
VDM-SL: Problems

John Fitzgerald (adapted by Olga Pacheco)

December 2008

Problem 1 An airline is introducing a new computing system for allocating
seats to passengers when the passengers arrive at the airport. Each seat
on a flight has a seat number, a position (either by a window, by the
aisle, or in the middle) and a passenger name (a character string). For the
purpose of this system, a flight is a collection of seats with no two distinct
seats on the flight having the same seat number.

1. Define the types “Position”, “Seat” and “Flight”.
2. Give an explicit definition of a function “freeseats” which, given a

flight, returns the set of unallocated seats.
3. The passenger will be asked which seat position (aisle, window or

middle) they prefer. They will be allocated a seat which matches
their preference, provided one is available. Give an implicit specifi-
cation of a function “goodseat” which, given a flight and a preferred
position, returns an unallocated seat in the preferred position. Your
specification should deal with the possibility that there may be no
unallocated seats in the preferred position.

Problem 2 An hospital uses a computer-based system to send ambulances to
incident scenes. The system maintains lists of requests for ambulances.
A request consists of a description of the incident (a string) and a field
indicating the level of urgency of the request: a request may be non-urgent,
urgent or emergency.

1. Give VDM-SL definitions of data types “Request” and “List” to rep-
resent requests and lists of requests respectively.

2. Define a function which adds a request to the tail end of a list, re-
turning the updated list.

3. Give an explicit definition of a function “firstemergency” which, given
a list, returns the first emergency request in the list and returns nil
if no such request is present in the list.

4. Give an implicit specification of “firstemergency”.

1



Problem 3 We are concerned with the formal specification of part of the soft-
ware controlling a chemical processing plant. The plant is divided into
streams. Each stream is a sequence of reactors. Each reactor has a set of
batches of chemicals currently in the reactor and a maximum number of
batches allowed in the reactor at any time. Each batch has an identifier
and contents type. The representations of identifiers and contents types
are immaterial.

1. Define the types “Stream”, “Reactor”, “BatchId”, “Batch”.
2. Define a function “batchesinstream” which returns the set of batches

in a given stream.
3. Define an invariant on “Stream” expressing the following require-

ments formally:
(a) No two batches in the stream have the same identifier.
(b) No batches occurs in more than one reactor.
(c) No reactor has more batches than its maximum.

Problem 4 A computing system is to be developed to control the placement
of containers of hazardous waste in a storage building. Each container
has a unique identifier which is recorded along with an indication of the
class of waste (high-level or low-level) stored in the container. A formal
specification of the system is under development. The enumerated type
WasteClass models the two classes of waste, while the composite type
Container models containers:

types

WasteClass = <HIGH> | <LOW>;

Container :: cid : ContId
class : WasteClass;

ContId = seq of char;

The store consists of a three-dimensional array of storage locations. Each
location is modelled by an x-coordinate, a y-coordinate and a z-coordinate,
giving a location’s position with respect to an origin (0,0,0). The array is
10 locations long in the x and y directions and 5 locations long in the z
direction.
The composite type Location models locations. The type Store is defined
to model the overall store. It maps locations to the containers stored at
each location:

2



Location :: x: nat
y: nat
z: nat

inv l == x>=0 and x<10 and y>=0 and y<10 and z>=0 and z<5;

Store = map Location to [Container]
inv s == ...

1. Define an invariant for Store which records the restrictions that no
two containers in the store have the same identifier and that no two
locations hold the same container.

2. Define the function
adjacent: Location * Location * Store -> bool,
which returns true if and only if its first two arguments are adjacent
locations in the third argument (a store).

3. A store is said to be safe if the following conditions are satisfied:
• No containers containing high-level waste are located around the

outside of the store (e.g x=0 or x=9, or z=4,...).
• No two containers of high-level waste are in adjacent locations.

Define a Boolean function safe_store which returns true if and
only if the store is safe. Add a conjunct to the invariant on Store
which records this constraint.

4. Give an explicit definition of a function add_to_store which, given a
container, a store and a location, returns the updated store with the
container placed at that location. Include a pre-condition to ensure
that the resulting store will not break the invariant on Store.

5. Define a function:
adjacent_containers: ContId * Store -> set of Container

which given a container identifier returns the set of containers adja-
cent to that container.

Problem 5 We want to develop a monitoring system for tracking air traf-
fic. The system maintains a record of the structure of the air space in
a certain area, the flight plans of aircraft passing through the area and
the progress of the aircraft through their planned flights. The system
has to be developed to a high level of integrity and a formal model of
the system is to be constructed in order to permit analysis of the safety
requirements at an early stage in development through the validation
process. The airspace is devided into regions. Regions are linked to-
gether, so that aircraft pass from one region to another. Aircraft travel
through the area in one direction (from left to right) and aircraft in
a given region may only travel into a region to the right of the cur-
rent one. Regions are labelled by numbers. Each link is modelled as
a pair of region identifiers. Aircraft using a link pass from the “from”

3



region to the “to” region. An area is modelled as a set of links (e.g.
{mk_Link(1,3), mk_Link(1,4), mk_Link(3,5), mk_Link(5,7)}).

RId = nat1

Link :: fromlink: RId
tolink: RId;

A flight plan is a sequence of regions through which an aircraft will
fly. Flight plans are modelled as sequences of region identifiers (e.g.
[1,3,5,7]). The position of an aircraft, i.e. how far it has progressed
through its plan is given as a natural number, i.e. the index of its cur-
rent region within its flight plan. The plan and position of an aircraft is
combined into a flight record:

FlightRecord:: plan: seq of RId
position: nat1

inv mk_FlightRecord(pl,pos) == pos in set inds pl;

Flights are identified by flight identifiers:
FId = token;

The system is modelled as a composite object containing the area and the
flight records:

ATCSystem :: area: set of Link
flights: map FId to FlightRecord;

1. A plan is said to be feasible in a given system if it only involves the
use of links in the space component of the system. Define a boolean
function which, given a set of links and a plan, returns true if the
plan is viable in the set of links and false otherwise.

2. Define a function which adds a new aircraft to an ATCSystem, given
the flight identifier and its flight plan. The function should place the
new aircraft in the first region of its flight plan. Remember to ensure
that the aircraft identifier is unique and the plan is viable.

3. Define a function move: ATCSystem * FId -> ATCSystem which moves
a flight forward one step in its plan. If the flight reaches the end of
the plan, it should be removed from the system.

4. Define a function which, given the identifier of a starting region and
the identifier of the finishing region, returns a viable route from the
starting region to the ending region. Your function should return a
special error value if no viable route exists.

4



5. Define a function which, given an ATCSystem and a region identifier,
returns the set of flight identifiers for aircrafy currently in a given
region.

6. Aircraft traffic control regulations require that no more than ten
aircraft should be in any region at any time. Add an invariant which
ensures that this condition is respected in the system. Modify the
functions move and add, in order to ensure the invariant. When a
move or the addition of a new aircraft is not posible, the system is
not updated.

7. Suppose the air traffic control regulations are modified so that a new
safety regulation is introduced. For each region, the total number of
airdraft within that region and all of the regions ahead of it must be
less than 40. Define a function ahead which, given an ATCSystem
and the identifier of a region, returns the set of identifiers of regions
ahead of the given region. Define a function safe which, given an
ATCSystem, returns true if and only if it satisfies the new safety
constraint.

5


