Pointfree Factorization of Operation Refinement

J.N. Oliveira & C.J. Rodrigues

Dept. Informdtica,
Universidade do Minho
Braga, Portugal

FM'06 — 14th Int. Symp. on Formal Methods
McMaster University, Hamilton, Ontario Canada
August 21 - 27, 2006

Context

Context

@ Program understanding by reverse engineering
@ Software architecture “fission”

@ Systems and components as coalgebras

Understanding
Analysing, factoring (splitting, slicing) , (converse of) refining

Are we ready for this

@ Are our maths up-to-date for all this?

@ Go back to basics?

About the title

About the title — refinement

{S,SP,SC}-refinement

Te-refinement

(7]

W,-refinement
downward, upward refinement

forwards, backwards refinement

e © ¢ ¢ ¢

Wikipedia

Operation refinement — converts a specification of an operation
on a system into an implementable program (e.g., a procedure).
The postcondition can be strengthened and/or the precondition
weakened in this process.

About the title

About the title — factorization

Expressing (numbers, expressions, etc) as products of factors

School example

Rather than “brute force” arithmetic calculations, eg.
756
— = 0.9545454 ...
792 0.954545
use prime factorization
756 22x33x7
792 23 x32x11
= 27 x3x7x117t
21
22

In general, factorization identifies " basic building blocks” so that
facts about the whole can be inferred from facts about its blocks.

About the title
About the title

Pointfree
What 77

Refinement

Operation refinement

Suppose s and r are software components described by
(set-valued) state transition functions

Total correctness

Component PA<—— A refines (implements, reifies) component
PA<=— A — written st r — iff

skr = (Va:0cC(sa): DC(ra)C(sa)) (1)
where s a means the set of states reachable (in machine s) from
state a.

Comments:

@ Consensual and conceptually simple

o Copes with model undefinedness and vagueness

Refinement

However. . .

Funny shaped semi-lattice:

f - & (va:: #(f a) - #(g a) =1)
T—)\aA “chaos”
\ /
r I‘I s glb= “largest common spec”
L :5)\3.(2) “sink”
rfs = lambdaa.(if (r a)=0V (s a) =0 then ()

else (r a)U (s a))

Refinement

Can we break the complexity of 7

Yes, following a plan in two steps:

Change of “math space”

Express and reason about - with “less symbols” and “more agile”
rules — thus the pointfree transform.

Factorization

| \

Factor I in simpler “building blocks” — eg. by dissociating
decrease of nondeterminism from increase of definition.

Refinement

Can F be factored in (simpler) “building blocks”?

Yes:

Groves factorization

It has been noted by Lindsay Groves (and others) that

skr = (3t 11 shkpetAthpost 1)
= <3 @ oo St_post t,/\tll_pre I’>
where

® st t — t only weakens the precondition of s

® tpost r — r only strengthens the post-condition of t

Question:
@ In what sense are I-pre /b post factors of = 7
@ What can we expect from such factoring?

Need for something else. ..

About changing “math space”

Another school maths example:

The problem
Find three consecutive integers which together add up 120

The model

x+(x+1)+(x+2)=120

The calculation

3x+3 =120
= { *“al-djabr” rule }
3x =120 -3

= { “al-hatt” rule }
x=40-1

School maths example

The solution

x = 39
x+1 = 40
x+2 = 41

The calculus

“al-djabr” rule:
-@gy = x<y£@
\/

“al-hatt” rule:

SICHAELT DR

High-school example

Handling more demanding problems, eg. electrical circuits:

The problem

Predict i(t) for RC-circuit

v(t) C

The model

v(t) = Ri(t)+ £ [, i(r)dr
v(t) = Wo(u(t—a)— u(t— b)) (b>a)

High-school example

Calculation?

Physicists and engineers overcome difficult calculations involving
integral /differential equations by changing the “mathematical
space”, for instance by moving (temporarily) from the time-space
to the s-space in the Laplace transformation.

Laplace transform
f(t) is transformed into (L f)s = [y e *'f(t)dt

High-school example

Laplace-transformed RC-circuit model

Algebraic solution for /(s)

/(S) — : R (e—as_e—bS)

Back to the t-space

0 if t<a
i(t) = (M)e Re if a<t<b

(Voe RC . VOe RC
R

e~ RE if t>b

(after some algebraic manipulation)

Lesson

Laplace transform softens the “notation conflict” involved in

engineering = model first, then calculate . ..

arising from a

notation conflict

@ descriptiveness (useful in modelling)

@ compactness (for agile calculation)

Is there a “Laplace transform” applicable to software calculation?

Perhaps there is, cf. ...

2

(| x : 0<x<10: x°—x)

(Vx : 0<x<10: x22x>

e=m+c
An integral transform

(L f)s = [;° e "t f(t)dt, eg.

f(t) | £(f)
1 I
S
t" | 2y
1
eat ;
etc {4

Pierre Laplace (1749-1827)

% 4

PF-transform

An “s-space equivalent” for logical quantification

The pointfree (PF) transform

¢ | PF ¢
(Ja:: bRanaS) b(R- S)c
(Va,b: bRa: bS a) RCS
(Va:: aRa id CR
(Vx : xRb: xS a) b(R\ S)a
(Mc:bRc: aSc a(S/R)b
bRaAcS a (b,c)(R,S)a
bRaNndSc (b,d)(R x S)(a,c¢)
bRaAbS a b(RNS)a
bRaVvbsa b(RUS) a
(f b) R (g a) b(f°-R-g)a
TRUE bTa
FALSE bl a

What are R, S, id ?

PF-transform

A transform for logic and set-theory

An old idea

PF(sets, predicates) = pointfree binary relations

Calculus of binary relations

@ 1860 - introduced by De Morgan, embryonic

@ 1870 - Peirce finds interesting equational laws

@ 1941 - Tarski's school, cf. A Formalization of Set Theory
without Variables

@ 1980's - coreflexive models of sets (Freyd and Scedrov,
Eindhoven MPC group and others)

Unifying approach

Everything is a (binary) relation

PF-transform
Binary Relations

Arrow notation

Arrow B <Z— A denotes a binary relation to B (target) from A
(source).

Identity of composition
id such that R-id=id-R=R

Converse of R — R° such that a(R°)b iff b R a.

Ordering

"R C S — the "R is at most S" — the obvious R C S ordering.

PF-transform

Binary Relations

Pointwise meaning

b R a means that pair (b, a) is in R, eg.

1 < 2
John [sFatherOf Mary
3 =(14) 2

Reflexive and coreflexive relations

@ Reflexive relation: idCR

@ Coreflexive relation: R C id

Are represented by coreflexives, eg. set {0,1} is @> é>

PF-transform

PF-transform example: “indirect at-most” rule

For - a preorder,

XbY = (VZ : ZFX: ZFY) (2)

F o= F\F (3)

Comments

@ Variables (points) X, Y, Z disappear (PF = “point-+free”)

@ YV is gone

One-slide long calculation of (2) — via (3) — follows shortly

PF-transform
Galois connections

GCs provide uniform structure to any kind of (in)equational
reasoning, for example:

The (“al-djabr”) rule

Dezes = £s@hs

The calculus (tiny fragment!):
@ Monotonicity: (7)) is monotonic and (\S) is antimonotonic

o Identity: id\S=S
@ Distributions, eg: (RUT)\S = (R\S)N(T\S)
o Coreflexive ®: (R-d\S)Nn® = (R\S)Nno®

etc

PF-transform

One-slide-long calculation style

F =\ F
{ antisymmetry }
F\FCk A FCR\F
{ identity (R = id \ R) and the GC itself }
F\F Cid\F A F-FCF
{ antimonotonicity }
idCkH AN F-FCH
{ PF-definitions of reflexive and transitive relation }

- is a preorder

PF-transform

Final touch: indirect equality

Thanks to the former result, we carry on:

FAEe=(F\B)Nn(E\F)°
= { in case I is antisymmetric }

id=(F\F)n(F\F)°

which — back to points — yields

Indirect equality rule

For I a partial order,
X=Y = (VZ :: ZFX=2ZFY) (4)

holds

which will be essential to PF-reasoning about the given - relation

PF-transform
PF-transform of +

Recall

skr ¥ (wa:0c(sa): Bc(ra)C(sa)

Define R =€ -rand S = € - s and apply PF-transformation rules
to obtain

Pointfree

SFR = G§SC(R\S)NJR (5)

where 6 S = S - 5° N id is the coreflexive relation which denotes
the domain of S

Calculate s M r via PF-transform (5)

PF-transform

From “invent & verify” to calculation

Classical way

@ invent RS
verify that RS is a common lowerbound of R and S

)

o verify that it is the greatest of all such lowerbounds

Calculational way
Calculate 11 as the (unique) solution to universal property, for all X

XFRAXES (6)

XFRMOS =

Let us solve this equation for unknown [7:

XFRMOS
{6}

PF-transform
Calculation of 1M

XFRAXES

{ (5) twice; composition of coreflexives is meet }
IXC(R\X)N(S\X)NOoR-0S
= { distribution }
IXC(RUS)\XNJR-S

{ recall (Y - &\ X)Nd=(Y\X)N® ford=3R-65 }
IXC(((RUS)-6R-6S)\X)N(0R-0S)
= { 0((RUS) 6R-6S)=05R-46S (coreflexives) ; (5) }
XF({(RUS)-0R-0S)

{ indirect equality }
RMNS=(RUS)-6R-6S

PF-transform

Back to points

PF-calculation has thus led to
RS = (RUS)-dR-6S (7)

which — back to points — is nothing but what was anticipated
earlier on:

(rMs)a L f (ra)=0V(sa)=0 then 0 else (ra)U(s a)

Challenge (for the ones who haven't tried it yet)

Calculate the above directly from the pointwise definition of

@ No invent & verify

@ Elegance of reasoning
@ Economy of thinking

Factors of -

However

(Lack of) monotonicity

@ RN S is not monotonic with respect to

@ RUS is not monotonic with respect to
@ R -S is not monotonic with respect to
although

@ R x S (special case of RN S) is --monotonic

@ R+ S (special case of RU S) is --monotonic

o Why?

@ Is (McCarthy) conditional

PSS, T ¥ (s.5P)UT (id—5P)

F-monotonic?

Factors of
Two sub-relations of -

Do not weaken the precondition

Skpost R = SERAOJRCOS (8)
Do not strengthen the postcondition
Stpe R = SFRASCR-0S (9)
}_pre - H) l_post c F (10)
and therefore,
l_pre . l_post - F (11)
l_post . I_pre - F (12)

Simple PF-calculations lead to

SkpeR = R-65=S (13)
SFpost R RCSASR=6S (14)

where (14) can be written in less symbols as

l_post = go né°-4 (15)

Also easy to show

SFpeSUR = R-6SCS (16)
SURFpst R = 6(SUR)=6R (17)
Stpst SNR = 65=56(RNS) (18)
SARFyeR = R-§(SNR)CSNR (19)

(eg. (19) is (16) for S:=SNR)

\

SER

Factors of -

{ expand §S C (R\ S)NdR (Galois) }
R-0SCSA6SCIHR

{ACB=AUB}
R-6SCSA(WS)U(GR)=0R

{ ¢ distributes over U (Galois) }
R-6SCSAO(SUR)=0R

{ previous slide (16 , 17) }
(Stpre SUR)A(SUR) Fpost R

{ composition }

S(l_pre . l_post)R

- g I_post : l_pre

SER

Factors of -

{ since SFR = §5=0(SNR)
§S=6(SNR)AR-65CS

{ R-§Sis at most R ; M-universal }
dS=6(SNR)AR-6SCSNR

{ substitution }
dS=6(SNR)AR-6(SNR)CSNR

{ (18) and (19) }
(Stpost SNRYA(SNR) Fpre R

{ composition }

S(l_posl' : '_pre)R

}

Factors of -

~-Factorization

Diagram
SUR
Fare Ym
S ™ R
l_post |_pre
SNR

Summary

}_pre ’ }_post = = = l_post ’ I_pre (20)

Comments

PF-calculation style free of extra ingredients such as negation and
consistency (special case where § distributes over N).

Factors of -

Example of reasoning by factorization — conditional

P—-SuUS ., T

P—S, T PSS, T

(+T) and (UT) are tpose-monotonic

Stpost R = S -Thpt R- T (21)
Stpost R = SUTFpost RUT (22)

Therefore

(McCarthy) conditional is I pse-monotonic

P e P
S lpame & = P—=S, T tpst P—S, T (23)
T e 17

Factors of -

Example of reasoning by factorization — conditional

(+®) is tpre-monotonic (P coreflexive)

StpeR = S - OF,eR-O (24)

(Constrained) (UT) kpre-monotonicity

Skoe R = SUTFpe RUT=R-0TCSUT (25)
entailing

Skoe RAR-0TCSUT = SUThFpRUT (26)

Factors of -

Example of reasoning by factorization — conditional

Monotonicity of then-branch of conditional:

P—-SuUS ,R

P—-S.,R P—S,R

Only Fpre-factor matters:

P—S,R Fpre P—-SuUS ., R

{ definition ; abbreviate T := R - (id — 6 P) }
(S-6P)UT tpe ((SUS)-6P)UT
= { (24) and (26) }

Stpe SUS A (SUS)-(6P)-(6T)C(S-6P)UT

Factors of -

Example of reasoning by factorization — conditional

= { factorization of S+ S’ and domain of T }

SES" A (SUS)-(6P)-(6R)-(id—0P)C(S-6P)UT
= { 6P -(id—6P)=1}

SES" A TrRUE

Since monotonicity of else-branch is analogous, we get

McCarthy conditional monotonicity

B em: 7
SHS = P-S TFP-S5,T (27)
TET

Refinement across relational taxonomy

| Binary relation sub-class | Fpost | Fpre | F |

Entire relations ce id | C°
Simple relations id C | C
Functions id id | id

where
e Entire R — id C R°- R (vulg. total)
@ Simple R — R - R° C id (vulg. univocal)
@ Function f — both entire and simple

Factors of -

Factors of -

(Polytypic) structural refinement

F-monotonicity of an arbitrary parametric type F

SFR = FSKHFR (28)

Technically, parametricity is captured by regarding F as a relator.

Relators

A relator F is a functor on relations, for instance

A FA
Rl lFR
B FB

which is C-monotonic and commutes with composition, converse
and the identity.

Factors of -
Structural refinement example

Sequence relator (“map")

A A*
T
B B*

where

I(R)I" = lenl=lenl' A(Vi : i€inds/: (I)R(I'i))

Sequence (“map”) refinement example

>t succ = (>)"F (succ)”
that is

Vx i x+1>x) = (VI :: [x+1|x—1]>"])

Factors of -

Calculation of (28)

Since

Every relator F is both tpre /- post-monotonic

F . I_post g |_post . F (29)
F-lbpoe € bFpre-F (30)

the structural refinement law (28) is easy to calculate :

TRUE

{ (9 }

F- I_post“ c I_post“ -F

= { monotonicity of composition }

F- l_post : '_pre C l_post -F- '_pre

Factors of -

Calculation of (28)

= { (30) and C-transitivity }
FFpost - Fpre C© FpostFpre- F
{ (20) }
Flb C F-F

{ go pointwise on S and R }
RS = FRFFS

Postlude

Related work

@ Boudriga et al (FAC, 1992) formulate S+ R relationally but
reason at pointwise level

@ Lindsay Groves (BCS FACS Refinement Workshop, 2002)
postulates and then proves - factorization in the context of
the Z schema calculus, requiring the extra notion of
compatible relations, which complicates proofs unnecessarily.

@ Wolfram Kahl (ENTCS, 2003) presents the factorization at
PF-level with no further use of it.

Postlude

Current work on PF-transform

Coalgebraic refinement

Our main goal is to apply this factorization to the refinement of
“components as coalgebras” — eg. (monadic) machines
(=objects) of type

Bx(MA <—A

where M is a behaviour monad — cf. Barbosa and Meng
(AMAST'04).

Databases

PF-refactoring of database theory — functional and multivalued
dependencies made simpler and more general

Postlude

Current work on PF-transform

Data refinement

Data-refinement calculus based on (in)equations of shape

A B such that F° - R

where F is the abstraction relation and R the representation.

Postlude

Other topics on the PF-transform

PF-transform automation
@ RELVIEW (Berghammer et al)
@ UMinho Haskell Libraries (Cunha, Visser et al)

Multirelations

Cf. angelic / demonic nondeterminism, etc

PF-transform applied to A11loy model reasoning (where
“everything is a relation”)

Postlude

Summary

)

Invest in perennial reasoning strategies

(]

Shift from “implication first” to “let the symbols do the work”

“Chase” equivalence : bad use of implication-first
logic may lead to “50% loss in theory”

Réle of transforms, abstract notation and abstract patterns
(easier to spot al-djabr rules)

Stimulate elegance in mathematics (it is effective!)

Learn with the other engineering disciplines

	Context
	About the title
	Refinement
	e = m + c
	PF-transform
	Factors of
	Postlude

