
Pointfree Factorization of Operation Refinement

J.N. Oliveira & C.J. Rodrigues

Dept. Informática,

Universidade do Minho

Braga, Portugal

FM’06 — 14th Int. Symp. on Formal Methods
McMaster University, Hamilton, Ontario Canada

August 21 - 27, 2006

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Context

PURe

Program understanding by reverse engineering

Software architecture “fission”

Systems and components as coalgebras

Understanding

Analysing, factoring (splitting, slicing) , (converse of) refining

Are we ready for this

Are our maths up-to-date for all this?

Go back to basics?

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

About the title – refinement

Refinement

{S,SP,SC}-refinement

T•-refinement

W•-refinement

downward, upward refinement

forwards, backwards refinement

. . .

Wikipedia

Operation refinement — converts a specification of an operation
on a system into an implementable program (e.g., a procedure).
The postcondition can be strengthened and/or the precondition

weakened in this process.

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

About the title — factorization

Expressing (numbers, expressions, etc) as products of factors

School example

Rather than “brute force” arithmetic calculations, eg.

756

792
= 0.9545454 . . .

use prime factorization

756

792
=

22 × 33 × 7

23 × 32 × 11

= 2−1 × 3× 7× 11−1

=
21

22

In general, factorization identifies ”basic building blocks” so that
facts about the whole can be inferred from facts about its blocks.

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

About the title

Pointfree

What ??

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Operation refinement

Suppose s and r are software components described by
(set-valued) state transition functions

Total correctness

Component PA A
roo refines (implements, reifies) component

PA A
soo — written s ⊢ r — iff

s ⊢ r
def
= 〈∀ a : ∅ ⊂ (s a) : ∅ ⊂ (r a) ⊆ (s a)〉 (1)

where s a means the set of states reachable (in machine s) from
state a.

Comments:

Consensual and conceptually simple

Copes with model undefinedness and vagueness

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

However. . .

Funny shaped semi-lattice:

f · · · g 〈∀ a : : #(f a) = #(g a) = 1〉

⊤ = λa.A “chaos”

r s

r ⊓ s

IIIIIIIIII

uuuuuuuuuu

glb= “largest common spec”

⊥ = λa.∅ “sink”

r ⊓ s = lambdaa.(if (r a) = ∅ ∨ (s a) = ∅ then ∅

else (r a) ∪ (s a))

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Can we break the complexity of ⊢?

Yes, following a plan in two steps:

Change of “math space”

Express and reason about ⊢ with “less symbols” and “more agile”
rules — thus the pointfree transform.

Factorization

Factor ⊢ in simpler “building blocks” — eg. by dissociating
decrease of nondeterminism from increase of definition.

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Can ⊢ be factored in (simpler) “building blocks”?

Yes:

Groves factorization

It has been noted by Lindsay Groves (and others) that

s ⊢ r ≡ 〈∃ t : : s ⊢pre t ∧ t ⊢post r〉

≡ 〈∃ t ′ : : s ⊢post t ′ ∧ t ′ ⊢pre r〉
where

s ⊢pre t — t only weakens the precondition of s

t ⊢post r — r only strengthens the post-condition of t

Question:

In what sense are ⊢pre/⊢post factors of ⊢ ?

What can we expect from such factoring?

Need for something else. . .

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

About changing “math space”

Another school maths example:

The problem

Find three consecutive integers which together add up 120

The model

x + (x + 1) + (x + 2) = 120

The calculation

3x + 3 = 120

≡ { “al-djabr” rule }

3x = 120 − 3

≡ { “al-hatt” rule }

x = 40− 1

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

School maths example

The solution

x = 39
x + 1 = 40
x + 2 = 41

The calculus

“al-djabr” rule:

x − z ≤ y ≡ x ≤ y + z

“al-hatt” rule:

x ∗ z ≤ y ≡ x ≤ y ∗ z−1
(z > 0)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

High-school example

Handling more demanding problems, eg. electrical circuits:

The problem

Predict i(t) for RC-circuit

The model

v(t) = Ri(t) + 1
C

∫ t

0
i(τ)dτ

v(t) = V0(u(t − a)− u(t − b)) (b > a)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

High-school example

The solution

Calculation?

Physicists and engineers overcome difficult calculations involving
integral/differential equations by changing the “mathematical
space”, for instance by moving (temporarily) from the time-space
to the s-space in the Laplace transformation.

Laplace transform

f (t) is transformed into (L f)s =
∫

∞

0
e−st f (t)dt

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

High-school example

Laplace-transformed RC-circuit model

RI (s) +
I (s)

sC
=

V0

s
(e−as − e−bs)

Algebraic solution for I (s)

I (s) =
V0

R

s + 1
RC

(e−as − e−bs)

Back to the t-space

i(t) =

0 if t < a

(V0e
−

a
RC

R
)e−

t
RC if a < t < b

(V0e
−

a
RC

R
− V0e

−
b

RC

R
)e−

t
RC if t > b

(after some algebraic manipulation)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Lesson

Laplace transform softens the “notation conflict” involved in

e = m + c

engineering = model first, then calculate . . .

arising from a

notation conflict

descriptiveness (useful in modelling)

compactness (for agile calculation)

Is there a “Laplace transform” applicable to software calculation?

Perhaps there is, cf. ...

〈

∫

x : 0 < x < 10 : x2 − x〉

〈∀ x : 0 < x < 10 : x2 ≥ x〉

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

An integral transform

(L f)s =
∫

∞

0
e−st f (t)dt, eg.

f (t) L(f)

1 1
s

t 1
s2

tn n!
sn+1

eat 1
s−a

etc

Pierre Laplace (1749-1827)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

An “s-space equivalent” for logical quantification

The pointfree (PF) transform

φ PF φ

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
〈∀ a, b : b R a : b S a〉 R ⊆ S
〈∀ a : : a R a〉 id ⊆ R

〈∀ x : x R b : x S a〉 b(R \ S)a
〈∀ c : b R c : a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R ,S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b ⊤ a
False b ⊥ a

What are R , S , id ?

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

A transform for logic and set-theory

An old idea

PF(sets, predicates) = pointfree binary relations

Calculus of binary relations

1860 - introduced by De Morgan, embryonic

1870 - Peirce finds interesting equational laws

1941 - Tarski’s school, cf. A Formalization of Set Theory
without Variables

1980’s - coreflexive models of sets (Freyd and Scedrov,
Eindhoven MPC group and others)

Unifying approach

Everything is a (binary) relation

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Binary Relations

Arrow notation

Arrow B A
Roo denotes a binary relation to B (target) from A

(source).

Identity of composition

id such that R · id = id · R = R

Converse

Converse of R — R◦ such that a(R◦)b iff b R a.

Ordering

“R ⊆ S — the “R is at most S” — the obvious R ⊆ S ordering.

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Binary Relations

Pointwise meaning

b R a means that pair 〈b, a〉 is in R , eg.

1 ≤ 2

John IsFatherOf Mary

3 = (1+) 2

Reflexive and coreflexive relations

Reflexive relation: id ⊆ R

Coreflexive relation: R ⊆ id

Sets

Are represented by coreflexives, eg. set {0, 1} is ?>=<89:;0

?>=<89:;1

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

PF-transform example: “indirect at-most” rule

For ⊢ a preorder,

Pointwise

X ⊢ Y ≡ 〈∀ Z : Z ⊢ X : Z ⊢ Y 〉 (2)

Pointfree

⊢ = ⊢ \ ⊢ (3)

Comments

Variables (points) X ,Y ,Z disappear (PF = “point+free”)

∀ is gone

Calculation

One-slide long calculation of (2) — via (3) — follows shortly

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Galois connections

GCs provide uniform structure to any kind of (in)equational
reasoning, for example:

GC

The (“al-djabr”) rule

T · R ⊆ S ≡ R ⊆ T \ S

The calculus (tiny fragment!):

Monotonicity: (T\) is monotonic and (\S) is antimonotonic

Identity: id \ S = S

Distributions, eg: (R ∪ T) \ S = (R \ S) ∩ (T \ S)

Coreflexive Φ: (R · Φ \ S) ∩ Φ = (R \ S) ∩ Φ

etc

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

One-slide-long calculation style

⊢ = ⊢ \ ⊢

≡ { antisymmetry }

⊢ \ ⊢ ⊆ ⊢ ∧ ⊢ ⊆ ⊢ \ ⊢

≡ { identity (R = id \ R) and the GC itself }

⊢ \ ⊢ ⊆ id \ ⊢ ∧ ⊢ · ⊢ ⊆ ⊢

⇐ { antimonotonicity }

id ⊆ ⊢ ∧ ⊢ · ⊢ ⊆ ⊢

≡ { PF-definitions of reflexive and transitive relation }

⊢ is a preorder

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Final touch: indirect equality

Thanks to the former result, we carry on:

⊢ ∩ ⊢◦ = (⊢ \ ⊢) ∩ (⊢ \ ⊢)◦

≡ { in case ⊢ is antisymmetric }

id = (⊢ \ ⊢) ∩ (⊢ \ ⊢)◦

which — back to points — yields

Indirect equality rule

For ⊢ a partial order,

X = Y ≡ 〈∀ Z : : Z ⊢ X ≡ Z ⊢ Y 〉 (4)

holds

which will be essential to PF-reasoning about the given ⊢ relation

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

PF-transform of ⊢

Recall

Pointwise

s ⊢ r
def
= 〈∀ a : ∅ ⊂ (s a) : ∅ ⊂ (r a) ⊆ (s a)〉

Define R = ∈ · r and S = ∈ · s and apply PF-transformation rules
to obtain

Pointfree

S ⊢ R ≡ δ S ⊆ (R \ S) ∩ δ R (5)

where δ S = S · S◦ ∩ id is the coreflexive relation which denotes
the domain of S

Goal

Calculate s ⊓ r via PF-transform (5)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

From “invent & verify” to calculation

Classical way

invent R ⊓ S

verify that R ⊓ S is a common lowerbound of R and S

verify that it is the greatest of all such lowerbounds

Calculational way

Calculate ⊓ as the (unique) solution to universal property, for all X

X ⊢ R ⊓ S ≡ X ⊢ R ∧ X ⊢ S (6)

Let us solve this equation for unknown ⊓:

X ⊢ R ⊓ S

≡ { (6) }

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Calculation of ⊓

X ⊢ R ∧ X ⊢ S

≡ { (5) twice; composition of coreflexives is meet }

δ X ⊆ (R \ X) ∩ (S \ X) ∩ δ R · δ S

≡ { distribution }

δ X ⊆ (R ∪ S) \ X ∩ δ R · δ S

≡ { recall (Y ·Φ \ X) ∩ Φ = (Y \ X) ∩ Φ, for Φ = δ R · δ S }

δ X ⊆ (((R ∪ S) · δ R · δ S) \ X) ∩ (δ R · δ S)

≡ { δ ((R ∪ S) · δ R · δ S) = δ R · δ S (coreflexives) ; (5) }

X ⊢ ((R ∪ S) · δ R · δ S)

:: { indirect equality }

R ⊓ S = (R ∪ S) · δ R · δ S

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Back to points

PF-calculation has thus led to

R ⊓ S = (R ∪ S) · δ R · δ S (7)

which — back to points — is nothing but what was anticipated
earlier on:

(r ⊓ s)a
def
= if (r a) = ∅ ∨ (s a) = ∅ then ∅ else (r a) ∪ (s a)

Challenge (for the ones who haven’t tried it yet)

Calculate the above directly from the pointwise definition of ⊢

Summary

No invent & verify

Elegance of reasoning

Economy of thinking

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

However

(Lack of) monotonicity

R ∩ S is not monotonic with respect to ⊢

R ∪ S is not monotonic with respect to ⊢

R · S is not monotonic with respect to ⊢

although

R × S (special case of R ∩ S) is ⊢-monotonic

R + S (special case of R ∪ S) is ⊢-monotonic

Questions

Why?

Is (McCarthy) conditional

P → S , T
def
= (S · δ P) ∪ T · (id − δ P)

⊢-monotonic?

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Two sub-relations of ⊢

Do not weaken the precondition

S ⊢post R ≡ S ⊢ R ∧ δ R ⊆ δ S (8)

Do not strengthen the postcondition

S ⊢pre R ≡ S ⊢ R ∧ S ⊆ R · δ S (9)

By definition

⊢pre ⊆ ⊢ , ⊢post ⊆ ⊢ (10)
and therefore,

⊢pre · ⊢post ⊆ ⊢ (11)

⊢post · ⊢pre ⊆ ⊢ (12)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Simple PF-calculations lead to

S ⊢pre R ≡ R · δ S = S (13)

S ⊢post R ≡ R ⊆ S ∧ δ R = δ S (14)

where (14) can be written in less symbols as

⊢post = ⊆◦ ∩ δ◦ · δ (15)

Also easy to show

S ⊢pre S ∪ R ≡ R · δ S ⊆ S (16)

S ∪ R ⊢post R ≡ δ (S ∪ R) = δ R (17)

S ⊢post S ∩ R ≡ δ S = δ (R ∩ S) (18)

S ∩ R ⊢pre R ≡ R · δ (S ∩ R) ⊆ S ∩ R (19)

(eg. (19) is (16) for S := S ∩ R)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

⊢ ⊆ ⊢pre · ⊢post

S ⊢ R ≡ { expand δ S ⊆ (R \ S) ∩ δ R (Galois) }

R · δ S ⊆ S ∧ δ S ⊆ δ R

≡ { A ⊆ B ≡ A ∪ B }

R · δ S ⊆ S ∧ (δ S) ∪ (δ R) = δ R

≡ { δ distributes over ∪ (Galois) }

R · δ S ⊆ S ∧ δ (S ∪ R) = δ R

≡ { previous slide (16 , 17) }

(S ⊢pre S ∪ R) ∧ (S ∪ R) ⊢post R

⇒ { composition }

S(⊢pre · ⊢post)R

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

⊢ ⊆ ⊢post · ⊢pre

S ⊢ R ≡ { since S ⊢ R ⇒ δ S = δ (S ∩ R) }

δ S = δ (S ∩ R) ∧ R · δ S ⊆ S

≡ { R · δ S is at most R ; ∩-universal }

δ S = δ (S ∩ R) ∧ R · δ S ⊆ S ∩ R

≡ { substitution }

δ S = δ (S ∩ R) ∧ R · δ (S ∩ R) ⊆ S ∩ R

≡ { (18) and (19) }

(S ⊢post S ∩ R) ∧ (S ∩ R) ⊢pre R

⇒ { composition }

S(⊢post · ⊢pre)R

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

⊢-Factorization

Diagram

S ∪ R
⊢post

FF
FF

FF
FF

F
⊢pre

yy
yy

yy
yy

y

S
⊢

R

S ∩ R

⊢post

FFFFFFFFF ⊢pre

xxxxxxxxx

Summary

⊢pre · ⊢post = ⊢ = ⊢post · ⊢pre (20)

Comments

PF-calculation style free of extra ingredients such as negation and
consistency (special case where δ distributes over ∩).

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Example of reasoning by factorization — conditional

P → S ∪ S ′ , T
⊢post

QQQQQQQQQQQQQ
⊢pre

mmmmmmmmmmmmm

P → S , T
⊢

P → S ′ , T

(·T) and (∪T) are ⊢post -monotonic

S ⊢post R ⇒ S · T ⊢post R · T (21)

S ⊢post R ⇒ S ∪ T ⊢post R ∪ T (22)

Therefore

(McCarthy) conditional is ⊢post -monotonic

P ⊢post P ′

S ⊢post S ′

T ⊢post T ′

⇒ P → S , T ⊢post P ′ → S ′ , T ′ (23)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Example of reasoning by factorization — conditional

(·Φ) is ⊢pre-monotonic (Φ coreflexive)

S ⊢pre R ⇒ S · Φ ⊢pre R · Φ (24)

(Constrained) (∪T) ⊢pre-monotonicity

S ⊢pre R ⇒ S ∪ T ⊢pre R ∪ T ≡ R · δ T ⊆ S ∪ T (25)

entailing

S ⊢pre R ∧ R · δ T ⊆ S ∪ T ⇒ S ∪ T ⊢pre R ∪ T (26)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Example of reasoning by factorization — conditional

Monotonicity of then-branch of conditional:

P → S ∪ S ′ , R
⊢post

QQQQQQQQQQQQQ
⊢pre

mmmmmmmmmmmmm

P → S , R
⊢

P → S ′ , R

Only ⊢pre-factor matters:

P → S , R ⊢pre P → S ∪ S ′ , R

≡ { definition ; abbreviate T := R · (id − δ P) }

(S · δ P) ∪ T ⊢pre ((S ∪ S ′) · δ P) ∪ T

⇐ { (24) and (26) }

S ⊢pre S ∪ S ′ ∧ (S ∪ S ′) · (δ P) · (δ T) ⊆ (S · δ P) ∪ T

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Example of reasoning by factorization — conditional

⇐ { factorization of S ⊢ S ′ and domain of T }

S ⊢ S ′ ∧ (S ∪ S ′) · (δ P) · (δ R) · (id − δ P) ⊆ (S · δ P) ∪ T

≡ { δ P · (id − δ P) = ⊥ }

S ⊢ S ′ ∧ True

Since monotonicity of else-branch is analogous, we get

McCarthy conditional monotonicity

P ⊢post P ′

S ⊢ S ′

T ⊢ T ′

⇒ P → S , T ⊢ P ′ → S ′ , T ′ (27)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Refinement across relational taxonomy

Binary relation sub-class ⊢post ⊢pre ⊢

Entire relations ⊆◦ id ⊆◦

Simple relations id ⊆ ⊆
Functions id id id

where

Entire R — id ⊆ R◦ · R (vulg. total)

Simple R — R · R◦ ⊆ id (vulg. univocal)

Function f — both entire and simple

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

(Polytypic) structural refinement

⊢-monotonicity of an arbitrary parametric type F

S ⊢ R ⇒ F S ⊢ F R (28)

Technically, parametricity is captured by regarding F as a relator:

Relators

A relator F is a functor on relations, for instance

A

R

��

F A

FR

��
B F B

which is ⊆-monotonic and commutes with composition, converse
and the identity.

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Structural refinement example

Sequence relator (“map”)

A

R

��

A⋆

R⋆

��
B B⋆

where

l(R⋆)l ′ ≡ len l = len l ′ ∧ 〈∀ i : i ∈ inds l : (l i)R(l ′ i)〉

Sequence (“map”) refinement example

> ⊢ succ ⇒ (>)⋆ ⊢ (succ)⋆

that is

〈∀ x : : x + 1 > x〉 ⇒ 〈∀ l : : [x + 1 | x ← l] >⋆ l〉

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Calculation of (28)

Since

Every relator F is both ⊢pre/⊢post -monotonic

F · ⊢post ⊆ ⊢post · F (29)

F · ⊢pre ⊆ ⊢pre · F (30)

the structural refinement law (28) is easy to calculate :

True

≡ { (29) }

F · ⊢post ⊆ ⊢post · F

⇒ { monotonicity of composition }

F · ⊢post · ⊢pre ⊆ ⊢post · F · ⊢pre

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Calculation of (28)

⇒ { (30) and ⊆-transitivity }

F · ⊢post · ⊢pre ⊆ ⊢post · ⊢pre · F

≡ { (20) }

F · ⊢ ⊆ ⊢ · F

≡ { go pointwise on S and R }

R ⊢ S ⇒ F R ⊢ F S

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Related work

Boudriga et al (FAC, 1992) formulate S ⊢ R relationally but
reason at pointwise level

Lindsay Groves (BCS FACS Refinement Workshop, 2002)
postulates and then proves ⊢ factorization in the context of
the Z schema calculus, requiring the extra notion of
compatible relations, which complicates proofs unnecessarily.

Wolfram Kahl (ENTCS, 2003) presents the factorization at
PF-level with no further use of it.

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Current work on PF-transform

Coalgebraic refinement

Our main goal is to apply this factorization to the refinement of
“components as coalgebras” — eg. (monadic) machines
(=objects) of type

B × (M A)I Aoo

where M is a behaviour monad — cf. Barbosa and Meng
(AMAST’04).

Databases

PF-refactoring of database theory — functional and multivalued
dependencies made simpler and more general

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Current work on PF-transform

Data refinement

Data-refinement calculus based on (in)equations of shape

A

R

''
≤ B

F

gg such that F ◦ ⊢ R

where F is the abstraction relation and R the representation.

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Other topics on the PF-transform

PF-transform automation

RelView (Berghammer et al)

UMinho Haskell Libraries (Cunha, Visser et al)

Multirelations

Cf. angelic / demonic nondeterminism, etc

Alloy

PF-transform applied to Alloy model reasoning (where
“everything is a relation”)

Context About the title Refinement e = m + c PF-transform Factors of ⊢ Postlude

Summary

Invest in perennial reasoning strategies

Shift from “implication first” to “let the symbols do the work”

“Chase” equivalence : bad use of implication-first
logic may lead to “50% loss in theory”

Rôle of transforms, abstract notation and abstract patterns
(easier to spot al-djabr rules)

Stimulate elegance in mathematics (it is effective!)

Learn with the other engineering disciplines

	Context
	About the title
	Refinement
	e = m + c
	PF-transform
	Factors of
	Postlude

