
More About Coq
Software Formal Verification

Maria João Frade

Departmento de Informática
Universidade do Minho

2008/2009

Maria João Frade (DI-UM) More About Coq MFES 2008/09 1 / 47

The Coq library

Proof development often take advantage from the large base of definitions and
facts found in the Coq library.

The initial library: it contains elementary logical notions and datatypes. It
constitutes the basic state of the system directly available when running Coq.

The standard library: general-purpose libraries containing various
developments of Coq axiomatizations about sets, lists, sorting, arithmetic,
etc. This library comes with the system and its modules are directly
accessible through the Require command.

http://coq.inria.fr/doc-eng.html

Users’ contributions: user-provided libraries or developments are provided by
Coq users’ community. These libraries and developments are available for
download.

http://coq.inria.fr/contribs-eng.html

Maria João Frade (DI-UM) More About Coq MFES 2008/09 2 / 47

Coq standard library

In the Coq system most usual datatypes are represented as inductive types and
packages provide a variety of properties, functions, and theorems around these
datatypes.

Some often used packages:

Logic Classical logic and dependent equality
Arith Basic Peano arithmetic
ZArith Basic relative integer arithmetic
Bool Booleans (basic functions and results)
Lists Polymorphic lists and Streams
Sets Sets (classical, constructive, finite, infinite, power set, etc.)
FSets Specification and implementations of finite sets and finite maps
QArith Axiomatization of rational numbers
Reals Formalization of real numbers
Relations Relations (definitions and basic results)
...

Maria João Frade (DI-UM) More About Coq MFES 2008/09 3 / 47

Interpretation scopes

To simplify the input of expressions, the Coq system provides a notion of
interpretation scopes, which define how notations are interpreted.

An interpretation scope is a set of notations for terms with their
interpretation.

Interpretation scopes provides with a weak, purely syntactical form of
notations overloading.

Scopes may be opened and several scopes may be opened at a time.

When a given notation has several interpretations, the most recently opened
scope takes precedence (the collection of opened scopes may be viewed as a
stack).

It is possible to locally extend the interpretation scope stack using the
syntax (term)%key (or simply term%key for atomic terms), where key is a
special identifier called delimiting key and bound to a given scope.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 4 / 47

Interpretation scopes

Check the following sequence of commands:
Require Import ZArith.

Require Import List.

Locate "_ * _".

Locate "_ + _".

Print Scope nat_scope.

Print Scope Z_scope.

Print Scope list_scope.

Check 3.

Eval compute in 4+5.

Check (3*5)%Z.

Eval compute in (3 + 5)%Z.

Open Scope Z_scope.

Check 3.

Check (S (S (S O))).

Eval compute in 7*3.

Close Scope Z_scope.

Check 3.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 5 / 47

Searching the environment

Some useful commands to find already existing proofs of facts in the environment.

Search ident - displays the name and type of all theorems of the current
context whose statement’s conclusion has the form (ident t1 .. tn)

SearchAbout ident - displays the name and type of all objects (theorems,
axioms, etc) of the current context whose statement contains ident.

SearchPattern pattern - displays the name and type of all theorems of the
current context which matches the expression pattern.

SearchRewrite pattern - displays the name and type of all theorems of the
current context whose statement’s conclusion is an equality of which one
side matches the expression pattern.

Check the following commands:
Search le.
SearchAbout le.
SearchPattern (le (_ + _) (_ + _)).
SearchPattern (_ + _ <= _ + _).
SearchRewrite (_ + (_ - _)).

Maria João Frade (DI-UM) More About Coq MFES 2008/09 6 / 47

Implicit arguments

Some typing information in terms are redundant.

A subterm can be replaced by symbol if it can be inferred from the other parts of the
term during typing.

Definition comp : forall A B C:Set, (A->B) -> (B->C) -> A -> C

:= fun A B C f g x => g (f x).

Definition example (A:Set) (f:nat->A) := comp _ _ _ S f.

The implicit arguments mechanism makes possible to avoid in Coq expressions. The
arguments that could be inferred are automatically determined and declared as implicit
arguments when a function is defined.

Set Implicit Arguments.

Definition comp1 : forall A B C:Set, (A->B) -> (B->C) -> A -> C

:= fun A B C f g x => g (f x).

Definition example1 (A:Set) (f:nat->A) := comp1 S f.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 7 / 47

Implicit arguments

A special syntax (using @) allows to refer to the constant without implicit arguments.

Check (@comp1 nat nat nat S S).

It is also possible to specify an explicit value for am implicit argument.

Check (comp1 (C:=nat) S).

The generation of implicit arguments can be disabled with

Unset Implicit Arguments.

It is possible to enforce some implicit arguments.

Definition comp2 : forall A B C:Set, (A->B) -> (B->C) -> A -> C

:= fun A B C f g x => g (f x).

Implicit Arguments comp2 [A C].

Definition example2 (A:Set) (f:nat->A) := comp2 nat S f.

Print Implicit example2.

Print Implicit comp2.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 8 / 47

Proof irrelevance

Let P be a proposition and t is a term of type P.

The following commands are not equivalent:
Theorem name : P.
Proof t.

Definition name : P := t.

A definition made with Definition or Let is transparent: its value t and
type P are both visible for later use.

A definition made with Theorem, Lemma, etc., is opaque: only the type P
and the existence of the value t are made visible for later use.

Transparent definition can be unfolded and can be subject to δ-reduction,
while opaque definitions cannot.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 9 / 47

Basic tactics

intro, intros – introduction rule for Π (several times)

apply – elimination rule for Π
assumption – match conclusion with an hypothesis

exact – gives directly the exact proof term of the goal

Maria João Frade (DI-UM) More About Coq MFES 2008/09 10 / 47

Tactics for first-order reasoning

Proposition (P) Introduction Elimination (H of type P)

⊥ elim H, contradiction
¬A intro apply H
A ∧B split elim H
A⇒ B intro apply H
A ∨B left, right elim H
∀x :A.Q intro apply H
∃x :A.Q exists witness elim H

Maria João Frade (DI-UM) More About Coq MFES 2008/09 11 / 47

Tactics for equational reasoning

rewrite – rewrites a goal using an equality.

rewrite <- – rewrites a goal using an equality in the reverse
direction.

reflexivity – reflexivity property for equality.

symmetry – symmetry property for equality.

transitivity – transitivity property for equality.

replace a with b – replaces a by b while generating the subgoal
a=b.

...

Maria João Frade (DI-UM) More About Coq MFES 2008/09 12 / 47

Convertibility tactics

simpl, red, cbv, lazy, compute – performs evaluation.

unfold – applies the δ rule for a transparent constant.

pattern – performs a beta-expansion on the goal.

change – replaces the goal by a convertible one.

...

Maria João Frade (DI-UM) More About Coq MFES 2008/09 13 / 47

Tactics for inductive reasoning

elim – to apply the corresponding induction principle.

induction – performs induction on an identifier.

case, destruct – performs case analysis.

constructor – applies to a goal such that the head of its conclusion
is an inductive constant.

discriminate – discriminates objects built from different
constructors.

injection – applies the fact that constructors of inductive types are
injections.

inversion – given an inductive type instance, find all the necessary
condition that must hold on the arguments of its constructors

...

Maria João Frade (DI-UM) More About Coq MFES 2008/09 14 / 47

Other useful tactics and commands

clear – removes an hypothesis from the environment.

generalize – reintroduces an hypothesis into the goal.

cut, assert – proves the goal through an intermediate result.

absurd – applies False elimination.

contradict – allows to manipulate negated hypothesis and goals.

refine – allows to give an exact proof but still with some holes (“ ”).

...

Admitted – aborts the current proof and replaces the statement by
an axiom that can be used in later proofs.

Abort – aborts the current proof without saving anything.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 15 / 47

Combining tactics

The basic tactics can be combined into more powerful tactics using tactics
combinators, also called tacticals.

t1 ; t2 – applies tactic t1 to the current goal and then t2 to each
generated subgoal.

t1 || t2 – applies tactic t1; if it fails then applies t2.

t ; [t1 | ...| tn] – applies t and then ti to the i-th generated
subgoals; there must be exactly n subgoals generated by t.

idtac – does nothing

try t – applies t if it does not fail; otherwise does nothing.

repeat t – repeats t as long as it does not fail.

solve t – applies t only if it solves the current goal.

...

The Coq system has a tactic language for programing new tactics: Ltac

Maria João Frade (DI-UM) More About Coq MFES 2008/09 16 / 47

Automatic tactics

trivial – tries those tactics that can solve the goal in one step.

auto – tries a combination of tactics intro, apply and assumption using
the theorems stored in a database as hints for this tactic.

eauto – like auto but more powerful but also more time-consuming.

autorewrite – repeats rewriting with a collection of theorems, using these
theorems always in the same direction.

tauto – useful to prove facts that are tautologies in intuitionistic PL.

intuition – useful to prove facts that are tautologies in intuitionistic FOL.

ring – does proves of equality for expressions containing addition and
multiplication.

omega – proves systems of linear inequations (sums of n ∗ x terms).

field – like ring but for a field structure (it also considers division).

fourier – like omega but for real numbers.

subst – replaces all the occurrences of a variable defined in the hypotheses.

...
Maria João Frade (DI-UM) More About Coq MFES 2008/09 17 / 47

Controlling automation

Several hint databases are defined in the Coq standard library. The actual content
of a database is the collection of the hints declared to belong to this database in
each of the various modules currently loaded.

Hint Resolve – add theorems to the database of hints to be used by auto
using apply.

Hint Rewrite – add theorems to the database of hints to be used by
autorewrite

...

Defined databases: core, arith, zarith, bool, datatypes, sets,
typeclass instances, v62.

One can optionally declare a hint database using the command Create HintDb.
If a hint is added to an unknown database, it will be automatically created.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 18 / 47

See the Reference Manual ...

Maria João Frade (DI-UM) More About Coq MFES 2008/09 19 / 47

Some datatypes of programming

Inductive unit : Set := tt : unit.

Inductive bool : Set := true : bool | false : bool.

Inductive nat : Set := O : nat | S : nat -> nat.

Inductive option (A : Type) : Type := Some : A -> option A
| None : option A.

Inductive identity (A : Type) (a : A) : A -> Type :=
refl_identity : identity A a a.

Some operations on bool are also provided: andb (with infix notation &&), orb

(with infix notation ||), xorb, implb and negb.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 20 / 47

Some datatypes of programming

Inductive sum (A B : Type) : Type := inl : A -> A + B
| inr : B -> A + B.

Inductive prod (A B : Type) : Type := pair : A -> B -> A * B.

Definition fst (A B : Type) (p : A * B) := let (x, _) := p in x.

Definition snd (A B : Type) (p : A * B) := let (_, y) := p in y.

The constructive sum {A}+{B} of two propositions A and B.

Inductive sumbool (A B : Prop) : Set :=
| left : A -> {A} + {B}
| right : B -> {A} + {B}.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 21 / 47

If-then-else

The sumbool type can be used to define an “if-then-else” construct in Coq.

Coq accepts the syntax if test then ... else ... when test has either of
type bool or {A}+{B}, with propositions A and B.

Its meaning is the pattern-matching match test with
| left H => ...
| right H => ...

end.

We can identify {P}+{~P} as the type of decidable predicates:

The standard library defines many useful predicates, e.g.

le_lt_dec : forall n m : nat, {n <= m} + {m < n}
Z_eq_dec : forall x y : Z, {x = y} + {x <> y}
Z_lt_ge_dec : forall x y : Z, {x < y} + {x >= y}

Maria João Frade (DI-UM) More About Coq MFES 2008/09 22 / 47

If-then-else

A function that checks if an element is in a list.
Fixpoint elem (a:Z) (l:list Z) {struct l} : bool :=

match l with
| nil => false
| cons x xs => if Z_eq_dec x a then true else (elem a xs)

end.

Exercise:
Consider the inductive relation “y belongs to list l”

Inductive InL (A:Type) (y:A) : list A -> Prop :=

| InHead : forall xs:list A, InL y (cons y xs)

| InTail : forall (x:A) (xs:list A), InL y xs -> InL y (cons x xs).

and prove that

Theorem elem_corr : forall (a:Z) (l1 l2:list Z),

elem a (app l1 l2) = orb (elem a l1) (elem a l2).

Maria João Frade (DI-UM) More About Coq MFES 2008/09 23 / 47

The “subset” type

Coq’s type system allows to combine a datatype and a predicate over this
type, creating “the type of data that satisfies the predicate” . Intuitively, the
type one obtains represents a subset of the initial type.

Inductive sig (A : Type) (P : A -> Prop) : Type :=
exist : forall x : A, P x -> sig A P.

Given A:Type and P:A->Prop, the syntactical convention for (Sig A P) is
the construct {x:A | P x}. (Predicate P is the caracteristic function of this
set).

We may build elements of this set as (exist x p) whenever we have a
witness x:A with its justification p:P x.

From such a (exist x p) we may in turn extract its witness x:A .

In technical terms, one says that sig is a “dependent sum” or a Σ-type.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 24 / 47

The “subset” type

A value of type {x:A | P x} should contain a computation component
that says how to obtain a value v and a certificate, a proof that v satisfies
predicate P.

A variant sig2 with two predicates is also provided.

Inductive sig2 (A : Type) (P Q : A -> Prop) : Type :=
exist2 : forall x : A, P x -> Q x -> sig2 A P Q

The notation for (sig2 A P Q) is {x:A | P x & Q x}.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 25 / 47

Functional correctness

There are two approaches to defining functions and providing proofs that
they satisfy given specification:

To define these functions with a weak specification and then add
companion lemmas.
For instance, we define a function f : A→B and we prove a
statement of the form ∀x :A,Rx (fx), where R is a relation coding
the intended input/output behaviour of the function.

To give a strong specification to the function: the type of this
function directly states that the input is a value x of type A and that
the output is the combination of a value v of type B and a proof that
v satisfies Rxv.
This kind of specification usually relies on dependent types.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 26 / 47

Partiality

The Coq system does not allow the definition of partial functions (i.e.
functions that give a run-time error on certain inputs). However we can
enrich the function domain with a precondition that assures that invalid
inputs are excluded.

A partial function from type A to type B can be described with a
type of the form ∀x :A,P x→B, where P is a predicate that
describes the function’s domain.

Applying a function of this type requires two arguments: a term t of
type A and a proof of the precondition P t.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 27 / 47

An example

An attempt to define the head function as follows will fail

Definition head (A:Type) (l:list A) : A :=
match l with
| cons x xs => x
end.

Error: Non exhaustive pattern-matching: no clause found
for pattern nil

To overcome the above difficulty, we need to:

consider a precondition that excludes all the erroneous argument values;

pass to the function an additional argument: a proof that the precondition
holds;

the match constructor return type is lifted to a function from a proof of the
precondition to the result type.

any invalid branch in the match constructor leads to a logical contradiction
(it violates the precondition).

Maria João Frade (DI-UM) More About Coq MFES 2008/09 28 / 47

An example

Definition head (A:Type) (l:list A) (p:l<>nil) : A.
refine (fun A l p=>
match l return (l<>nil->A) with
| nil => fun H => _
| cons x xs => fun H => x
end p).

elim H; reflexivity.
Defined.

Print Implicit head.

head : forall (A : Type) (l : list A), l <> nil -> A

Arguments A, l are implicit

Maria João Frade (DI-UM) More About Coq MFES 2008/09 29 / 47

An example

The specification of head is:

Definition headPre (A:Type) (l:list A) : Prop := l<>nil.

Inductive headRel (A:Type) (x:A) : list A -> Prop :=
headIntro : forall l, headRel x (cons x l).

The correctness of function head is thus given by the following theorem:

Theorem head_correct : forall (A:Type) (l:list A) (p:headPre l),
headRel (head p) l.

Proof.
induction l.
intro H; elim H; reflexivity.
intros; destruct l; [simpl; constructor | simpl; constructor].
Qed.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 30 / 47

Extraction

Conventional programing languages do not provide dependent types and
well-typed functions in Coq do not always correspond to well-typed functions
in the target programing language.

In CIC functions may contain subterms corresponding to proofs that have
practically no interest with respect to the final value.

The computations done in the proofs correspond to verifications that should
be done once and for all at compile-time, while the computation on the
actual data needs to be done for each value presented to functions at
run-time.

Coq implements this mechanism of filtering the computational content from
the objects - the so called extraction mechanism.

The distinction between the sorts Prop and Set is used to mark the logical
aspects that should be discharged during extraction or the computational
aspects that should be kept.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 31 / 47

Extraction

Coq supports different target languages: Ocaml, Haskell, Scheme.

Check head.

head : forall (A : Type) (l : list A), l <> nil -> A

Extraction Language Haskell.

Extraction Inline False_rect.

Extraction head.

head :: (List a1) -> a1

head l =

case l of

Nil -> Prelude.error "absurd case"

Cons x xs -> x

Maria João Frade (DI-UM) More About Coq MFES 2008/09 32 / 47

Specification types

Using Σ-types we can express specification constrains in the type of a function -
we simply restrict the codomain type to those values satisfying the specification.

Consider the following definition of the inductive relation “x is the last
element of list l”, and the theorem specifing the function that gives the last
element of a list.

Inductive Last (A:Type) (x:A) : list A -> Prop :=

| last_base : Last x (cons x nil)

| last_step : forall l y, Last x l -> Last x (cons y l).

Theorem last_correct : forall (A:Type) (l:list A),

l<>nil -> { x:A | Last x l }.

By proving this theorem we build an inhabitant of this type, and then we
can extract the computational content of this proof, and obtain a function
that satisfies the specification.

The Coq system thus provides a certified software production tool, since the
extracted programs satisfy the specifications described in the formal
developments.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 33 / 47

Specification types

Let us build an inhabitant of that type

Theorem last_correct : forall (A:Type) (l:list A),
l<>nil -> { x:A | Last x l }.

Proof.
induction l.
intro H; elim H; reflexivity.
intros. destruct l.
exists a; auto.
constructor.
elim IHl.
intros; exists x.
constructor. assumption.
discriminate.
Qed.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 34 / 47

Program extraction

We can extract the computational content of the proof of the last theorem.

Extraction Language Haskell.

Extraction Inline False_rect.
Extraction Inline sig_rect.
Extraction Inline list_rect.

Extraction last_correct.

last_correct :: (List a1) -> a1
last_correct l =
case l of
Nil -> Prelude.error "absurd case"
Cons a l0 -> (case l0 of

Nil -> a
Cons a0 l1 -> last_correct l0)

Maria João Frade (DI-UM) More About Coq MFES 2008/09 35 / 47

Case study: sorting a list

A simple characterisation of sorted lists consists in requiring that two consecutive
elements be compatible with the ≤ relation.

We can codify this with the following predicate:

Open Scope Z_scope.

Inductive Sorted : list Z -> Prop :=
| sorted0 : Sorted nil
| sorted1 : forall z:Z, Sorted (z :: nil)
| sorted2 :

forall (z1 z2:Z) (l:list Z),
z1 <= z2 ->
Sorted (z2 :: l) -> Sorted (z1 :: z2 :: l).

Maria João Frade (DI-UM) More About Coq MFES 2008/09 36 / 47

Case study: sorting a list

To capture permutations, instead of an inductive definition we will define the
relation using an auxiliary function that count the number of occurrences of
elements:

Fixpoint count (z:Z) (l:list Z) {struct l} : nat :=
match l with
| nil => 0%nat
| (z’ :: l’) =>

match Z_eq_dec z z’ with
| left _ => S (count z l’)
| right _ => count z l’
end

end.

A list is a permutation of another when contains exactly the same number of
occurrences (for each possible element):

Definition Perm (l1 l2:list Z) : Prop :=
forall z, count z l1 = count z l2.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 37 / 47

Case study: sorting a list

Exercise:
Prove that Perm is an equivalence relation:

Lemma Perm_reflex : forall l:list Z, Perm l l.
Lemma Perm_sym : forall l1 l2, Perm l1 l2 -> Perm l2 l1.
Lemma Perm_trans : forall l1 l2 l3,

Perm l1 l2 -> Perm l2 l3 -> Perm l1 l3.

Exercise:
Prove the following lemmas:

Lemma Perm_cons : forall a l1 l2,
Perm l1 l2 -> Perm (a::l1) (a::l2).

Lemma Perm_cons_cons : forall x y l, Perm (x::y::l) (y::x::l).

Maria João Frade (DI-UM) More About Coq MFES 2008/09 38 / 47

Case study: sorting a list

A simple strategy to sort a list consist in iterate an “insert” function that inserts
an element in a sorted list.

Fixpoint insert (x:Z) (l:list Z) {struct l} : list Z :=
match l with
nil => cons x nil

| cons h t =>
match Z_lt_ge_dec x h with

left _ => cons x (cons h t)
| right _ => cons h (insert x t)
end

end.

Fixpoint isort (l:list Z) : list Z :=
match l with
nil => nil

| cons h t => insert h (isort t)
end.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 39 / 47

Case study: sorting a list

The theorem we want to prove is:

Theorem isort_correct : forall (l l’:list Z),

l’=isort l -> Perm l l’ /\ Sorted l’.

We will certainly need auxiliary lemmas... Let us make a prospective proof attempt:

Theorem isort_correct : forall (l l’:list Z),

l’=isort l -> Perm l l’ /\ Sorted l’.

induction l; intros.

unfold Perm; rewrite H; split; auto.

simpl. constructor. simpl in H.

rewrite H. (* ??????????? *)

a : Z

l : list Z

IHl : forall l’ : list Z, l’ = isort l -> Perm l l’ /\ Sorted l’

l’ : list Z

H : l’ = insert a (isort l)

============================

Perm (a :: l) (insert a (isort l)) /\ Sorted (insert a (isort l))

Maria João Frade (DI-UM) More About Coq MFES 2008/09 40 / 47

Case study: sorting a list

It is now clear what are the needed lemmas:

Lemma insert Perm : forall x l, Perm (x::l) (insert x l).

unfold Perm; induction l.

simpl. reflexivity.

simpl insert. elim (Z_lt_ge_dec x a). reflexivity.

intros. rewrite Perm_cons_cons.

pattern (x::l). simpl count. elim (Z_eq_dec z a).

intros. rewrite IHl; reflexivity.

intros. apply IHl.

Qed.

Lemma insert Sorted : forall x l, Sorted l -> Sorted (insert x l).

intros x l H; elim H; simpl.

constructor.

intro z; elim (Z_lt_ge_dec x z); intros.

constructor.

auto with zarith.

...

Qed.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 41 / 47

Case study: sorting a list

Now we can conclude the proof of correctness...

Theorem isort_correct : forall (l l’:list Z),
l’=isort l -> Perm l l’ /\ Sorted l’.

Proof.
induction l; intros.
unfold Perm; rewrite H; split; auto.
simpl. constructor. simpl in H.
rewrite H. (* ??????????? *)
elim (IHl (isort l)); intros; split.
apply Perm_trans with (a::isort l).
unfold Perm. intro z. simpl. elim (Z_eq_dec z a). intros.
elim H0; reflexivity.
intros. elim H0. reflexivity.
apply insert_Perm.
apply insert_Sorted.
assumption.
Qed.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 42 / 47

Case study: sorting a list

Exercise:
Complete the following proof and extract its computational content to an Haskell
function.

Definition inssort : forall (l:list Z),
{ l’ | Perm l l’ & Sorted l’ }.

induction l.
...

Defined.

Exercise:
Use the same method to extract the insert function from its specification.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 43 / 47

Non-structural recursion

When the recursion pattern of a function is not structural in the arguments, we
are no longer able to directly use the derived recursors to define it.

Consider the Euclidean division algorithm written in Haskell

div :: Int -> Int -> (Int,Int)
div n d | n < d = (0,n)

| otherwise = let (q,r)=div (n-d) d
in (q+1,r)

In recent versions of Coq (after v8.1), a new command Function allows to
directly encode general recursive functions.

The Function command accepts a measure function that specifies how the
argument “decreases” between recursive function calls.

It generates proof-obligations that must be checked to guaranty the
termination.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 44 / 47

Non-structural recursion

Close Scope Z_scope.

Function div (p:nat*nat) {measure fst} : nat*nat :=
match p with
| (_,0) => (0,0)
| (a,b) => if le_lt_dec b a

then let (x,y):=div (a-b,b) in (1+x,y)
else (0,a)

end.
Proof.
intros.
simpl.
omega.
Qed.

The Function command generates a lot of auxiliary results related to the defined
function. Some of them are powerful tools to reason about it.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 45 / 47

Non-structural recursion

The Function command is also useful to provide “natural encodings” of
functions that otherwise would need to be expressed in a contrived manner.

Exercise:
Complete the definition of the function merge, presenting a proof of its
termination.

Function merge (p:list Z*list Z)
{measure (fun p=>(length (fst p))+(length (snd p)))} : list Z :=
match p with
| (nil,l) => l
| (l,nil) => l
| (x::xs,y::ys) => if Z_lt_ge_dec x y

then x::(merge (xs,y::ys))
else y::(merge (x::xs,ys))

end.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 46 / 47

Another example of correctness

A specification of the Euclidean division algorithm:
Definition divRel (args:nat*nat) (res:nat*nat) : Prop :=

let (n,d):=args in let (q,r):=res in q*d+r=n /\ r<d.

Definition divPre (args:nat*nat) : Prop := (snd args)<>0.

A proof of correctness:
Theorem div_correct : forall (p:nat*nat), divPre p -> divRel p (div p).

Proof.

unfold divPre, divRel.

intro p.

(* we make use of the specialised induction principle to conduct the proof... *)

functional induction (div p); simpl.

intro H; elim H; reflexivity.

(* a first trick: we expand (div (a-b,b)) in order to get rid of the let (q,r)=... *)

replace (div (a-b,b)) with (fst (div (a-b,b)),snd (div (a-b,b))) in IHp0.

simpl in *.

intro H; elim (IHp0 H); intros.

split.

(* again a similar trick: we expand "x" and "y0" in order to use an hypothesis *)

change (b + (fst (x,y0)) * b + (snd (x,y0)) = a).

rewrite <- e1.

omega.

(* and again... *)

change (snd (x,y0)<b); rewrite <- e1; assumption.

symmetry; apply surjective_pairing.

auto.

Qed.

Maria João Frade (DI-UM) More About Coq MFES 2008/09 47 / 47

