
Classical Propositional Logic
Software Formal Verification

Maria João Frade

Departmento de Informática
Universidade do Minho

2008/2009

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 1 / 29

Introduction

The language of propositional logic is based on propositions, or
declarative sentences which one can, in principle, argue as being
“true” or “false”.

“The capital of Portugal is Braga.”
“D. Afonso Herriques was the first king of Portugal.”

Propositions are the atomic formulas of the language. More complex
sentences are constructed using logical connectives.

In classical propositional logic (PL) each sentence is either true or
false.

In fact, the content of the propositions is not relevant to PL. PL is
not the study of truth, but of the relationship between the truth of
one statement and that of another.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 2 / 29

Syntax

Propositional variables: P,Q, R, . . . ∈ VProp (a countably infinite set)

Logical connectives: ⊥,>,¬,∧,∨,→

The set S of formulas of propositional logic is given by the abstract syntax

S 3 A, B ::= P | ⊥ | > | ¬A | A ∧B | A ∨B | A→ B

We let A, B,C, F, G,H, . . . range over S.

¬ binds more tightly than ∨ and ∧, and the latter two bind more tightly
than →. Implication → is right-associative: expressions of the form
P → Q→ R denote P → (Q→ R).

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 3 / 29

Semantics

The semantics of a logic provides its meaning. What exactly is meaning?
In propositional logic, meaning is given by the truth values true and false,
where true 6= false. We will represent true by 1 and false by 0.

An assignment is a function A : VProp→{0, 1}, that assigns to every
propositional variable truth value.
An assignment A naturally extends to all formulas, A : S→{0, 1}. The
truth value of a formula is computed using truth tables:

F A B ¬A A ∧B A ∨B A→ B ⊥ >
A1(F) 0 1 1 0 1 1 0 1
A2(F) 0 0 1 0 0 1 0 1
A3(F) 1 1 0 1 1 1 0 1
A4(F) 1 0 0 0 1 0 0 1

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 4 / 29

Semantics

Let A be an assignment and let F be a formula.
If A(F) = 1, then we say F holds under assignment A, or A models F .
We write A |= F iff A(F) = 1, and A 6|= F iff A(F) = 0.

An alternative (inductive) definition of A |= F is

A |= >
A 6|= ⊥
A |= P iff A(P) = 1
A |= ¬A iff A 6|= A
A |= A ∧B iff A |= A and A |= B
A |= A ∨B iff A |= A or A |= B
A |= A→ B iff A 6|= A or A |= B

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 5 / 29

Validity, satisfiability, and contradiction

A formula F is

valid iff it holds under every assignment. We write |= F .
A valid formula is called a tautology.

satisfiable iff it holds under some assignment.

unsatisfiable iff it holds under no assignment.
An unsatisfiable formula is called a contradiction.

Proposition

F is valid iff ¬F is a contradiction

P ∨ ¬P is a tautology.

A ∧ ¬A is a contradiction.

A→ B is satisfiable.

(A ∧ (A→ B))→ B is valid.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 6 / 29

Consequence and equivalence

F |= G iff for every assignment A, if A |= F then A |= G. We say
G is a consequence of F .

F ≡ G iff F |= G and F |= G. We say F and G are equivalent.

Let Γ = {F1, F2, F3, . . . } be a set of formulas.

A |= Γ iff A |= Fi for each formula Fi in Γ. We say A models Γ.

Γ |= G iff A |= Γ implies A |= G for every assignment A. We say
G is a consequence of Γ.

Proposition

F |= G iff |= F → G

Γ |= G and Γ finite iff |=
∧

Γ→ G

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 7 / 29

Some basic equivalences

A ∨A ≡ A
A ∧A ≡ A

A ∨B ≡ B ∨A
A ∧B ≡ B ∧A

A ∧ (A ∨B) ≡ A

A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C)
A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)

¬(A ∨B) ≡ ¬A ∧ ¬B
¬(A ∧B) ≡ ¬A ∨ ¬B

A ∧ ¬A ≡ ⊥
A ∨ ¬A ≡ >

A ∧ > ≡ A
A ∨ > ≡ >

A ∧ ⊥ ≡ ⊥
A ∨ ⊥ ≡ A

¬¬A ≡ A

A→ B ≡ ¬A ∨B

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 8 / 29

Consistency

Let Γ = {F1, F2, F3, . . . } be a set of formulas.

Γ is consistent or satisfiable iff there is an assignment that models Γ.

We say that Γ is inconsistent iff it is not consistent and denote this by
Γ |= ⊥.

Proposition

{F,¬F} |= ⊥
If Γ |= ⊥ and Γ ⊆ ∆, then ∆ |= ⊥.

Γ |= F iff Γ,¬F |= ⊥

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 9 / 29

Theories

A set of formulas T is closed under logical consequence iff for all formulas
F , if T |= F then F ∈ T .

T is a theory iff it is closed under logical consequence. The elements of T
are called theorems.

Let Γ be a set of formulas.

T (Γ) = {F | Γ |= F} is called the theory of Γ.
The formulas of Γ are called axioms and the theory T (Γ) is axiomatizable.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 10 / 29

Substitution

Formula G is a subformula of formula F if it occurs syntactically
within F .

Formula G is a strict subformula of F if G is a subformula of F and
G 6= F

Substitution theorem

Suppose F ≡ G. Let H be a formula that contains F as a subformula.
Let H ′ be the formula obtained by replacing some occurrence of F in H
with G. Then H ≡ H ′.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 11 / 29

Adquate sets of connectives for PL

There is some redundancy among the logical connectives.

Some smaller adquate sets of conectives for PL:

{∧,¬} ⊥ ≡ P ∧ ¬P, > ≡ ¬(P ∧ ¬P),
A ∨B ≡ ¬(¬A ∧ ¬B), A→ B ≡ ¬(A ∧ ¬B)

{∨,¬} > ≡ A ∨ ¬A, ⊥ ≡ ¬(A ∨ ¬A),
A ∧B ≡ ¬(¬A ∨ ¬B), A→ B ≡ A ∨B

{→,¬} > ≡ A→ A, ⊥ ≡ ¬(A→ A),
A ∨B ≡ ¬A→ B, A ∧B ≡ ¬(A→ ¬B)

{→,⊥} ¬A ≡ A→ ⊥, > ≡ A→ A,
A ∨B ≡ (A→ ⊥)→ B), A ∧B ≡ (A→ B → ⊥)→ ⊥

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 12 / 29

Decidability

A decision problem is any problem that, given certain input, asks a
question to be answered with a “yes” or a “no”.

A solution to a decision problem is a program that takes problem instances
as input and always terminates, producing a correct “yes” or “no” output.
A decision problem is decidable if it has a solution.

Given formulas F and G as input, we may ask:

Decision problems

Validity problem: “Is F valid ?”
Satisfiability problem: “Is F satisfiable ?”
Consequence problem: “Is G a consequence of F ?”
Equivalence problem: “Are F and G equivalent ?”

All these problems are decidable!

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 13 / 29

Decidability

Any algorithm that works for one of these problems also works for all of
these problems!

F is satisfiable iff ¬F is not valid
F |= G iff ¬(F → G) is not satisfiable
F ≡ G iff F |= G and G |= F
F is valid iff F ≡ >

Truth-table method

For the Satisfiability problem, we first compute a truth table for F and
then check to see if its truth value is ever one.

This algorithm certainly works, but is very inefficient.
Its exponential-time! O(2n)

If F has n atomic formulas, then the truth table for F has 2n rows.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 14 / 29

Complexity

An algorithm is polynomial-time if there exists a polynomial p(x) such that
given input of size n, the algorithm halts in fewer than p(n) steps. The
class of all decision problems that can be resolved by some
polynomial-time algorithm is denoted by P (or PTIME).

It is not known whether the Satisfiability problem (and the other three
decision problems) is in P.

We do not know of a polynomial-time algorithm for satisfiability.

If it exists, then P = NP !

The Satisfiability problem for PL (PSAT) is NP-complete.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 15 / 29

Complexity

A deterministic algorithm is a step-by-step procedure. At any stage of the
algorithm, the next step is completely determined.

In contrast, a nondeterministic algorithm may have more than one possible “next
step” at a given stage. That is, there may be more than one computation for a
given input.

NP (nondeterministic polynomial-time) decision problems

Let PROB be an arbitrary decision problem. Given certain input, PROB produces an
output of either “yes” or “no”. Let Y be the set of all inputs for which PROB produces
the output of “yes” and let N be the analogous set of inputs that produce output “no”.

If there exists a nondeterministic algorithm which, given input x, can produce the
output “yes” in polynomial-time if and only if x ∈ Y , then PROB is in NP.

If there exists a nondeterministic algorithm which, given input x, can produce the
output “no” in polynomial-time if and only if x ∈ N , then PROB is in coNP.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 16 / 29

Complexity

Essentially, a decision problem is in NP (coNP) if a “yes” (“no”) answer
can be obtained in polynomial-time by guessing.

Satisfiability problem is NP. Given a formula F compute an assignment A for F .

If A(F) = 1, then F is satisfiable.

Validity problem is co-NP.

NP-complete

A decision problem Π is NP-complete if it is in NP and for every problem
Π1 in NP, Π1 is polynomially reducible to Π (Π1 ∝ Π).

Cook’s theorem (1971)

PSAT is NP-complete.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 17 / 29

Decision Procedures for Satisfiability

We have seen the truth-table method for deciding satisfiability.

However this method is very inefficient (exponential on the number of
propositions).

The are more efficient algorithms (although not polynomial-time) for the
decision problems presented above:

Semantic Tableaux

Resolution

Davis-Putnam-Logemann-Loveland algorithm (DPLL)

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 18 / 29

Proof system

A logic, by definition, has rules for deducing the truth of one sentence
from that of another. These rules yield a system of formal proof.

A proof system consists of a set of basic rules for derivations. These rules
allow us to deduce formulas from sets of formulas.

It may take several steps to derive a given formula G from a set of
formulas Γ, where each step is an application of one of the basic
rules. The list of these steps forms a formal proof of G from Γ.

We write: Γ ` G to abbreviate “G can be derived from Γ”.

We want a proof system that is sound: if Γ ` G, then Γ |= G.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 19 / 29

Natural deduction in sequent style

The proof system we introduce is called Natural Deduction, because
the rules embody patterns familiar in ordinary reasoning, or at least in
mathematical proof.

The statement Γ ` G is called a sequent. Γ represent the set of
hypothesis and current assumptions, and is called the context of the
sequent.

We will present Natural Deduction in sequent style.

I It is potentate a clear representation of the discharging of assumptions.

I It is closer to what one gets while developing a proof in a
proof-assistant.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 20 / 29

Natural deduction

The set of basic rules provided is intended to aid the translation of
thought (mathematical reasoning) into formal proof.

This system is intended for human use, in the sense that
I a person can guide the proof process;
I the proof produced is highly legible, and easy to understand.

This contrast with decision procedures that just produce a “yes/no” answer,

and may not give insight into the relationship between the assumption and

the conclusion.

Other proof systems for PL: Hilbert system, sequent calculus.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 21 / 29

Natural deduction

The veracity of the basic rules for the proof system is self-evident.

For example, if F and G can be derived from Γ, then F ∧G can also be
derived from Γ .

This is the “∧-introduction” rule

Γ ` F Γ ` G
Γ ` F ∧G

∧I

There are two “∧-elimination” rules:

Γ ` F ∧G
Γ ` F

∧E1
Γ ` F ∧G

Γ ` G
∧E2

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 22 / 29

Natural deduction rules for S (in sequent style)

Γ ` > true
A ∈ Γ
Γ ` A

assumption
Γ ` A Γ ⊂ Γ′

Γ′ ` A
monotonicity

Γ ` A Γ ` B
Γ ` A ∧B

∧I
Γ ` A ∧B

Γ ` B
∧E1

Γ ` A ∧B
Γ ` B

∧E2

Γ ` A
Γ ` A ∨B

∨I1
Γ ` B

Γ ` A ∨B
∨I2

Γ ` A ∨B Γ, A ` C Γ, B ` C

Γ ` C
∨E

Γ, A ` B

Γ ` A→ B
→I

Γ ` A Γ ` A→ B
Γ ` B

→E

Γ, A ` ⊥
Γ ` ¬A

¬I
Γ ` A Γ ` ¬A

Γ ` ⊥
¬E

Γ ` ⊥
Γ ` A

⊥E
Γ ` ¬¬A

Γ ` A
¬¬E

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 23 / 29

Formal proof

Deduction is purely syntactical.

A formal proof is a finite sequence of statements of the form “Γ ` F” each
of which follows from the previous statements by one of the basic rules.
We say that G can be derived from Γ if there is a formal proof concluding
with the statement Γ ` G.

Example: ` A ∧B → A ∨B

Statements Justification

1. A ∧B ` A ∧B assumption
2. A ∧B ` A ∧E1 1
3. A ∧B ` A ∨B ∨I 2
4. ` A ∧B → A ∨B →I 3

In a proof-assistant the proof is usually developed backwards.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 24 / 29

In a proof-assistant

In a proof-assistant, the usual approach develop the proof by a method
that is known as goal directed proof:

1 The user enters a statement that he wants to prove.

2 The system displays the formula as a formula to be proved, possibly
giving a context of local facts that can be used for this proof.

3 The user enters a command (a basic rule or a tactic) to decompose
the goal into simpler ones.

4 The system displays a list of formulas that still need to be proved.

When there are no more goals the proof is complete!

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 25 / 29

Formal proof

Note that rule ¬¬E is ok because we are in a classical setting. Using this
rule we can derive a proof of A ∨ ¬A.

Example: ` A ∨ ¬A

Statements Justification

1. ¬(A ∨ ¬A), A ` A assumption
2. ¬(A ∨ ¬A), A ` A ∨ ¬A ∨I1 1
3. ¬(A ∨ ¬A), A ` ¬(A ∨ ¬A) assumption
4. ¬(A ∨ ¬A), A ` ⊥ ¬E 2, 3
5. ¬(A ∨ ¬A) ` ¬A ¬I 4
6. ¬(A ∨ ¬A) ` A ∨ ¬A ∨I2 5
7. ¬(A ∨ ¬A) ` ⊥ ¬E 5, 3
8. ` ¬¬(A ∨ ¬A) ¬I 7
9. ` A ∨ ¬A ¬¬E 8

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 26 / 29

Formal proof

Note that from the basic deduction rules we can derive many other rules.
We call these new rules derivable (or admissible).

Example of a derivable rule

Statements Justification

1. Γ ` A ∧B premise
2. Γ ` A ∧E1 1
3. Γ ` B ∧E2 1
4. Γ ` B ∧A ∧I 3, 2

Γ ` A ∧B
Γ ` B ∧A is a derivable rule.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 27 / 29

Formal proof

The following derivable rule is usually implemented in proof-assistants.

Example of a derivable rule

Statements Justification

1. Γ ` A ∧B premise
2. Γ, A,B ` C premise
3. Γ ` A ∧E1 1
4. Γ ` B ∧E2 1
5. Γ, A ` B → C →I 2
6. Γ ` A→ B → C →I 5
7. Γ ` B → C →E 3, 6
8. Γ ` C →I 4, 7

Γ ` A ∧B Γ, A,B ` C

Γ ` C is a derivable rule.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 28 / 29

Soundness, completeness and compacteness

Soundness

If Γ ` F , then Γ |= F ,

Therefore, if ` A, then A is a tautology; and if ` ¬A, then A is a
contradiction.

Completeness

If Γ |= F , then Γ ` F ,

Compactness

A set of formulas is satisfiable if and only if every finite subset is satisfiable.

Hence,

If a formula F is a consequence of a (possible infinite) set of formulas Γ
then it is a consequence of a finite subset of Γ.

Maria João Frade (DI-UM) Propositional Logic (Classical) MFES 2008/09 29 / 29

