
Language Extensions

Arrays

We extend the language as follows

Semantics

Semantics

The simple semantics of arrays poses problems:

- what is the value of an array position when the index is
out of bounds?

- Assignment command to an out-of-bounds position of
an array; how should it be evaluated?

We will add error-detection to the language.

Example

VCGen can be applied as before:

Hoare logic rule for arrays

Previous example did not include array assignment.
What should be the HL rule to deal with assignment?

This handles aliasing inadequately. It would derive for
instance the incorrect triple

{u[j] >100} u[i] := 10 {u[j] > 100}

Correct rule would use an array update operation

{u [i:10] [j] >100} u[i] := 10 {u[j] > 100}

This would derive

Theory of applicative arrays

VCGen for Arrays

Our VCGen can be extended as follows

In the absence of the theory of arrays, conditions can
always be translated as follows

Example

Program Errors

It is easy to adapt the language semantics to make it more
realistic, including an error value and an error state such that,
for instance,

Hoare logic and Errors

The definition of Hoare triple can now be changed to include
the requirement that execution does not go wrong:

We will modify the system of Hoare logic by including
additional side conditions in the rules, so that it will derive only
valid triples with respect to the above definition

Safe Expression Evaluation

Example

We also introduce the following macro:

Hoare Logic with Safety

Safety-aware VCGen
Just replace the weakest prec. function by:

The VCGen thus obtained is correct w.r.t. the system
of Hoare logic with safety

Exercise

Calculate safety conditions for maxarray and modify the
specification in order for the program to be successfully
verified.

Procedures

Dado um procedimento
os operadores pre, post e body devolvem o que o nome indica:

Correct Program

A program is thus a collection of procedures.

A program π is correct if all its procedures are correct with
respect to their corresponding specications, i.e. for all f defined
in π, the following Hoare triple is valid.

{pre(f)} body(f) {post(f)}

i.e. f obeys its contract.

Hoare Logic for Procedures

In reasoning about calls to f , we assume that the correctness
of f has been proved independently. Each procedure is
proved correct with respect to its specification, and
reasoning about calls to f does not require knowledge of
how f is implemented.

Design by contract!

Example

We already proved
and can now derive for instance

Exercise: VCs for Procedures

How should the VCGen deal with procedures?

Contracts

/*@ requires P
 @ ensures Q
 @*/
… C (…) {
 …
}

a procedure /
method
corresponds to
a Hoare triple

{P} C {Q}

Verifying a program / class implies verifying the set of Hoare
triples generated by its procedures / methods

Contracts

What about procedure / function / method calls?

