibly partial computations. Within this class, inctuscoincides with the standard defini-
tion of operation refinemer{61].

GTTSE’'07 — post-refereeing version (March 2008) 51

calculate:
name-[in, H]| C [T, H]
<= { fusion (127) }
name - in C T - G(name)
= { name - Node = 71 - m1 (124) ; expansion o6(name) }
m1-m CT - (id x (name + id) x (name + id))
= {m-(fxg=fm}
T=m-m
Thus

Hname H = [-m, H |
= { @20}
(X ooom-m - (id x (X +id) x (X +14d)) - H)
= {m - (fxg=fm}
(WX =om-m - H)
= { trivia }
mo-m - H

Back to uncurried format and introducing variables, we get (the post-coaditf)
Hname

n Hname(H, k) =k € dom H N n=m(m (H k))

which means what one would expect: should poiritdre successfully dereferenced
in H, selection of thelnd field will take place, wherefrom the name field is finally
selected (recall thatnd = Name x Birth).

The exercise of mappinffname down to the SQL level (130) is similar but less
interesting. It will lead us to

n Rname (M,N,k) =k e€dom M N n=m(Mk)

where M and N are the two relational tables which originated frdihafter step 2.
Rname can be encoded into SQL as something like

SELECT Name FROM M WHERE PID = k

under some obvious assumptions concerning the case in whiemnot be found in
M. So we are done as far as transcribingne is concerned.

The main ingredient of the exercise just completed is theafiasion property
(127). But perhaps it all waswuch ado for little queries aren’t very difficult to tran-
scribe in general. The example we give below is far more edajand has to do with

52 J.N. Oliveira

heap housekeeping. Suppose one wants to defragment thattieagl 2 via some real-

location of heap cells. LeK<LK be the function chosen tenamecell addresses.
Recalling (31), defragmentation is easy to model as a ptiojec

defragment : (K — K) — (K =~ GK) — (K — GK)
def (134)
defragment f H = (Gf)-H - f°

The correctness afefragment has two facets. Firstf - f° should remain simple;
second, the information stored iif should be preservethe pedigree tree recorded in
the heap (and pointer) shouldn’t change in consequencelefragment operation In
symbols:

t Unf (defragment f H, f k) = t Unf (H,k) (135)
Let us check (135):

t Unf(defragment f H, f k) = t Unf(H, k)
{ (129); (125)}

t [in, defragment fH] (f k) = t[in,H] k
{ go pointfree (18); definition (134}

Lin,(Gf)-H-f]-f=[in,H]

= { fusion property (128)}

(Gf)-H-f°-f=(Gf)-H

= { Leibniz }

H-f°-f=H
{ sinceH C H - f° - f always holds}

H-f° fCH

So, conditionH - f° - f C H (with points:
kedomH AN fk=fkK = kKedomHANHk=HEK

for all heap addressés k') is sufficient fordefragment to preserve the information
stored in the heapndits simplicity 2”. Of course, any injective¢ will qualify for safe
defragmentation, foeveryheap.

Some comments are in order. First of all, and unlike what isroon in data refine-
ment involving recursive data structures (see eg. [24] fooraprehensive case study),
our calculations above have dispensed with any kind of itideior coinductive argu-
ment. (This fact alone should convince the reader of theratdges of the PF-transform
in program reasoning.)

2 Infact, H - f°- f C H ensuresH - f° simple, via (28) and monotonicity.

GTTSE’'07 — post-refereeing version (March 2008) 53

Secondly, thelefragment operation we've just reasoned about is a so-cakgd
resentation changgB4]. These operations (which include garbage collectao) are
important because they add to efficiency without disturliregservice delivered to the
client. In themapping scenaridgerminology of [43], these correspond to operations
which transcribe backwards to the identity function, atrsedevel.

Finally, a comment on CRUD operation transcription. AltgbtCRUD operations
in general can be arbitrarily complex, in the process ofdcaption they split into sim-
pler and simpler middleware and dataware operations whidhge target (eg. database)
level end up involving standard protocols for data acce3 [4

The ubiquity ofsimplicityin data modeling, as shown throughout this paper, invites
one to pay special attention to the CRUD of this kind of relatiReference [58] identi-
fies some “design patterns” for simple relations. The onét @éth in this paper is the
identity pattern For this pattern, a succinct specification of the four CRUierations
on simpleM is as follows:

— Create(N): M — N 1 M, where (simple) argume embodies the new entries
to add toM . The use of the override operatoi38, 60] instead of uniori.() ensures
simplicity and prevents from writing over existing entries

— Read(a): deliverb such thab M a, if any.

— Update(f,®): M — M1 f-M-&. This is a selective update: the contents of every
entry whose key is selected Wyget updated by; all the other remain unchanged.

— Delete(®): M — M - (id — P), whereR — S means relational difference (cf. table
1). All entries whose keys are selecteddwre removed.

Space constraints preclude going further on this topicim laper. The interested
reader will find in reference [58] the application of the P&rsform in speeding-up
reasoning about CRUD preservation of datatype invariantsimple relations, as a
particular case of the general theory [8]. Similar gains expected from the same
approach applied to CRUD transcription.

Exercise 30.Investigate the transcription of selector functimother (36) to the heap-and-
pointer level, that is, solvenother- Unf C P for P. You should obtain a simple relation which,
should it succeed in dereferencing the input pointer, it fgllow on to the second position in
the heap-cell so as to unfold (if this is the case) and showréeaccessible from that point. The
so-callechylo-computation rule— [R, S| = R-(F[R, S]) - S — is what matters this time.
O

SummaryThe transcription level is the third component of a mappoensrio whereby
abstract operations are “mapped forward” to the target kavé give room to concrete
implementations (running code). In the approach put fodviaithis paper, this is per-
formed by solving an equation (131) where the unknown is timeete implementation
P one is aiming at. This section gave an example of how to cartytos task in pres-
ence of recursive data structures represented by heap®antdrp. The topic of CRUD
operation transcription was also (briefly) addressed.

12 Related work

This section addresses two areas of research which areatefinrelated to the data
transformation discipline put forward in the current pafg@ne isbidirectional pro-

54 J.N. Oliveira

grammingused to synchronize heterogeneous data formats [13]. Hee istthe design
of term rewriting systems for type-safe data transfornmafic’].

Lenses.The proximity is obvious between abstraction/representgtairs implicit in
<-rules and bidirectional transformations knowressesand developed in the context
of the classicaView-update problerf83, 14, 27, 13]. Each lens connects a concrete data

type C with an abstract viewA on it by means of two functions! x ¢ ¢ and

A<= ¢, (Note the similarity with R, F') pairs, except foput’s additional argument
of typeC'.)
A lens is said to bevell-behavedf two conditions hold,

get(put(v,s)) =v and put(gets,s)=s

known asacceptabilityandstability, respectively. For total lenses, these are easily PF-
transformed into

put -] C get® (136)
(get,id) C put® (137)

which can be immediately recognized as stating the convigctequirements ok-
diagrams

™ = AxC \P{ut (get.id) (138)
/ T
A < C and C < AxC
_/ _/
get put
respectively.

Proving that these diagrams hold in fact is easy to checlkeifPtircalculus: stability
(137) enforcegut surjective (of courséget, id) is injective even in casget is not).
Acceptability (136) enforceget surjective since it is larger than the converse of entire
put - w5 (recall rules of thumb of exercise 2). Conversely, being astnthe converse of
a function put - 77 is injective, meaning that

71 - put® - put - w7 Cid
{ shunting (24, 25) and adding variablgs

put(a,c) =put(a’,d) = a=d
holds. This fact is known in the literature as g@mi-injectivityof put [27].

Exercise 31.A (total, well-behaved) lens is said to bblivious[27] if put is of the formf - 1,
for somef. Use the PF-calculus to show that in this cageand f are bijections, that is4 and
C'in (138) are isomorphi®. Suggestion: show thgkt = f° and recall (73).

a

28 This is Lemma 3.9 in [27], restricted to functions.

GTTSE’'07 — post-refereeing version (March 2008) 55

Put side by side, the twe-diagrams displayed in (138) express the bidirectional
nature of lenses in a neat way. They also suggest that lenses could somehow be
“programmed by calculation” in the same manner as the stractransformations in-
vestigated in the main body of this paper. See section 13utaré research directions
in this respect.

2LT — a library for two-level data transformatiorhe 2LT package of the U.Minho
Haskell libraries [17, 10, 18] applies the theory presertethe current paper to data
refinement via (typed) strategic term re-writing using GADThe refinement process
is modeled by a type-changing rewrite system, each rewtége sf which animates
a <-rule of the calculus: it takes the formd — (C,to, from) whereC, the target
type, is packaged with the conversion functiofasgnd from) between the old4) and
new type (). By repeatedly applying such rewrite steps, complex crgiwa functions
(data mappings) are calculated incrementally while a ng ig being derived. (So,
2LT representation mappings are restricted to functions.)

Data mappings obtained after type-rewriting can be sultgesubsequent simpli-
fication using laws of PF program calculation. Such simgifians include migration
of queries on the source data type to queries on a targetyfseby fusion with the
relevant data mappings (a particular case of transcripsienve have seen). Further to
PF functional simplification, 2LT implements rewrite te@jures for transformation of
structure-shy functions (XPath expressions and strafagittions), see eg. [18].

In practice, 2LT can be used to scale-up the data transfayniatapping tech-
niques presented in this paper to real-size case-studasl|ynby mechanizing repeti-
tive tasks and discharging housekeeping duties. Morernmdtion can be gathered from
the project’s websitehttp://code.google.com/p/2It

13 Conclusions and future work

This paper presented a mathematical approach to datadraregfon. As main advan-
tages of the approach we point out: (a) a unified and powedtdtion to describe
data-structures across various programming paradigmsis(b) associated calculus
based on elegant rules which are reminiscent of school egét) the fact that data
impedance mismatch is easily expressed by rules of thelaalethich, by construc-
tion, offer type-level transformatiortegether withwell-typed data mappings; (d) the
properties enjoyed by such rules, which enable their agiidin in a stepwise, struc-
tured way.

The novelty of this approach when compared to previous git®to lay down the
same theory is the use of binary relation pointfree notatioexpresdothalgorithms
and data, in a way which dispenses with inductive proofs antbersome reasoning. In
fact, most work on the pointfree relation calculus has sté&sn focused on reasoning
about programs (ie. algorithms). Advantages of our progosaiformlyPF-transform
both programand dataare already apparent at practical level, see eg. the wodktexh
in [51].

2% Note however that, in general, lenses are not entire [27].

56 J.N. Oliveira

Thanks to the PF-transform, opportunities for creativigps are easier to spot and
carry out with less symbol trading. This style of calculatltas been offered to Minho
students for several years (in the context of the local ti@dion formal modeling) as
alternative to standard database design technigfudsis the foundation of the “2LT
bundle” of tools available from the UMinho Haskell libresieHowever, there is still
much work to be done. The items listed below are proposed@sfirtopics for re-
search.

Lenses. The pointwise treatment of lenses as partial functions if] [2 cpo-based,
entailing the need for continuity arguments. In this paperhvave seen that partial
functions aresimplerelations easily accommodated in the binary relation dafcuAt
first sight, generalizingut and get of section 12 from functions to simple relations
doesn’t seem to be particularly hard, even in the presenceecafsion, thanks to the PF
hylomorphism calculus (recall section 9).

How much the data mapping formalism presented in the cupapér can offer to
the theory of bidirectional programming is the subject ofgming research.

Heaps and pointers at targetVe believe that Jourdan’s long, inductive pointwise argu-
ment [39] for<-law (129) can be supplanted by succinct pointfree calmnat results
developed meanwhile by Gibbons [29] are taken into acciateover, the same law
should be put in parallel with other related work on caldaatith pointers (read eg.
[12] and follow the references).

Separation logic.Law (129) has a clear connection to shared-mutable datasepr
tation and thus wittseparation logid63]. There is work on a PF-relational model for
this logic [68] which is believed to be useful in better stirdyand further generalizing
law (129) and to extend the overall approach to in-place-gaitecture updating.

Concrete invariants.Taking concrete invariants into account is useful becabeset
ensure (for free) properties at target-data level whichlmadvantageous in the tran-
scription of source operations. The techniques presentsedtion 7 and detailed in
[64] are the subject of current research taking into accthmtPF-calculus of invari-
ants of [8]. Moreover<-rules should be able to take invariants into account (actopi
suggested but little developed in [56]).

Mapping scenarios for the UMLFollowing the exercise of section 8, a calculational
theory of UML mapping scenarios could be developed staftimgp eg. K. Lano’s cat-
alogue [44]. This should also take ti@alculating with Conceptf22] semantics for
UML class diagrams into account. For preliminary work orsthiibject see eg. [9].

30 The <-rules of the calculus are used in practical classes andsisigraments in the derivation
of database schemas from abstract models, including thihesia of data mappings. The
proofs of such rules (as given in the current paper) are addtkin the theory classes.

GTTSE’'07 — post-refereeing version (March 2008) 57

PF-transform. Last but not least, we think that further research on therBisform
should go along with applying it in practice. In particulgeojng further and formalizing
the analogy with the Laplace transform (which so far has bebn hinted at) would be
a fascinating piece of research in mathematics and comgpcitance in itself, and one
which wouldput the vast storehouse in ordéo use the words of Lawvere and Schanuel
[45]. In these times of widespread pre-scientific softwaehnhology, putting the PF-
transform under the same umbrella as other mathematicesftnans would contribute
to better framing the software sciences within engineaemiathematics as a whole.

Acknowledgments

The author wishes to thank his colleagues at Minho Univweisitd his (current and
former) students for the warm reception to his (ever evgyideas on data calculation.
Special thanks go to L.S. Barbosa, to C.J. Rodrigues, toRla@alho and to the 2LT
teamcore Alcino Cunha, Joost Visser, Tiago Alves and Hugo Pachegendy Gibbons
comments on the proceedings version of this paper are ghgtatknowledged.

The author is also indebted to the anonymous referees failetgand helpful com-
ments which improved the paper’s presentation and techeocgents.

Part of this research was carried out in the context of the PBRject(Program
Understanding and Re-engineering: Calculi and Applicatifunded by FCT contract
POSI/ICHS/44304/2002

References

1. C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans Janen der Woude. A relational
theory of datatypes, December 1992. Available fnoww.cs.nott.ac.uk/"rch

2. T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira. 8tgac term rewriting and its application
to aVDM-SLto SQL conversion. M 2005 volume 3582 ofLNCS pages 399-414.
Springer-Verlag, 2005.

3. Scott W. Ambler. The object-relational impedance mising2006. Update of Feb.15, 2006
of http://www.agiledata.org/essays/impedanceMismatch.h tml .

4. K. Backhouse and R.C. Backhouse. Safety of abstracipitations for free, via logical
relations and Galois connectiorSCP, 15(1-2):153-196, 2004.

5. R.C. BackhouseMathematics of Program Constructiobniv. of Nottingham, 2004. Draft
of book in preparation. 608 pages.

6. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolng. Moermans, and J. van der
Woude. Polynomial relators. IAMAST'91 pages 303-362. Springer, 1992.

7. J. Backus. Can programming be liberated from the von Neamstyle? a functional style
and its algebra of program&ACM, 21(8):613—-639, August 1978.

8. L.S. Barbosa, J.N. Oliveira, and A.M. Silva. Calculatingariants as coreflexive bisimula-
tions, Feb. 2008. (Submitted).

9. P. Berdaguer. Algebraic representation of UML classp@dimns, May 2007. Dept. Informat-
ics, U.Minho. Technical note.

10. P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser. Gb&akema Transformation and

Data Conversion For XML and SQL. PADL 2007 volume 4354 of.NCS pages 290-304.
Springer-Verlag, 2007.

58

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

J.N. Oliveira

R. Bird and O. de Moor. Algebra of Programming. Series@m@uter Science. Prentice-
Hall International, 1997. C.A.R. Hoare, series editor.

Richard S. Bird. Unfolding pointer algorithma. Funct. Program.11(3):347-358, 2001.

A. Bohannon, J.N. Foster, B.C. Pierce, A. Pilkiewicd AnSchmitt. Boomerang: Resource-
ful lenses for string data. IACM SIGPLAN-SIGACT POPL Symposjymages 407419,
January 2008.

Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C.cRieRelational lenses: A lan-
guage for updateable views. Rrinciples of Database Systems (POD&)06.

G. Booch, J. Rumbaugh, and |. Jacobsdme Unified Modeling Language User Guide
Addison Wesley Longman, Inc., 1999. ISBN 0-201-57168-4.

R.M. Burstall and J. Darlington. A transformation syster developing recursive programs.
JACM, 24(1):44—-67, January 1977.

Alcino Cunha, J.N. Oliveira, and Joost Visser. Typeadafo-level data transformation. In
FM’'06 , volume 4085 of. NCS pages 284-289. Springer-Verlag, Aug. 2006.

Alcino Cunha and Joost Visser. Transformation of stmgeshy programs: applied to XPath
queries and strategic functions. In G. Ramalingam and Békser, editorsPEPM, pages
11-20. ACM, 2007.

J. Darlington. A synthesis of several sorting algorigh#cta Informatica 11:1-30, 1978.
W.-P. de Roever, K. Engelhardt with the assistance obé&nén, K.-H. Buth, P. Gardiner,
Y. Lakhnech, and F. StomRata Refinement Model-Oriented Proof methods and their Com-
parison Cambridge University Press, 1999. ISBN 0521641705.

M. Deutsch, M. Henson, and S. Reeves. Modular reasonidgscrutinising monotonicity
and refinement, 2006. (To appear).

R.M. Dijkman, L.F. Pires, and S. Joosten. Calculatinthwbncepts: a technique for the
development of business process support.pUML, volume 7 ofLNI, pages 87-98. Gl,
2001.

Henk Doornbos, Roland Backhouse, and Jaap van der W@udealculational approach to
mathematical inductionTheoretical Computer Scienc€79(1-2):103-135, 1997.

E. Fielding. The specification of abstract mappings &ed implementation as B-trees.
Technical Report PRG-18, Oxford University, September0198

J. Fitzgerald and P.G. Larsen. Modelling Systems: Radfools and Techniques for Soft-
ware Development . Cambridge University Press, 1st edifief8.

R.W. Floyd. Assigning meanings to programs. In J.T. Sclwy editorMathematical As-
pects of Computer Scienasmlume 19, pages 19-32. American Mathematical Socie719
Proc. Symposia in Applied Mathematics.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. &d&njamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transforraasi: A linguistic approach to the
view-update problemACM Trans. Program. Lang. Sys29(3):17, 2007.

Marcelo F. Frias. Fork algebras in algebra, logic andmger science, 2002. Logic and
Computer Science. World Scientific Publishing Co.

Jeremy Gibbons. When is a function a fold or an unfold®320Working document 833
FAV-12 available from the website of IFIP WG 2.1, 57th megtiNew York City, USA.
Jean-Luc Hainaut. The transformational approach @b@ae engineering. In Lammel et al.
[42], pages 95-143.

Jifeng He, C.A.R. Hoare, and Jeff W. Sanders. Data refinénefined. In Bernard Robinet
and Reinhard Wilhelm, editor&SOP’86 volume 213 0l.LNCS pages 187-196, 1986.
Paul Hoogendijk.A Generic Theory of Data Type$hD thesis, University of Eindhoven,
The Netherlands, 1997.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editardeveloping structured docu-
ments based on bidirectional transformation?loc. ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulati@ges 178-189. ACM Press, 2004.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

45.

46.
47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

GTTSE’'07 — post-refereeing version (March 2008) 59

Graham Hutton and Erik Meijer. Back to basics: Deriviagresentation changers function-
ally. Journal of Functional Programmindl993. (Functional Pearl).

Graham Hutton and Joel Wright. Compiling exceptionsezdly. In MPC 2004 volume
3125 ofLNCS pages 211-227. Springer, 2004.

D. JacksorSoftware abstractions: logic, language, and analy3$ise MIT Press, Cambridge
Mass., 2006. ISBN 0-262-10114-9.

J. Jeuring and P. Jansson. Polytypic programmindidiranced Functional Programming
number 1129 in LNCS. Springer, 1996.

C.B. Jones.Systematic Software Development Using \\DSkries in Computer Science.
Prentice-Hall International, 1990. 1st edition (1986).FP&f 2nd edition (1990) available
from http://www.vdmportal.org/twiki/bin/view/Main/Jonesb ook .

I.S. Jourdan. Reificacao de tipos abstractos de dbiioa:abordagem matematica. Master's
thesis, University of Coimbra, 1992. (In Portuguese).

Wolfram Kahl. Refinement and development of programmfrelational specifications.
ENTCS 44(3):4.1-4.43, 2003.

E. Kreyszig Advanced Engineering Mathematick Wiley & Sons, 6th edition, 1988.

R. Lammel, J.A. Saraiva, and J. Visser, edit@3.TSE 2005. Revised Papgvslume 4143

of LNCS Springer, 2006.

Ralf Lammel and Erik Meijer. Mappings make data proicesgo round. In Lammel et al.
[42], pages 169-218.

K. Lano. Catalogue of model transformations. No date.ailable from
http://www.dcs.kcl.ac.uk/staff/kcl/ .

Bill Lawvere and Stephen Schanu€bnceptual Mathematics: a First Introduction to Cate-
gories Cambridge University Press, 1997.

D. Maier.The Theory of Relational DatabasegSomputer Science Press, 1983.

J. McCarthy. Towards a mathematical science of computatn C.M. Popplewell, editor,
Proc. ofIFIP 62, pages 21-28, Amsterdam-London, 1963. North-Holland Eompany.

C. McLarty. Elementary Categories, Elementary Toposé&3xford Logic Guides nr. 21.
Calendron Press, Oxford, 1st edition, 1995.

Sun Meng and L.S. Barbosa. On refinement of generic btsted software components.
In AMAST'04 volume 3116 oL.NCS pages 506-520. Springer-Verlag, 2004. Best student
co-authored paper award.

C. Morgan. Programming from SpecificationSeries in Computer Science. Prentice-Hall
International, 1990. C.A.R. Hoare, series editor.

C. Necco, J.N. Oliveira, and J. Visser. Extended stdterking by strategic rewriting of
pointfree relational expressions, 2007. DIUM Technicgh&e

J.N. Oliveira. Refinamento transformacional de espagifies (terminais). IRroc. of XII
Jornadas Luso-Espanholas de Matematica, volume Il, piigesi17, May 1987.

J.N. Oliveira. A Reification Calculus for Model-Oriented Software Speafitn. Formal
Aspects of Computing, 2(1):1-23, April 1990.

J.N. Oliveira. Invited papeBoftware Reification using the SETS Calcullrs Tim Denvir,
Cliff B. Jones, and Roger C. Shaw, editoPspc. of the BCS FACS 5th Refinement Work-
shop, Theory and Practice of Formal Software Developmemgdbn, UK pages 140-171.
Springer-Verlag, 8-10 January 1992.

J.N. Oliveira. Data processing by calculation, 2001ctite notes (108 page$th Estonian
Winter School in Computer Scienee9 March 2001, Palmse, Estonia.

J.N. Oliveira. Constrained datatypes, invariants arginess rules: a relational approach,
2004. PUReCafé, DI-UM, 2004.5.20 [talk], P @RPROJECT(POSI/CHS/44304/2002).

J.N. Oliveira. Calculate databases with ‘simplicitySeptember 2004. Presentation at the
IFIP WG 2.1 #59 MeetingNottingham, UK. (Slides available from the author’'s wéd3i

60 J.N. Oliveira

58. J.N. Oliveira.Reinvigorating pen-and-paper proofs in VDM: the pointfeggroach 2006.
Presented at the ThirdV@ RTURE Workshop: Newcastle, UK, 27-28 November 2006.

59. J.N. Oliveira. Pointfree foundations for (generickless decomposition, 2007. (Submitted).

60. J.N. Oliveiraand C.J. Rodrigues. Transposing relatistomMaybefunctions to hash tables.
In MPC’04, volume 3125 of. NCS pages 334—-356. Springer, 2004.

61. J.N. Oliveira and C.J. Rodrigues. Pointfree factoiradf operation refinement. In FM’06
, volume 4085 of NCS pages 236—251. Springer-Verlag, 2006.

62. V. Pratt. Origins of the calculus of binary relations.Froc. of the 7th Annual IEEE Symp.
on Logic in Computer Sciencpages 248—-254, Santa Cruz, CA, 1992. IEEE Comp. Soc.

63. John C. Reynolds. Separation logic: A logic for sharedaivle data structures. InCS
pages 55-74, 2002.

64. C.J. Rodrigues.Software Refinement by CalculatioPhD thesis, Departamento de In-
formatica, Universidade do Minho, 2007. Submitted.

65. Peter Sestoft. Deriving a lazy abstract machihé&unct. Program.7(3):231-264, 1997.

66. Tim Sheard and Emir Pasalic. Two-level types and pamiizett modules. Journal of
Functional Programming14(5):547-587, September 2004.

67. Wang Shuling, L.S. Barbosa, and J.N. Oliveira. A refmlanodel for confined separation
logic, Sep. 2007. Submitted.

68. Wang Shuling, L.S. Barbosa, and J.N. Oliveira. A relmlanodel for confined separation
logic, 2008. Accepted for publication in 2nd IEEE Interoatl Symposium on Theoretical
Aspects of Software Engineering, June 17 - 19, 2008 Nan{imina.

69. Dave Thomas. The impedance imperative tuples + objeicf®sets =too much stufflour-
nal of Object Technology(5), Sep./Oct.5 2003.

70. Joost Visseleneric Traversal over Typed Source Code Representaf®n®. dissertation,
University of Amsterdam, Amsterdam, The Netherlands, 2003

71. Eric G. Wagner. All recursive types defined using proslaectd sums can be implemented
using pointers. In Clifford Bergman, Roger D. Maddux, anchRigozzi, editorsAlgebraic
Logic and Universal Algebra in Computer Scieneelume 425 oLLNCS Springer, 1990.

72. Jim Woodcock and Jim DaviedJsing Z: Specification, Refinement, and Pro8frentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1996.

A PTree example in Haskell

This annex presents the exercise, in Haskell, of reprexgmtductive typd’Tree (36) by point-
ers and heaps. For simplicity, the datatypePdfree -shaped heaps is modeled by finite lists of
pairs, together with a pointer telling where to start from:

data Heap a k = Heap [(k,(a,Maybe k, Maybe k))] k
It is convenient to regard this datatype as a bifunétor

instance BiFunctor Heap
where bmap g f
(Heap h k) =
Heap [(f k) |-> (g a, fmap f p, fmap f p’)
| (k.(a,p.p)) <- h]

(f K)
31 Note the sugaring of pairing in terms of the infix combinatot-> y = (x,y) , as sug-
gested by (31). ClasBiFunctor is the binary extension to standard cl&ssctor offer-
ingbmap :: (@ ->b) > (c >d) > (fac->fbd) , the binary coun-

terpart offmap .

GTTSE’'07 — post-refereeing version (March 2008) 61

The chosen (functional) representation fela overPTree ,

r (Node n b mf) =let x = fmap r m
y = fmap r f
in merge (n,b) x y

wheremerge is the interesting function:

merge a (Just x) (Just y) =
Heap ([1 |-> (a, Just k1, Just k2)] ++ hl ++ h2) 1
where (Heap hl k1) = bmap id even_ x
(Heap h2 k2) = bmap id odd_ y
merge a Nothing Nothing =
Heap ([1 |-> (a, Nothing, Nothing)]) 1
merge a Nothing (Just x) =
Heap ([1 |-> (a, Nothing, Just k2)] ++ h2) 1
where (Heap h2 k2) = bmap id odd_ x
merge a (Just x) Nothing =
Heap ([1 |-> (a, Just k1, Nothing)] ++ hl) 1
where (Heap hl k1) = bmap id even_ x

Note the use of two functions

even_ k = 2 xk
odd_ k = 2xk+1

which generate théth even and odd numbers. Functorial renaming of heap address these
functions (whose ranges are disjoint) ensure that the heagss joining (via list concatena-
tion) areseparatg63, 67]. This representation technique is reminiscenhaf of storing “binary
heaps” (which are not quite the same as in this paper) assawiljout pointers®. It can be
generalized to any polynomial type of degredy building n-functions f; & ok + 1, for
0<i<n.

Finally, the abstraction relation is encoded as a partiation in Haskell as follows:

f (Heap h k) = let Just (a,x,y) = lookup k h
in Node (fst a)(snd a)
(fmap (f . Heap h) x)
(fmap (f . Heap h) y)

32 See eg. entrBinary _heap in the Wikipedia.

