
Security Properties

Information Flow

- A class of security policies that constrain the ways in which
information can be manipulated during program execution

- Usually formulated in terms of non-interference between
confidential inputs (high-security variables) and public outputs
(low-security variables)

- Typically specified using some augmented type system

Example (indirect flow)

void fibonacci ()
{
 while (n > 0) {
 f1 = f1 + f2;
 f2 = f1 - f2;
 n--;
 }
 if (f1 > k) l = 1;
 else l = 0;
}

Let n be high and l be low
(others we don’t care)

the program is insecure
and can be typed as so

Example (direct flow)

n = 1;
if (k) x = 1;
if (!k) x = n;
l = x+y;

Let n be high and l be low
(others we don’t care)

is the program secure?

Non-Interference
(Semantic Formulation)

A semantics- (rather than type-) based formulation of non-
interference treats cases like the previous example correctly

(termination-insensitive formulation)

Self-composition

- A technique that allows to specify non-interference using
axiomatic semantics (Hoare logic)

- Informally: Given program C, we construct the program C; C’
where C’ is a copy of C with every variable x renamed to x’.

- C is secure if,
when the program C;C’ is run from a state in which x=x’ for
all non-high security x,
then when (if!) it stops, l=l’ for every low security variable l

Self-composition

- Can be formalized using contracts and JML / ACSL

/*@ requires n>=0 && ns>=0 && l == ls && f1 == f1s
 && f2 == f2s && k == ks && n==ns
 @ ensures l == ls
 @*/
void fibonacci_verif ()
{
 while (n > 0) {
 f1 = f1 + f2;
 f2 = f1 - f2;
 n--;
 }
 if (f1 > k) l = 1;
 else l = 0;

 while (ns > 0) {
 f1s = f1s + f2s;
 f2s = f1s - f2s;
 ns--;
 }
 if (f1s > ks) ls = 1;
 else ls = 0;
}

n=ns is required to get l=ls
thus information flows from n
to l

How can this be annotated to
achieve automatic proofs?

Usual (functional) invariants
will not do…

(paper Deductive Verification of
Cryptographic Software,
NFM’09)

Program Equivalences

/*@ requires 0<=i<=j && 0<=is<=js &&
 @ i==is && j==js && k==ks && a==as && b==bs;
 @ ensures i==is && j==js && k==ks && a==as && b==bs;
 @*/
void main_verif ()
{

 for (k=i ; k<=j; k++) b += k;
 for (k=i ; k<=j; k++) a *= k;

 for (ks=is ; ks<=js; ks++) {
 bs += ks;
 as *= ks;
 }
}

How can this be annotated to
achieve automatic proofs?

High Assurance
Compilation

High Assurance Compilation

- Semantic transparency: the behaviour of C should be
the one specified by the semantics of S… or,

- If S is correct w.r.t. to a given spec. then so should C

- Testing C will not differentiate bugs in S and in Comp,
and may of course miss bugs

What is a correct compiler?
Let C = Comp(S)

Critical Software

S Comp C

Processor
(HW)

Spec

OK

OK

OK?

OK?

Formal methods used

Compiler Correctness Properties (Leroy, POPL’06)

We write
OK(S) for “S does not go wrong” and
OK(S,spec) for “S satisfies the specification spec”

Compiler correctness as preservation of specifications:

 If OK(S) and OK(S,spec) then OK(C,spec)

A particular case is
(type, memory) safety of S implies safety of C

Compiler Correctness Properties

Most work assumes that specs. depend exclusively on
the observable behaviour of programs

Under this assumption, preservation of specifications
is a consequence of the following property:

If OK(S) then S and C are observationally equivalent.

A compiler for which a monolithic proof of this
property can be produced is a verified compiler

Verifying Compiler

- if OK(S) then S and C are observationally equivalent.

- If OK(S) and OK(S,spec) then OK(C,spec)

A verifying compiler produces, for each source S, not only
executable C but also a proof that one of the previous notions
of correspondence between S and C holds:

Proofs not as difficult as verifying the compiler monolithically

Automation (little user intervention) should be a goal

Verifying Compiler

- A challenge since 1967 (Floyd)

- Proposed by Hoare as a grand challenge for computing
research (2003)

- Many recent advances

Pike et al (ACL2’06) have produced a verifying core for the
µCryptol cryptographic language

Transformation Verification

- Constructing a verifying compiler is compositional

- For each transformation step S -> S’, both S and the
generated code S’ must be somehow embedded in the
language of the selected proof tool
(the semantics of S, S’ are described in that language)

- Following this, a set of theorems is generated
corresponding to, say, obs. equivalence of S,S’

- Finally, proofs of these theorems are automatically
constructed

Certifying Compiler

Certificate: a representation of a proof as a (type theory) term.
Proofs can thus be checked against the theorems they prove!

It is unclear (to me!) if the name certifying compiler appeared
only to designate a verifying compiler based on certificates.

Its use is also associated with properties that regard the
target code only:

- OK(C,spec)

- C is (type, memory) safe

Proof-carrying Code

- Certificates generated by a certifying compiler can be
checked before execution (by trusted proof checker)

- Trust in compiled code becomes independent of source
code and compilation process

- For example, for a memory safety policy, it would
suffice to trust a VCGen that produces the appropriate
safety conditions from the compiled code

Certificate Translation (Barthe et al, SAS’06)

For properties like

- OK(C,spec)

for which interactive proofs are required, it is much more
convenient to conduct such proofs (and produce the
corresponding certificates) at source level.

The verification conditions for spec may be modified by
transformations performed by the compiler.

Certificate translation refers to the production of certificates
by translation from certificates constructed at source level

Translation Validation

A translation validator is a program that takes source S and
executable C and determines by static analysis that they are
related in the desired way, e.g. they are observationally
equivalent.

This approach requires verification of the validator Verif:
it must be proved that when

Verif(S,C) = true

the correspondence is indeed valid.

Leroy’s Unified View

Verifier can be generalized by taking as arguments not only S
and C (as in translation validation), but also a certificate A

Verifier Correctness:
Verif (S,C,A) should return true only if S and C are related in
the desired way [obs. equiv / spec. preserv. / OK(C,spec)]

In PCC A is a proof term and S is not used.
In TV A is empty and S is required.

Other notions of certificate (partial annotations allowing for
the reconstruction of proof) stand midway

Certification Steps (Leroy, POPL’06)

- Constructing and proving a certifying compiler is a
compositional process

- Different techniques may be used for each step, roughly
divided into

- certified transformations (as before), and

- a posteriori checking with a certified verifier (as in TV)

- Not only the optimising steps are difficult to prove!

