
Verification Conditions

Problems with HL System

• Two desirable properties for backward proof
construction are missing:

• Sub-formula property

• Unambiguous choice of rule

• The consequence rule causes ambiguity. Its presence
is however necessary to make possible the
application of rules for skip, assignment, and while

• An alternative is to distribute the side conditions
among the different rules

HL without Consequ. Rule

Factorial Example

with side conditions:

Exercise

• Show that a triple is provable in this system iff it is
provable in the original system of Hoare logic.

A Strategy for Proofs

• Focus on the command and postcondition;
guess an appropriate precondition

• In the sequence rule, we obtain the intermediate
condition from the postcondition of the second
command

• We do this by always choosing the weakest
precondition (for the given postcondition)

• i.e., in rules for skip, assignment, and while, the
precondition is determined by looking at the side
condition and choosing the weakest condition that
satisfies it

A Strategy for Proofs

Example:

A Strategy for Proofs

A Strategy for Proofs

In step 1.1 we are not free to choose the precondition
and thus a side condition must be satisfied:

Exercise

• Use the weakest precondition strategy to verify
Factorial

side condition (OK):

side condition for 2.1.1 (OK):

side condition for 1.1 (OK):

P. V. Architectures

• Encode Hoare Logic directly in proof tool and
reason about program constructs

• Two-phase architecture:
(i) use Hoare Logic to construct a set of verification
 conditions
(ii) use a general-purpose proof tool to discharge
 verification conditions

How can a proof tool be used for verifying programs with
Hoare Logic using the Weakest Preconditions strategy?
Two possibilities:

Second approach is much more flexible

Verification Conditions

• VCs are purely first-order, not containing program
constructs.

• Can be checked / discharged using any standard proof
tool (theorem prover or proof assistant) with support
for the data types of the language.

• Modifications in the language are only reflected in the
first component, not in the proof tool

• Moreover it is possible to use a multi-prover approach
(will be exemplified with Frama-c / Why)

1. Given a Hoare triple {P} C {Q}, we mechanically
produce a derivation with {P} C {Q} as conclusion,
assuming that all its side conditions are valid.

2. Each side condition generated in step 1 must now be
checked. To that effect, a first-order formula
 [A → B] is exported to a proof tool. Such a
formula is called a verification condition (VC).

3. If all verification conditions can be proved valid, then
{P} C {Q} is a valid Hoare triple. If at least one
condition is shown not to be valid, then this is
evidence that the triple is also not valid.

Two-phase Architecture

Question

• Note that the HL “proof tree” can always be
constructed (explicitly or virtually)

• But the VCs may not all be dischargeable: automatic
prover may be able to find a counter-example… or
interactive proof may not suceed

• What does it mean when at least one VC is not valid?
(the verification of the program has failed)
Errors in program, specification, or annotations

Two-phase Architecture

Annotated
Program

VCGen

Proof
Obligations

Proof
Tool

Hoare Logic

First Order Logic

Counter
Examples

???

An Architecture for Verification

• Our next step is then to mechanize the construction
of a derivation, following the WP strategy.

• The result will be an algorithm (called a Verification
Conditions Generator, VCGen) that does not even
explicitly construct the proof tree; it just outputs the
set of verification conditions

Weakest Preconds. Mechanized

Given program C and a postcondition Q, we can calculate an
assertion wp(C,Q) such that {wp(C,Q)} C {Q} is valid

and moreover

if {P} C {Q} is valid for some P then P is stronger than
wp(C,Q).

Thus wp(C,Q) is the weakest precondition that grants the truth
of postcondition Q after execution of C.

Try guessing the definition of wp for a few language
constructs…

Question

Can the weakest precondition of a loop be calculated
statically?

Not really, all the reasoning depends on being able to find an
appropriate invariant!

For this reason we annotate each loop with an invariant,
which can be seen as the weakest precondition required to
prove any postcondition

Weakest Precond. Algorithm

VCGen Algorithm

Correctness of VCGen

Let C ∈ Comm and P, Q ∈ Assert such that
|= VCG({P} C {Q}), i.e. all verification conditions are valid.

Then {P} C {Q} is derivable in the system of (goal-directed)
Hoare logic.

This is proved by showing that there exists a derivation
whose side conditions are exactly those calculated by
VCG({P} C {Q}).

Example: Factorial

Expanding the universal closures:

