
C O N C E P T S , S E M A N T I C S A N D A P P L I C A T I O N S

Reo paradigm

DAVID COSTA
C W I , A M S T E R D A M , N E T H E R L A N D S

C O S T A @ C W I . N L

M
o

rn
in

g

Roadmap

1. Motivation and Contextualization

2. Key Concepts

3. Reo
1. Primitives: channels, nodes, I/O operations

2. Operations: Composition, Encapsulation

4. Reo semantics
1. Connector colouring based

2. Automata based

5. Reo animations

6. Reo Eclipse Plug-in

Reo Paradigm DI-UM, Braga 21-05-2009

3

Afternoon

Motivation and Contextualization

 Distributed, Concurrent, Parallel programming

 Concurrent components/tasks
 A unit of computation

 Granularity determined by the type of the solution designed

 Isolation
 Disciplined access to shared state

 restricted access to state

 Indirect access to state and always explicit

 Impossibility to mutate state directly

 Loosely coupled components
 Message passing

 No method calls, no access to public fields, no statics of any kind.

Reo Paradigm DI-UM, Braga 21-05-2009

4

It is hard to write quality software in general.
But it has become even harder to do so:

1. For most recent hardware,
2. For the cloud,
3. For most flexible architectures such as SOA
4. Etc…

Motivation and Contextualization

 How does a language that aims at making this
things easier looks like?

 Reo is a long-term strategic project at SEN3 group
in CWI

 Addressing this question

 And others:

 Expressiveness

 Scalability

 Develop Tools that leverage the small gap between the
conceptual model of Reo and the software architect/engineer
devised solutions

Reo Paradigm DI-UM, Braga 21-05-2009

5

What Reo like languages propose to be?

 A programming model where programmers:
 First decompose in functional components their solution

 Then arrange the coordination between components in a way that is
close to their natural conception of the solution.

 If you can model your solution in terms of interactive
components, encoding it in Reo should be
straightforward

 Will likely avoid many common concurrency-related
bugs

 Leverage the promised performance boost of recent
hardware

 prevent the proliferation of anti-patterns.

Reo Paradigm DI-UM, Braga 21-05-2009

6

Perspectives

 2 different perspectives on a language such as Reo

 As a programming language designer

 How to design a language such as Reo?

 What are the main language constructs and concepts?

 What about its semantics?

 As a software architect/engineer

 What changes in the way software solutions are devised?

 What are the benefits?

 Does it really pays off?

Reo Paradigm DI-UM, Braga 21-05-2009

7

Development in mainstream PL (Java)

 Isolation

 google-guice

 Ultra-lightweight, next generation dependency injection container
for Java

 Easy unit testing

 Maximal flexibility and maintainability

 Minimal repetition

Reo Paradigm DI-UM, Braga 21-05-2009

8

Developments in mainstream (.NET)

 Parallelization
 .NET 4 Task Parallel Library

 Classes
 Tasks
 TaskScheduler()

 Methods
 FromAsync()
 ContinueWhenAll()
 ContinueWhenAny()

 Isolation, First order constructs for coordination
 MSDN DevLab

 Axum
 Pex

 CCR & DDS – Concurrency and Coordination Runtime &
Decentralized Software Services

Reo Paradigm DI-UM, Braga 21-05-2009

9

“Axum is a language that builds upon the architecture of the Web
and principles of isolation, actors, and message-passing to
increase application safety, responsiveness, and developer

productivity”
http://msdn.microsoft.com/en-us/devlabs

Other advanced concepts:
•Dataflow networks
•Asynchronous methods
•Type annotations for taming side-effects

Reo

 A paradigm for composition of distributed software
components and services, based on the notion of
mobile channels.

 Enforces an exogenous channel-based coordination
that defines how designers can build complex
coordinators, called connectors, out of simpler ones.

 Reo connectors orchestrate the cooperative
behaviour of components or services in a
component-based system or service oriented
application.

Reo Paradigm DI-UM, Braga 21-05-2009

10

Reo Key Concepts

 Loose coupling among component and services

 Compositional construction of connectors

 User defined channels

 Arbitral mix of synchrony and asynchrony

 Context dependent behaviour by constraint propagation

 Mutual exclusion

 Effort to provide accessible Graphical syntax

 Dynamic reconfigurability of connectors

 Support for distribution and mobility of heterogeneous
components

Reo Paradigm DI-UM, Braga 21-05-2009

11

Special word about Channels

 The two components communicating over a channel
are decoupled from each other:

 Each component doesn’t know or care how the other one is
implemented.

 The “contract” between them is specified by the channel only.

 To borrow an analogy from the OOP, the channel
acts as an interface, and the component as the class
implementing the interface.

Reo Paradigm DI-UM, Braga 21-05-2009

12

Reo primitive connectors

DI-UM, Braga 21-05-2009Reo Paradigm

13

 Channels

 Nodes

Sync Syncdrain Asyncdrain FIFO1

Lossysync Syncspout Asyncspout Filter

Replicator Merger

Reo primitive connectors

DI-UM, Braga 21-05-2009Reo Paradigm

14

 I/O operations

Take/Write request Take/Write no request

Reo Semantics

 Connector Colouring

 Intentional Automata

Reo Paradigm DI-UM, Braga 21-05-2009

15

Instructions for the Tools sessions

 Requirements: Java 1.5 or higher
 Download eclipse
 http://www.eclipse.org/downloads

 Eclipse IDE for Java Developers (85 MB)

 Install eclipse by unzipping the downloaded file
 Run eclipse and install Reo plug-in
 Go to Help > Software Updates...

 Click on available software
 Click on add site and write the following location:
 http://reo.project.cwi.nl/update

 Mark to install the following plug-in:
 Reo Core Tools

 Click Install

 Change the eclipse perspective to Reo

Reo Paradigm DI-UM, Braga 21-05-2009

16

http://www.eclipse.org/downloads
http://reo.project.cwi.nl/update

