
Verification of C programs  
ACSL and Frama-c



ACSL

• object-oriented features absent (inheritance...)

• C has no support for memory safety or exceptions 
(for instance two C arrays may overlap!)

• Dynamic checking in C is hard to implement. ACSL is 
tailored for static checking and deductive verification

ANSI-C specification language. 

Inspired by, but different from, JML  (C ≠ Java!)



Maximum of an Array

int size, u[], max; 

/*@ requires size >= 1; 
  @ ensures 0 <= max < size && 
  @ (\forall int a; 0<=a<size ==> u[a]<=u[max]); 
  @*/ 

Something missing?



void maxarray() { 
  int i = 1; 
  max = 0; 

  /*@ loop invariant 
    @ 1<=i<=size && 0<=max<i && 
    @   (\forall int a; 0<=a<i ==> u[a]<=u[max]); 
    @ loop variant size-i; 
    @*/ 
  while (i < size) { 
    if (u[i] > u[max]) max = i; 
    i = i+1; 
  } 
} 



Safety-aware Version

int size, u[], max; 

/*@ requires size >= 1 
  @          && \valid_range(u,0,size-1); 
  @ ensures 0 <= max < size && 
  @ (\forall int a; 0<=a<size ==> u[a]<=u[max]); 
  @*/ 



Factorial:  Axiomatization
/*@ axiomatic factorial { 
  @ 
  @ predicate isfact(integer n, integer r); 
  @ axiom isfact0:
  @    isfact(0,1); 
  @ axiom isfactn: 
  @    \forall integer n, integer f; 
  @            n>0 ==> isfact (n-1,f) ==> isfact(n,f*n); 
  @ 
  @ logic integer fact (integer n); 
  @ axiom fact1: 
  @    \forall integer n; isfact (n,fact(n)); 
  @ axiom fact2: 
  @    \forall integer n, integer f; 
  @            isfact (n,f) ==> f==fact(n); 
  @} */ 



Factorial:  Tabulation (spec)

/*@ requires 
  @   \valid_range(inp,0,size-1) && 
  @   \valid_range(outp,0,size-1) && 
  @    size>=0 && 
  @   \forall int a; 0<=a<size ==> inp[a] >= 0; 
  @
  @ ensures 
  @   \forall int a ;  
  @      0<=a<size ==> outp[a] == fact (inp[a]); 
  @*/ 



Factorial:  Tabulation (altern.)

#define LENGTH 1000 
int inp[LENGTH], outp[LENGTH]; 

/*@ requires 0<=size<=LENGTH && 
  @   \forall int a; 0<=a<size ==> inp[a] >= 0; 
  @ ensures 
  @   \forall int a; 
  @      0<=a<size ==> outp[a] == fact (inp[a]); 
  @*/ 



void factab (int inp[], int outp[], int size) 
{ 
  int k = 0 ; 

/*@ loop invariant 0<=k<=size && 
  @   \forall int a; 0<=a<k ==> outp[a] == fact (inp[a]); 
  @ loop variant size-k; 
  @*/ 
  while (k < size) { 
    int f = 1, i = 1, n = inp[k] ; 

    /*@ loop invariant 1<=i<=n+1 && f == fact(i-1); 
      @ loop variant n+1-i; 
      @*/ 
    while (i <= n) { 
      f *= i; 
      i++; 
    } 
    outp[k++] = f ; 
  } 
} 



Factorial:  Function
/*@ requires n >= 0; 
  @ ensures \result == fact(n); 
  @*/ 
int factf (int n) 
{ 
  int f = 1, i = 1 ; 

  /*@ loop invariant 1<=i<=n+1 && f == fact(i-1); 
    @ loop variant n+1-i; 
    @*/ 
  while (i <= n) { 
    f = f * i; 
    i = i + 1; 
  } 
  return f; 
} 



Contracts and Modularity!

void factab (int size) 
{ 
  int k = 0 ; 

  /*@ loop invariant 0<=k<=size && 
    @ \forall int a;
    @    0<=a<k ==> outp[a] == fact (inp[a]); 
    @ loop variant size-k; 
    @*/ 
  while (k < size) { 
    outp[k] = factf(inp[k]) ; 
    k++; 
  } 
} 



Frama-c

- A multi-purpose tool for the analysis of C programs, joint 
effort of CEA and INRIA 

- Includes  PV module (VCGen) based on the Caduceus tool, 
developed at LRI

- Multi-prover; initially meant for the Coq proof assistant

- Builds on a more general verification tool called Why, also 
from LRI
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Função de Partição

int partition (int A[], int p, int r)
{

x = A[r];
i = p-1;
for (j=p ; j<r ; j++)

if (A[j] <= x) {
i++;
swap(A, i, j);

}
swap(A, i+1, r);
return i+1;

}

void swap(int X[], int a, int b)
{ aux = X[a]; X[a] = X[b]; X[b] = aux; }

Função de partição executa em tempo linear D(n) = Θ(n).
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Exercise 1

1. Write specification
2. Prove correctness of function



Exercise 2

1. Write a Specification
2. Examine suggested implementation
3. Identify loop invariant
4. Check initial conditions and preservation
5. Identify loop variant
6. Check final conditions

Recall the partition function used by the 
quicksort algorithm.     Verify informally:



Função de Partição

int partition (int A[], int p, int r)
{

x = A[r];
i = p-1;
for (j=p ; j<r ; j++)

if (A[j] <= x) {
i++;
swap(A, i, j);

}
swap(A, i+1, r);
return i+1;

}

void swap(int X[], int a, int b)
{ aux = X[a]; X[a] = X[b]; X[b] = aux; }

Função de partição executa em tempo linear D(n) = Θ(n).
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Exercise 2



Análise de Correcção – Invariante

No ińıcio de cada iteração do ciclo for tem-se para qualquer posição k do vector:

1. Se p ≤ k ≤ i então A[k] ≤ x;

2. Se i + 1 ≤ k ≤ j − 1 então A[k] > x;

3. Se k = r então A[k] = x.

p i j r
! ! ! !︸ ︷︷ ︸

≤x

" " " " " "︸ ︷︷ ︸
>x

# # # # #︸ ︷︷ ︸
??

x

⇒ Verificar as propriedades de inicialização (j = p, i = p − 1),
preservação, e terminação (j = r)

⇒ o que fazem as duas últimas instruções?
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Something Missing!

- It is still required to check that the elements are the same in 
the input and in the output arrays!

- A particular case of the problem of specifying that two 
arrays contain the same elements 

- And same number of occurences: multiset equality, rather than 
set equality



54 7. A Verification Conditions Generator: Caduceus

H22 : p <= k
H23 : k <= i + 1
H19 : not_assigns alloc intM_global0 intM_global1

(pset_union (pset_singleton (shift A j0))
(pset_singleton (shift A (i + 1))))

H20 : shift A (i + 1) # intM_global1 = shift A j0 # intM_global0
H13 : forall k : Z,

p <= k <= i -> shift A k # intM_global0 <= shift A r # intM_global
HW_14 : shift A j0 # intM_global0 <= shift A r # intM_global
______________________________________(1/3)
shift A k # intM_global1 <= shift A r # intM_global

Proof Script

assert (h : k <=i \/ k = i+1). omega.
inversion_clear h ; [ rewrite H19; intuition | subst; rewrite H20; intuition].

Figure 7.15 Preservation of invariant of partition with swap function (frag-
ment)

A lesson to be learnt here is that code reuse leads to verification reuse: the
post-conditions and assignment conditions of swap have been proved once and
for all, and can be reused at will whenever necessary.

7.3.4 Preservation of Array Elements

We have thus far been focusing on one aspect of the functionality of partition,
and overlooking another, equally important property: the elements contained in
the partitioned array are the same as those in this initial array. More precisely,
the multiset of elements in the array is preserved, i.e. not only the elements are
the same but the number of occurrences of each element is preserved.

Another way of stating this is that there exists a bijection on the set of in-
dices that establishes a permutation between the two arrays. This is an essential
property to prove for sorting algorithms. In fact, we will be using partition
as an auxiliary function for the quicksort algorithm in Section ??.

It is not easy to formalise this property. As a first attempt, consider the
following first-order formula

∀k : p ≤ k ≤ r : ( ∃l : p ≤ l ≤ r : A[k] = B[l] ∧A[l] = B[k] )

This indeed implies that B is a permutation of A. Notice that partition
essentially performs a sequence of swaps on the initial array, and clearly swap
satisfies this property, written as the following post-condition (see Exercise 7.8).

A first attempt

What’s wrong with it?



Second attempt

7.3 Example: Partition 55

@ (\forall int k; p <= k <= r =>
@ (\exists int l; p <= l <= r =>
@ A[k] == \old(A[l]) && A[l] == \old(A[k])))

The problem is that this property is stronger than what is desired: it only
covers the cases in which B is directly obtained from A by swapping pairs of
elements (i.e. each element may only be swapped once – in mathematical terms
the bijection between A and B is said to be an involution). It is indeed easy to
see that a sequence of swaps produces an array that is no longer related to the
original in this way:

1 2 3 4 −→ 2 1 3 4 −→ 2 1 4 3 −→ 2 4 1 3

The property is thus not a post-condition of partition (Exercise 7.9).
Now consider the following alternative formalisation, which states that every

element in each array must occur in the other array, i.e. it accounts for the
preservation of the set of elements.

∀k : p ≤ k ≤ r : (∃l : p ≤ l ≤ r : A[k] = B[l] )
∧

∀k : p ≤ k ≤ r : (∃l : p ≤ l ≤ r : B[k] = A[l] )

Admittedly, this property is too weak since it does not take into account the
number of occurrences (necessary for multiset preservation). For instance the
arrays 1 2 2 and 2 1 1 satisfy the condition. It is however adequate if we assume
no repeated elements occur in the array, and moreover it is sufficient for proving
that quicksort produces sorted sequences.

An additional property of partition that will be required is that it does
not modify the contents of positions of the array outside the range [p .. r].
This could be included as an assigns clause but it is perhaps easier to treat
it as the following post-condition

∀k : k < p ∨ k > r : A[k] = \old(A[k])

Figure 7.16 shows the final version of partition with the required annota-
tions. We remark that a small modification has to be made in the code: swap
now has two more arguments corresponding to the first and last positions in
the range of the array referred in the new post-conditions. The only goal of this
modification is to facilitate the verification process. We could alternatively have
chosen not to include these additional post-conditions in swap, since they fol-
low from the first post-condition and the assigns clause, and could be proved
when required for the verification of the post-conditions and invariant preserva-
tion of partition. Our choice results, however, in a more modular and easier
verification.

What’s wrong with it?



Third attempt

Define a notion of permutation 

inductive Permut{L1,L2}(int a[], integer l, integer h) { 
    case Permut_refl{L}:  
     \forall int a[], integer l, h; Permut{L,L}(a, l, h) ; 
    case Permut_sym{L1,L2}:  
      \forall int a[], integer l, h;  
        Permut{L1,L2}(a, l, h) ==> Permut{L2,L1}(a, l, h) ; 
    case Permut_trans{L1,L2,L3}:  
      \forall int a[], integer l, h;  
        Permut{L1,L2}(a, l, h) && Permut{L2,L3}(a, l, h) ==>  
          Permut{L1,L3}(a, l, h) ; 
    case Permut_swap{L1,L2}:  
      \forall int a[], integer l, h, i, j;  
         l <= i <= h && l <= j <= h && Swap{L1,L2}(a, i, j)            
           ==> Permut{L1,L2}(a, l, h) ; 


