CSC227: VDM-SL Language Guide

1 Type Definitions

An example of a simple data type definition is:
Amount = nat

This defines a data type with the name “Amount” and states that the values which belong to
this type are natural numbers (nat is one of the basic types described below).

1.1 Invariants

In VDM-SL it is possible to attach invariants to a type definition.

Type name == type expression
inv pattern == logical expression

The pattern can be a single identifier representing a typical element of the type or a mk_ expres-
sion if the type is a record.
2 Basic data types and type constructors

Basic types:
Type | Values

nat Natural numbers
natl Natural numbers excl. 0
int Integers

real | Real numbers
bool | Booleans
char | Characters
token | Tokens

Quote types are written as identifiers surrounded by angle brackets e.g. <Red>.

Type constructors:

Constructor | Description

set of _ Finite sets

seq of _ Finite sequences
map - to _ | Finite mappings
I Type Union
(-1 Optional Type
:: notation | Record Types




3 Data type operators

3.1 The Boolean type

Operator | Name Type

not b Negation bool —> bool

a and b | Conjunction | bool * bool -> bool
aorb Disjunction bool * bool -> bool
a=>b>b Implication ->bool * bool -> bool
a <=> b | Biimplication | bool * bool -> bool

3.2 The Numeric Types

Operator | Name Type

-X Unary minus real -> real

abs x Absolute value | real -> real

x+y Sum real * real -> real
X -y Difference real * real -> real
X %y Product real * real -> real
x/y Division real * real -> real
X*ky Power real * real -> real
x <y Less than real * real -> real
x>y Greater than real * real -> real
x <=y Less or equal real * real -> real
X >y Greater or equal | real * real -> real

3.3 The Character, Quote and Token Types

Characters, quotes and token values can only be compared to each other by equality and
inequality.

3.4 Set Types

Set enumeration {el, e2, ., en} constructs a set of the enumerated elements. The

empty set is represented as {}.

Set comprehension: {e | bdl, bd2, ., bdm & P} constructs a set by evaluating the ex-
pression e on all the bindings for which the predicate P evaluates to true. The expression
e uses the variables defined in the bindings.

Set range: {el, .» €2} where el and e2 are numeric expressions denotes the set of integers
from el up to e2 inclusive.

Operator Name Type

e in set sl Membership set of A —> bool

e not in set sl | Not membership set of A -> bool

sl union s2 Union set of A * set of A -> set of A
sl inter s2 Intersection set of A * set of A -> set of A
sl \ s2 Difference set of A * set of A -> set of A
sl subset s2 Subset set of A * set of A -> bool
card si1 Cardinality set of A -> nat

dunion ss Distributed union set of (set of A) -> set of A
dinter ss Distributed intersection | set of (set of A) -> set of A




3.5 Sequence Types

Sequence enumeration: [el, e2,..., en] constructs a sequence of the enumerated ele-
ments. The empty sequence is [].

Sequence comprehension: [e | id in set S & P] constructs a sequence by evaluating
the expression e on all the bindings for which the predicate P evaluates to true. The
expression e will use the identifier id. S is a set of numbers and id will be matched to
the numbers in the normal order (the smallest number first).

Subsequence: A subsequence of a sequence 1 is a sequence formed from consecutive elements
of 1; from n1 up to and including n2. It has the form: 1(n1, ..., n2) where nl and n2
are positive integer expressions (less than the length of 1).

Operator | Name Type

hd 1 Head seq of A -> A

tl 1 Tail seq of A -> seq of A

len 1 Length seq of A -> nat

elems 1 | Elements seq of A -> set of A

inds 1 Indices seq of A -> set of natl

11 =~ 12 | Concatenation seq of A * seq of A -> seq of A
conc 11 | Distributed concatenation | seq of (seq of A) -> seq of A
1(1) Sequence index seq of A * natl -> A

3.6 Mapping Types

Mapping enumeration: {al |-> bl, a2 |-> b2, ..., an |-> bn} constructs a mapping

of the enumerated maplets. The empty mapping will be written as {|->}.

Mapping comprehension: {ed |-> er | bdl, ..., bdn & P} constructs a mapping by
evaluating the expressions ed and er on all the possible bindings for which the predicate
P evaluates to true. bdl, ..., bdn are bindings of free identifiers from the expressions
ed and er to sets or types.

Operator Name Type

dom m Domain map A to B -> set of A

rng m Range map A to B -> set of B

ml munion m2 | Map union map A to B * map A to B -> map A to B
ml ++ m2 Override map A to B * map A to B -> map A to B
s <: m Domain restrict to | set of A * map A to B -> map A to B

S <-: m Domain restrict by | set of A * map A to B -> map A to B
m:> s Range restrict to set of B * map A to B -> map A to B
m:-> s Range restrict by set of B * map A to B -> map A to B
m(d) Mapping apply map A to B x A -> B

3.7 Record Types

Record values are constructed using a record constructor written as mk_RecId(al,a?2,...,an)where
the different as are arbitrary values and RecId is the name of the record type.Record types are
defined as:

Type :: component name : type
component name : type

component name : type



For example, for a type defined:

Date :: day : Day
month : Month
year : Year

The record constructor for Date is mk _Date(_,_,_).
The field selectors are _.day, _.month and _.year.

3.8 Union and Optional Types

Union types are written as:
MasterA = A | B |

An optional type is written as:
[T]

This denotes a union between the elements from the type T and the special value nil.

4 Expressions

A let expression has the form:

let pl =el, ..., pn = en in e
where pl,...,pn are variables, el,...,en are expressions and e is an expression involving
pl,...,pn

An if expression has the form:
if el then e2 else e3

where el is a Boolean expression, while e2 and e3 are expressions of any type.
Quantified Expressions have the form:
Universal: forall bdl, bd2, ..., bdn & e
Existential: exists bdl, bd2, ..., bdn & e
where each bdi is a binding (i.e. either a set binding of the form pi in set s or a type binding
of the form pi : type), and e is a Boolean expression involving the bound variables.

5 Function Definition

An explicit function definition has the form:  An implicit function definition has the form:
f: AxBx*x ... xZ ->R f(a:A,b:B,...,z:Z) res:R
f(a,b,...,z) == expr pre preexpr(a,b,...,z)
pre preexpr(a,b,...,z) post postexpr(a,b,...,z,res)



