
Security Properties



Information Flow

- A class of security policies that constrain the ways in which 
information can be manipulated during program execution

- Usually formulated in terms of non-interference between 
confidential inputs (high-security variables) and public outputs 
(low-security variables) 

- Typically specified using some augmented type system



Example (indirect flow)

void fibonacci ()
{
  while (n > 0) {
    f1 = f1 + f2; 
    f2 = f1 - f2;
    n--;
  }
  if (f1 > k) l = 1;
  else l = 0;
}

Let n be high and l be low
(others we don’t care)

the program is insecure
and can be typed as so



Example (direct flow)

n = 1;
if (k)  x = 1;
if (!k) x = n;
l = x+y;

Let n be high and l be low
(others we don’t care)

is the program secure?



Non-Interference
(Semantic Formulation)

A semantics- (rather than type-) based formulation of non-
interference treats cases like the previous example correctly

(termination-insensitive formulation)



Self-composition

- A technique that allows to specify non-interference using 
axiomatic semantics (Hoare logic)

- Informally: Given program C, we construct the program C; C’ 
where C’ is a copy of C with every variable x renamed to x’.

- C is secure if, 
when the program C;C’ is run from a state in which x=x’ for 
all non-high security x,  
then when (if!) it stops, l=l’ for every low security variable l



Self-composition

- Can be formalized using contracts and JML / ACSL



/*@ requires n>=0 && ns>=0 && l == ls && f1 == f1s  
             && f2 == f2s && k == ks && n==ns
  @ ensures l == ls
  @*/
void fibonacci_verif ()
{
  while (n > 0) {
    f1 = f1 + f2; 
    f2 = f1 - f2;
    n--;
  }
  if (f1 > k) l = 1;
  else l = 0;

  while (ns > 0) {
    f1s = f1s + f2s; 
    f2s = f1s - f2s;
    ns--;
  }
  if (f1s > ks) ls = 1;
  else ls = 0;
}

n=ns is required to get l=ls
thus information flows from n 
to l

How can this be annotated to 
achieve automatic proofs?

Usual (functional) invariants 
will not do…

(paper Deductive Verification of 
Cryptographic Software, 
NFM’09)



Program Equivalences

/*@ requires 0<=i<=j && 0<=is<=js &&
  @          i==is && j==js && k==ks && a==as && b==bs;
  @ ensures  i==is && j==js && k==ks && a==as && b==bs;
  @*/
void main_verif ()
{
  
  for (k=i ; k<=j; k++) b += k;
  for (k=i ; k<=j; k++) a *= k;

  for (ks=is ; ks<=js; ks++) { 
    bs += ks; 
    as *= ks;
  }
}

How can this be annotated to 
achieve automatic proofs?



High Assurance 
Compilation



High Assurance Compilation

- Semantic transparency: the behaviour of C should be 
the one specified by the semantics of S… or,

- If S is correct w.r.t. to a given spec. then so should C

- Testing C will not differentiate bugs in S and in Comp, 
and may of course miss bugs

What is a correct compiler?
Let C = Comp(S)
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Compiler Correctness Properties (Leroy, POPL’06)

We write 
OK(S) for “S does not go wrong” and 
OK(S,spec) for “S satisfies the specification spec”

Compiler correctness as preservation of specifications:  

 If OK(S) and OK(S,spec) then OK(C,spec)

A particular case is 
(type, memory) safety of S implies safety of C



Compiler Correctness Properties

Most work assumes that specs. depend exclusively on 
the observable behaviour of programs

Under this assumption, preservation of specifications 
is a consequence of the following property:

If OK(S) then S and C are observationally equivalent.

A compiler for which a monolithic proof of this 
property can be produced is a verified compiler



Verifying Compiler

- if OK(S) then S and C are observationally equivalent.

- If OK(S) and OK(S,spec) then OK(C,spec) 

A verifying compiler produces, for each source S, not only 
executable C but also a proof that one of the previous notions 
of correspondence between S and C holds:

Proofs not as difficult as verifying the compiler monolithically 

Automation (little user intervention) should be a goal



Verifying Compiler

- A challenge since 1967 (Floyd)

- Proposed by Hoare as a grand challenge for computing 
research (2003)

- Many recent advances

Pike et al (ACL2’06) have produced a verifying core for the 
µCryptol cryptographic language



Transformation Verification

- Constructing a verifying compiler is compositional

- For each transformation step S -> S’, both S and the 
generated code S’ must be somehow embedded in the 
language of the selected proof tool 
(the semantics of S, S’ are described in that language)

- Following this, a set of theorems is generated 
corresponding to, say, obs. equivalence of S,S’

- Finally, proofs of these theorems are automatically 
constructed



Certifying Compiler

Certificate: a representation of a proof as a (type theory) term.
Proofs can thus be checked against the theorems they prove!

It is unclear (to me!) if the name certifying compiler appeared 
only to designate a verifying compiler based on certificates. 

Its use is also associated with properties that regard the 
target code only:

- OK(C,spec) 

- C is (type, memory) safe



Proof-carrying Code

- Certificates generated by a certifying compiler can be 
checked before execution (by trusted proof checker)

- Trust in compiled code becomes independent of source 
code and compilation process 

- For example, for a memory safety policy, it would 
suffice to trust a VCGen that produces the appropriate 
safety conditions from the compiled code



Certificate Translation  (Barthe et al, SAS’06)

For properties like

- OK(C,spec) 

for which interactive proofs are required, it is much more 
convenient to conduct such proofs (and produce the 
corresponding certificates) at source level.

The verification conditions for spec may be modified by 
transformations performed by the compiler.

Certificate translation refers to the production of certificates 
by translation from certificates constructed at source level



Translation Validation

A translation validator is a program that takes source S and 
executable C and determines by static analysis that they are 
related in the desired way, e.g. they are observationally 
equivalent.

This approach requires verification of the validator Verif: 
it must be proved that when 

Verif(S,C) = true 

the correspondence is indeed valid.



Leroy’s Unified View

Verifier can be generalized by taking as arguments not only S 
and C (as in translation validation), but also a certificate A 

Verifier Correctness:
Verif (S,C,A) should return true only if S and C are related in 
the desired way [ obs. equiv / spec. preserv. / OK(C,spec) ]

In PCC A is a proof term and S is not used. 
In TV A is empty and S is required.

Other notions of certificate (partial annotations allowing for 
the reconstruction of proof) stand midway



Certification Steps  (Leroy, POPL’06)

- Constructing and proving a certifying compiler is a 
compositional process

- Different techniques may be used for each step, roughly 
divided into 

- certified transformations (as before), and 

- a posteriori checking with a certified verifier (as in TV)

- Not only the optimising steps are difficult to prove!


