Pointfree Factorization of Operation Refinement

J.N. Oliveira & C.J. Rodrigues

Dept. Informática, Universidade do Minho Braga, Portugal

FM'06 — 14th Int. Symp. on Formal Methods McMaster University, Hamilton, Ontario Canada August 21 - 27, 2006

<ロ> (四) (四) (三) (三) (三)

Context	About the title	Refinement	PF-transform	Factors of ⊢	Postlude
Conto	×-+				

PURe

JULIEAL

- Program understanding by reverse engineering
- Software architecture "fission"
- Systems and components as coalgebras

Understanding

Analysing, factoring (splitting, slicing), (converse of) refining

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Are we ready for this

- Are our maths up-to-date for all this?
- Go back to basics?

About the title - refinement

Refinement

- {S,SP,SC}-refinement
- T_•-refinement
- W_•-refinement
- downward, upward refinement
- forwards, backwards refinement
- Θ...

Wikipedia

Operation refinement — converts a specification of an operation on a system into an implementable program (e.g., a procedure). The **postcondition** can be strengthened and/or the **precondition** weakened in this process.

About the title — factorization

Expressing (numbers, expressions, etc) as products of factors

School example
Rather than "brute force" arithmetic calculations, eg.
$\frac{756}{792} = 0.9545454\dots$
use prime factorization
$\frac{756}{792} = \frac{2^2 \times 3^3 \times 7}{2^3 \times 3^2 \times 11} \\ = 2^{-1} \times 3 \times 7 \times 11^{-1} \\ = \frac{21}{22}$

In general, **factorization** identifies "basic building blocks" so that facts about the whole can be inferred from facts about its blocks.

Context	About the title	Refinement	PF-transform	Factors of ⊢	Postlude

About the title

Pointfree

What ??

Operation refinement

Suppose s and r are software components described by (set-valued) state transition functions

Total correctness

Component $\mathcal{P}A \xleftarrow{r} A$ refines (implements, reifies) component $\mathcal{P}A \xleftarrow{s} A$ — written $s \vdash r$ — iff

$$sdash r \stackrel{\mathrm{def}}{=} \langle orall a : \emptyset \subset (s a) : \emptyset \subset (r a) \subseteq (s a)
angle$$
 (1)

where s a means the set of states reachable (in machine s) from state a.

Comments:

- Consensual and conceptually simple
- Copes with model undefinedness and vagueness

Context	About the title	Refinement	PF-transform	Factors of ⊢	Postlude
Howe	Vor				

Funny shaped semi-lattice:

 $r \sqcap s = lambdaa.(if (r a) = \emptyset \lor (s a) = \emptyset then \emptyset$ else (r a) \cup (s a))

Can we break the complexity of \vdash ?

Yes, following a plan in two steps:

Change of "math space"

Express and reason about \vdash with "less symbols" and "more agile" rules — thus the *pointfree transform*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Factorization

Factor \vdash in simpler "building blocks" — eg. by dissociating decrease of *nondeterminism* from increase of *definition*.

Can \vdash be factored in (simpler) "building blocks"?

Yes:

Groves factorization

It has been noted by Lindsay Groves (and others) that

$$\begin{aligned} s \vdash r &\equiv \langle \exists t :: s \vdash_{pre} t \land t \vdash_{post} r \rangle \\ &\equiv \langle \exists t' :: s \vdash_{post} t' \land t' \vdash_{pre} r \rangle \end{aligned}$$

where

•
$$s \vdash_{pre} t - t$$
 only weakens the precondition of s

• $t \vdash_{post} r - r$ only strengthens the post-condition of t

Question:

- In what sense are $\vdash_{pre}/\vdash_{post}$ factors of \vdash ?
- What can we expect from such factoring?

Need for something else...

About changing "math space"

Another school maths example:

The problem

Find three consecutive integers which together add up 120

The model

$$x + (x + 1) + (x + 2) = 120$$

The calculation

$$3x + 3 = 120$$

$$\equiv \{ \text{ "al-djabr" rule} \}$$

$$3x = 120 - 3$$

$$\equiv \{ \text{ "al-hatt" rule} \}$$

$$x = 40 - 1$$

School maths example

The solution

$$x = 39$$

 $x + 1 = 40$
 $x + 2 = 41$

The calculus

"al-djabr" rule:

$$x-z \leq y \equiv x \leq y+z$$

"al-hatt" rule:

$$x * z \leq y \equiv x \leq y * z^{-1}$$
 $(z > 0)$

High-school example

Handling more demanding problems, eg. electrical circuits:

The model

$$\begin{array}{lll} v(t) &=& Ri(t) + \frac{1}{C} \int_0^t i(\tau) d\tau \\ v(t) &=& V_0(u(t-a) - u(t-b)) \end{array} (b > a) \end{array}$$

High-school example

The solution

Calculation?

Physicists and engineers overcome difficult calculations involving integral/differential equations by changing the "mathematical space", for instance by moving (temporarily) from the time-space to the *s*-space in the *Laplace transformation*.

Laplace transform

f(t) is transformed into $(\mathcal{L} f)s = \int_0^\infty e^{-st} f(t) dt$

Context About the title Refinement e = m + c PF-transform Factors of \vdash Postlude

High-school example

Laplace-transformed RC-circuit model

$$RI(s) + \frac{I(s)}{sC} = \frac{V_0}{s}(e^{-as} - e^{-bs})$$

Algebraic solution for I(s)

$$U(s) = rac{V_0}{R}(e^{-as} - e^{-bs})$$

Back to the *t*-space

$$i(t) = \begin{cases} 0 & \text{if } t < a \\ (\frac{V_0 e^{-\frac{a}{RC}}}{R}) e^{-\frac{t}{RC}} & \text{if } a < t < b \\ (\frac{V_0 e^{-\frac{a}{RC}}}{R} - \frac{V_0 e^{-\frac{b}{RC}}}{R}) e^{-\frac{t}{RC}} & \text{if } t > b \end{cases}$$

(after some algebraic manipulation)

Context	About the title	Refinement	e = m + c	PF-transform	Factors of ⊢	Postlude
Lessor	ו					

Laplace transform softens the "notation conflict" involved in

e = m + c

engineering = <u>model</u> first, then <u>calculate</u>

arising from a

notation conflict

- descriptiveness (useful in modelling)
- compactness (for agile calculation)

Is there a "Laplace transform" applicable to software calculation?

Perhaps there is, cf. ...

$$egin{array}{rcl} \langle \int x & : & 0 < x < 10: \; x^2 - x
angle \ \langle orall \; x & : & 0 < x < 10: \; x^2 \ge x
angle \end{array}$$

<□> <□> <□> <□> <=> <=> <=> <=> <<

An integral transform

$$(\mathcal{L} f)s = \int_0^\infty e^{-st} f(t) dt$$
, eg.

Pierre Laplace (1749-1827)

Postlude

An "s-space equivalent" for logical quantification

The pointfree (\mathcal{PF}) transform		
ϕ	$\mathcal{PF} \ \phi$	
$\langle \exists a : : b R a \land a S c \rangle$	$b(\mathbf{R} \cdot \mathbf{S})c$	
$\langle \forall a, b : b R a : b S a \rangle$	$R \subseteq S$	
$\langle orall a : : a R a angle$	$id \subseteq R$	
$\langle \forall x : x R b : x S a \rangle$	b(<mark>R \ S</mark>)a	
$\langle \forall \ c \ : \ b \ R \ c \ : \ a \ S \ c \rangle$	a(<mark>S / R</mark>)b	
$b \ R \ a \wedge c \ S \ a$	$(b,c)\langle R,S \rangle$ a	
$b \ R \ a \wedge d \ S \ c$	$(b,d)(R \times S)(a,c)$	
$b \mathrel{R} a \wedge b \mathrel{S} a$	b (<mark>R ∩ S</mark>) a	
$b \ R \ a \lor b \ S \ a$	b (<mark>R ∪ S</mark>) a	
(f b) R (g a)	$b(f^{\circ} \cdot R \cdot g)a$	
TRUE	b⊤a	
False	b⊥a	

What are *R*, *S*, *id* ?

Postlude

A transform for logic and set-theory

An old idea

 $\mathcal{PF}(\text{sets, predicates}) = \text{pointfree binary relations}$

Calculus of binary relations

- 1860 introduced by De Morgan, embryonic
- 1870 Peirce finds interesting equational laws
- 1941 Tarski's school, cf. A Formalization of Set Theory without Variables
- 1980's coreflexive models of sets (Freyd and Scedrov, Eindhoven MPC group and others)

Unifying approach

Everything is a (binary) relation

Binary Relations

Arrow notation

Arrow
$$B \stackrel{R}{\longleftarrow} A$$
 denotes a binary relation to B (target) from A (source).

Identity of composition

id such that $R \cdot id = id \cdot R = R$

Converse

Converse of $R - R^{\circ}$ such that $a(R^{\circ})b$ iff b R a.

Ordering

" $R \subseteq S$ — the "R is at most S" — the obvious $R \subseteq S$ ordering.

Binary Relations

Pointwise meaning

b R **a** means that pair $\langle b, a \rangle$ is in R, eg.

 $1 \leq 2$ John *IsFatherOf* Mary 3 = (1+) 2

Reflexive and coreflexive relations

٩	Reflexive relation:	$id \subseteq R$
٩	Coreflexive relation:	$R \subseteq id$

Sets

Are represented by coreflexives, eg. set $\{0,1\}$ is

PF-transform example: "indirect at-most" rule

For \vdash a preorder,

Pointwise

(2)

Pointfree

$$\vdash = \vdash \setminus \vdash$$

Comments

- Variables (points) X, Y, Z disappear (PF = "point+free")
- \forall is gone

Calculation

One-slide long calculation of (2) — via (3) — follows shortly

) Q (~

Galois connections

GCs provide uniform structure to any kind of (in)equational reasoning, for example:

GC The ("al-djabr") rule $(T) \cdot R \subseteq S \equiv R \subseteq (T) \setminus S$ The **calculus** (tiny fragment!): • Monotonicity: $(T \setminus)$ is monotonic and $(\setminus S)$ is antimonotonic Identity: $id \setminus S = S$ • Distributions, eg: $(R \cup T) \setminus S = (R \setminus S) \cap (T \setminus S)$ • Coreflexive Φ : $(R \cdot \Phi \setminus S) \cap \Phi = (R \setminus S) \cap \Phi$ etc

One-slide-long calculation style

 $\vdash = \vdash \setminus \vdash$ \equiv { antisymmetry } + + C + A + C + +{ identity $(R = id \setminus R)$ and the GC itself } \equiv $\vdash \setminus \vdash \subset id \setminus \vdash \land \vdash \cdot \vdash \subset \vdash$ \leftarrow { antimonotonicity } $id \subset \vdash \land \vdash \cdot \vdash \subset \vdash$ { PF-definitions of reflexive and transitive relation } \equiv \vdash is a preorder

Context About the title Refinement e = m + c **PF-transform** Factors of \vdash Postlude **Final touch: indirect** equality

Final touch: indirect *equality*

Thanks to the former result, we carry on:

$$\begin{array}{l} \vdash \cap \vdash^{\circ} = (\vdash \setminus \vdash) \cap (\vdash \setminus \vdash)^{\circ} \\ \\ \equiv & \{ \text{ in case } \vdash \text{ is antisymmetric } \} \\ \\ id = (\vdash \setminus \vdash) \cap (\vdash \setminus \vdash)^{\circ} \end{array}$$

Indirect equality rule

For \vdash a partial order,

$$X = Y \equiv \langle \forall Z :: Z \vdash X \equiv Z \vdash Y \rangle$$
(4)

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● ◇◇◇

holds

which will be essential to PF-reasoning about the given \vdash relation

PF-transform of \vdash

Recall

Pointwise

$$s \vdash r \stackrel{\text{def}}{=} \langle \forall a : \emptyset \subset (s a) : \emptyset \subset (r a) \subseteq (s a) \rangle$$

Define $R = \in \cdot r$ and $S = \in \cdot s$ and apply PF-transformation rules to obtain

Pointfree

$$S \vdash R \equiv \delta S \subseteq (R \setminus S) \cap \delta R$$

(5)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

where $\delta S = S \cdot S^{\circ} \cap id$ is the coreflexive relation which denotes the **domain** of *S*

(6)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

From *"invent & verify"* to calculation

Classical way

- invent $R \sqcap S$
- <u>verify</u> that $R \sqcap S$ is a common lowerbound of R and S
- verify that it is the greatest of all such lowerbounds

Calculational way

Calculate \square as the (unique) solution to universal property, for all X

$$X \vdash R \sqcap S \equiv X \vdash R \land X \vdash S$$

Let us solve this equation for unknown \square :

$$X \vdash R \sqcap S$$
$$\equiv \{ (6) \}$$

::

 $X \vdash R \land X \vdash S$

{ (5) twice; composition of coreflexives is meet } \equiv

 $\delta X \subseteq (R \setminus X) \cap (S \setminus X) \cap \delta R \cdot \delta S$

{ distribution } \equiv

 $\delta X \subset (R \cup S) \setminus X \cap \delta R \cdot \delta S$

{ indirect equality }

 $R \sqcap S = (R \cup S) \cdot \delta R \cdot \delta S$

{ recall $(Y \cdot \Phi \setminus X) \cap \Phi = (Y \setminus X) \cap \Phi$, for $\Phi = \delta R \cdot \delta S$ } =

 $\delta X \subseteq (((R \cup S) \cdot \delta R \cdot \delta S) \setminus X) \cap (\delta R \cdot \delta S)$

- $\{ \delta((R \cup S) \cdot \delta R \cdot \delta S) = \delta R \cdot \delta S \text{ (coreflexives) ; (5) } \}$ \equiv $X \vdash ((R \cup S) \cdot \delta R \cdot \delta S)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

PF-calculation has thus led to

$$R \sqcap S = (R \cup S) \cdot \delta R \cdot \delta S \tag{7}$$

which — back to points — is nothing but what was anticipated earlier on:

 $(r \sqcap s)a \stackrel{\text{def}}{=} if (r a) = \emptyset \lor (s a) = \emptyset then \ \emptyset else \ (r a) \cup (s a)$

Challenge (for the ones who haven't tried it yet)

Calculate the above directly from the pointwise definition of \vdash

Summary

- No invent & verify
- Elegance of reasoning
- Economy of thinking

Context About	the title R	efinement e	e = m + c	PF-transform	Factors of ⊢	Postlude

However

(Lack of) monotonicity

- $R \cap S$ is **not** monotonic with respect to \vdash
- $R \cup S$ is **not** monotonic with respect to \vdash
- $R \cdot S$ is **not** monotonic with respect to \vdash

although

- $R \times S$ (special case of $R \cap S$) is \vdash -monotonic
- R + S (special case of $R \cup S$) is \vdash -monotonic

Questions

- Why?
- Is (McCarthy) conditional

$$P \rightarrow S \ , \ T \ \stackrel{\mathrm{def}}{=} \ (S \cdot \delta P) \cup T \cdot (id - \delta P)$$

⊢-monotonic?

Context About the title Refinement e = m + c PF-transform Factors of \vdash Postlude

Two sub-relations of \vdash

Do not weaken the precondition

$$S \vdash_{post} R \equiv S \vdash R \land \delta R \subseteq \delta S$$

Do not strengthen the postcondition

$$S \vdash_{pre} R \equiv S \vdash R \land S \subseteq R \cdot \delta S$$

(9)

(8)

By definition

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○へ⊙

Also easy to show			
$S \vdash_{pre} S \cup R$	≡	$R \cdot \delta S \subseteq S$	(16)
$S \cup R \vdash_{post} R$	≡	$\delta(S \cup R) = \delta R$	(17)
$S \vdash_{\textit{post}} S \cap R$	≡	$\delta S = \delta (R \cap S)$	(18)
$S \cap R \vdash_{pre} R$	≡	$R \cdot \delta(S \cap R) \subseteq S \cap R$	(19)
(eg. (19) is (16) for $S := S$ (ר R)	

where (14) can be written in less symbols as

Refinement

Simple PF-calculations lead to

About the title

Alco

 $\vdash_{post} = \subseteq^{\circ} \cap \delta^{\circ} \cdot \delta$

 $S \vdash_{post} R \equiv R \subseteq S \land \delta R = \delta S$ (14)

Postlude

(15)

Factors of ⊢

$S \vdash R$	≡	$\{ \text{ expand } \delta S \subseteq (R \setminus S) \cap \delta R \text{ (Galois) } \}$
		$R \cdot \delta S \subseteq S \wedge \delta S \subseteq \delta R$
	≡	$\{ A \subseteq B \equiv A \cup B \}$
		$R \cdot \delta S \subseteq S \wedge (\delta S) \cup (\delta R) = \delta R$
	≡	$\{ \delta \text{ distributes over } \cup \text{ (Galois) } \}$
		$R \cdot \delta S \subseteq S \wedge \delta (S \cup R) = \delta R$
	\equiv	$\{ previous slide (16, 17) \}$
		$(S \vdash_{pre} S \cup R) \land (S \cup R) \vdash_{post} R$
	\Rightarrow	<pre>{ composition }</pre>
		$S(\vdash_{pre} \cdot \vdash_{post})R$

S

$$\begin{split} \vdash R &\equiv \{ \text{ since } S \vdash R \Rightarrow \delta S = \delta (S \cap R) \} \\ \delta S &= \delta (S \cap R) \land R \cdot \delta S \subseteq S \\ &\equiv \{ R \cdot \delta S \text{ is at most } R ; \cap \text{-universal } \} \\ \delta S &= \delta (S \cap R) \land R \cdot \delta S \subseteq S \cap R \\ &\equiv \{ \text{ substitution } \} \\ \delta S &= \delta (S \cap R) \land R \cdot \delta (S \cap R) \subseteq S \cap R \\ &\equiv \{ (18) \text{ and } (19) \} \\ (S \vdash_{post} S \cap R) \land (S \cap R) \vdash_{pre} R \\ &\Rightarrow \{ \text{ composition } \} \\ S (\vdash_{post} \cdot \vdash_{pre}) R \end{aligned}$$

⊢-Factorization

Diagram

Summary

$$\vdash_{pre} \cdot \vdash_{post} = \vdash = \vdash_{post} \cdot \vdash_{pre}$$

Comments

PF-calculation style free of extra ingredients such as **negation** and **consistency** (special case where δ distributes over \cap).

About the title Refinement e = m + c

PF-trai

rm Factors of ⊢

Postlude

Example of reasoning by factorization — conditional

$\cdot T$) and $(\cup T)$ are $dash_{\textit{post}}$ -monotonic	
$S \vdash_{post} R \Rightarrow S \cdot T \vdash_{post} R \cdot T$	(21)
$S \vdash_{post} R \; \Rightarrow \; S \cup T \vdash_{post} R \cup T$	(22)

Therefore

(McCarthy) conditional is ⊢_{post}-monotonic

$$\begin{cases} P \vdash_{post} P' \\ S \vdash_{post} S' \\ T \vdash_{post} T' \end{cases} \Rightarrow P \rightarrow S , T \vdash_{post} P' \rightarrow S' , T' \quad (23)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Postlude

Example of reasoning by factorization — conditional

$$(\cdot \Phi) \text{ is } \vdash_{pre}\text{-monotonic } (\Phi \text{ coreflexive})$$
$$S \vdash_{pre} R \Rightarrow S \cdot \Phi \vdash_{pre} R \cdot \Phi$$
(24)

(Constrained) $(\cup T) \vdash_{pre}$ -monotonicity

$$S \vdash_{pre} R \Rightarrow S \cup T \vdash_{pre} R \cup T \equiv R \cdot \delta T \subseteq S \cup T$$
 (25)

entailing

$$S \vdash_{pre} R \land R \cdot \delta T \subseteq S \cup T \Rightarrow S \cup T \vdash_{pre} R \cup T$$
 (26)

Context About the title Refinement e = m + c PF-transform Factors of \vdash Postlude

Example of reasoning by factorization — conditional

Monotonicity of *then*-branch of conditional:

Only \vdash_{pre} -factor matters:

 $P \to S , R \qquad \vdash_{pre} \qquad P \to S \cup S' , R$ $\equiv \qquad \{ \text{ definition ; abbreviate } T := R \cdot (id - \delta P) \}$ $(S \cdot \delta P) \cup T \qquad \vdash_{pre} \quad ((S \cup S') \cdot \delta P) \cup T$ $\Leftarrow \qquad \{ (24) \text{ and } (26) \}$ $S \vdash_{pre} S \cup S' \land (S \cup S') \cdot (\delta P) \cdot (\delta T) \subseteq (S \cdot \delta P) \cup T$

$$\leftarrow \{ \text{ factorization of } S \vdash S' \text{ and domain of } T \}$$

$$S \vdash S' \land (S \cup S') \cdot (\delta P) \cdot (\delta R) \cdot (id - \delta P) \subseteq (S \cdot \delta P) \cup T$$

$$\equiv \{ \delta P \cdot (id - \delta P) = \bot \}$$

$$S \vdash S' \land \text{ TRUE}$$

Since monotonicity of *else*-branch is analogous, we get

$$\begin{array}{c}
\text{McCarthy conditional monotonicity} \\
\begin{cases}
P \vdash_{post} P' \\
S \vdash S' \\
T \vdash T'
\end{cases} \Rightarrow P \rightarrow S, T \vdash P' \rightarrow S', T' \quad (27)
\end{array}$$

e = 1

с PF-:

F-transform

Factors of \vdash

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Postlude

Refinement across relational taxonomy

Binary relation sub-class	\vdash_{post}	⊢ _{pre}	\vdash
Entire relations	⊆°	id	⊆°
Simple relations	id	\subseteq	UI
Functions	id	id	id

where

- Entire $R id \subseteq R^{\circ} \cdot R$ (vulg. total)
- Simple $R R \cdot R^{\circ} \subseteq id$ (vulg. univocal)
- Function f both entire and simple

(Polytypic) structural refinement

 \vdash -monotonicity of an arbitrary parametric type F

$$S \vdash R \quad \Rightarrow \quad F S \vdash F R$$

Technically, parametricity is captured by regarding F as a *relator*.

Relators

A relator F is a functor on relations, for instance

$$\begin{array}{ccc}
A & FA \\
R & &
\\
R & &
\\
B & FB
\end{array}$$

which is \subseteq -monotonic and commutes with composition, converse and the identity.

(28)

Structural refinement example

Sequence ("map") refinement example

$$> \vdash \mathit{succ} \ \Rightarrow \ (>)^{\star} \vdash (\mathit{succ})^{\star}$$

that is

 $\langle \forall x :: x+1 > x \rangle \Rightarrow \langle \forall I :: [x+1 \mid x \leftarrow I] >^* I \rangle$

Calculation of (28)

Since

Every relator F is both ⊢ _{pre} /⊢ _{post} -monotonic	
$F \cdot \vdash_{\textit{post}} \subseteq \vdash_{\textit{post}} \cdot F$	(29)
$F \cdot \vdash_{\mathit{pre}} \subseteq \vdash_{\mathit{pre}} \cdot F$	(30)

the structural refinement law (28) is easy to calculate :

TRUE $\equiv \{ (29) \} \\
F \cdot \vdash_{post} \subseteq \vdash_{post} \cdot F \\
\Rightarrow \{ \text{ monotonicity of composition } \} \\
F \cdot \vdash_{post} \cdot \vdash_{pre} \subseteq \vdash_{post} \cdot F \cdot \vdash_{pre} \\
\end{cases}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

- $\Rightarrow \qquad \{ (30) \text{ and } \subseteq \text{-transitivity } \}$
 - $\mathsf{F} \cdot \vdash_{\textit{post}} \cdot \vdash_{\textit{pre}} \subseteq \vdash_{\textit{post}} \cdot \vdash_{\textit{pre}} \cdot \mathsf{F}$
- \equiv { (20) }

 $\mathsf{F} \cdot \vdash \ \subseteq \ \vdash \cdot \mathsf{F}$

 $\equiv \{ go pointwise on S and R \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

 $R \vdash S \Rightarrow F R \vdash F S$

- Boudriga et al (FAC, 1992) formulate $S \vdash R$ relationally but reason at pointwise level
- Lindsay Groves (BCS FACS Refinement Workshop, 2002) postulates and then proves ⊢ factorization in the context of the Z schema calculus, requiring the extra notion of *compatible* relations, which complicates proofs unnecessarily.
- Wolfram Kahl (ENTCS, 2003) presents the factorization at PF-level with no further use of it.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Current work on PF-transform

Coalgebraic refinement

Our main goal is to apply this factorization to the refinement of "components as coalgebras" — eg. (monadic) machines (=objects) of type

 $B \times (M A)^{\prime} \longleftarrow A$

where M is a behaviour monad — cf. Barbosa and Meng (AMAST'04).

Databases

PF-refactoring of **database theory** — functional and multivalued dependencies made simpler and more general

Current work on PF-transform

Data refinement

Data-refinement calculus based on (in)equations of shape

such that $F^{\circ} \vdash R$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

where F is the *abstraction* relation and R the *representation*.

e = 1

+ c PF-t

PF-transform

Factors of \vdash

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Postlude

Other topics on the PF-transform

PF-transform automation

- RELVIEW (Berghammer et al)
- UMinho Haskell Libraries (Cunha, Visser et al)

Multirelations

Cf. angelic / demonic nondeterminism, etc

Alloy

 $\mathsf{PF}\text{-}\mathsf{transform}$ applied to Alloy model reasoning (where "everything is a relation")

- Invest in **perennial** reasoning strategies
- Shift from "implication first" to "let the symbols do the work" "Chase" equivalence : bad use of implication-first logic may lead to "50% loss in theory"
- Rôle of transforms, abstract notation and abstract patterns (easier to spot *al-djabr* rules)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- Stimulate elegance in mathematics (it is effective!)
- Learn with the other engineering disciplines