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Classical versus intuitionistic logic

Classical logic is based on the notion of truth.
I The truth of a statement is “absolute”: statements are either true or

false.
I Here “false” means the same as “not true”.
I φ ∨ ¬φ must hold no matter what the meaning of φ is.
I Information contained in the claim φ ∨ ¬φ is quite limited.
I Proofs using the excluded middle law, φ ∨ ¬φ, or the double negation

law, ¬¬φ→ φ (proof by contradiction), are not constructive.

Intuitionistic (or constructive) logic is based on the notion of proof.
I Rejects the guiding principle of “absolute” truth.
I φ is “true” if we can prove it.
I φ is “false” if we can show that if we have a proof of φ we get a

contradiction.
I To show “φ ∨ ¬φ” one have to show φ or ¬φ. (If neither of these can

be shown, then the putative truth of the disjunction has no
justification.)
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Intuitionistic (or constructive) logic

Judgements about statements are based on the existence of a proof or
“construction” of that statement.

Informal constructive semantics of connectives (BHK-interpretation)

A proof of φ ∧ ψ is given by presenting a proof of φ and a proof of ψ.

A proof of φ ∨ ψ is given by presenting either a proof of φ or a proof of ψ
(plus the stipulation that we want to regard the proof presented as evidence
for φ ∨ ψ).

A proof φ→ ψ is a construction which permits us to transform any proof of
φ into a proof of ψ.

Absurdity ⊥ (contradiction) has no proof; a proof of ¬φ is a construction
which transforms any hypothetical proof of φ into a proof of a contradiction.

A proof of ∀x. φ(x) is a construction which transforms a proof of d ∈ D (D
the intended range of the variable x) into a proof of φ(d).

A proof of ∃x. φ(x) is given by providing d ∈ D, and a proof of φ(d).
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Intuitionistic logic

Some classical tautologies that are not intuitionistically valid

φ ∨ ¬φ excluded middle law
¬¬φ→ φ double negation law
((φ→ ψ) → φ) → φ Pierce’s law
(φ→ ψ) ∨ (ψ → φ)
(φ→ ψ) → (¬φ ∨ ψ)
¬(φ ∧ ψ) → (¬φ ∨ ¬ψ)
(¬φ→ ψ) → (¬ψ → φ)
(¬φ→ ¬ψ) → (ψ → φ)
¬∀x.¬φ(x) → ∃x. φ(x)
¬∃x.¬φ(x) → ∀x. φ(x)
¬∀x. φ(x) → ∃x.¬φ(x)

The constructive independence of the logical connectives contrast with the
classical situation.
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Semantics of intuitionistic logic

The semantics of intuitionistic logic are rather more complicated than for
the classical case. A model theory can be given by

Heyting algebras or,

Kripke semantics.
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Proof systems for intuitionistic logic

A natural deduction system for intuitionistic propositional logic or
intuitionistic first-order logic are given by the set of rules presented for
PL or FOL, respectively, except the rule for the elimination of double
negation (¬¬E).

Traditionally, classical logic is defined by extending intuitionistic logic
with the double negation law, the excluded middle law or with
Pierce’s law.
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The Curry-Howard isomorphism

The Curry-Howard isomorphism establishes a correspondence between natural

deduction for intuitionistic logic and λ-calculus.

Observe the analogy between the implicational fragment of intuitionistic
propositional logic and λ→

φ ∈ Γ
Γ ` φ (assumption)

(x : φ) ∈ Γ
Γ ` x : φ

(var)

Γ, φ ` ψ
Γ ` φ→ ψ

(→I)
Γ, x : φ ` e : ψ

Γ ` (λx :φ.e) : φ→ψ
(abs)

Γ ` φ→ ψ Γ ` φ
Γ ` ψ (→E)

Γ ` a : φ→ψ Γ ` b : φ
Γ ` a b : ψ

(app)
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The Curry-Howard isomorphism

The connection of type theory to logic is via the proposition-as-types
principle that establishes a precise relation between intuitionistic logic and
λ-calculus.

a proposition A can be seen as a type (the type of its proofs);

and a proof of A as a term of type A.

Hence: A is provable ⇐⇒ A is inhabited

Therefore, the formalization of mathematics in type theory becomes

Γ ` t : A which is equivalent to TypeΓ(t) = A

Proof checking boils down to type checking.
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Type-theoretic notions for proof-checking

In the practice of an interactive proof assistant based on type theory, the user
types in tactics, guiding the proof development system to construct a proof-term.
At the end, this term is type checked and the type is compared with the original
goal.

In connection to proof checking there are some decision problems:

Type Checking Problem (TCP) Γ ` t : A ?

Type Synthesis Problem (TSP) Γ ` t : ?

Type Inhabitation Problem (TIP) Γ ` ? : A

TIP is usually undecidable for type theories of interest.

TCP and TSP are decidable for a large class of interesting type theories.
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The reliability of machine checked proofs

Why would one believe a system that says it has verified a proof ?

The proof checker should be a very small program that can be verified by hand,

giving the highest possible reliability to the proof checker.

de Bruijn criterion

A proof assistant satisfies the de Bruijn criterion if it generates
proof-objects (of some form) that can be checked by an ’easy’
algorithm.

Proof-objects may be large but they are self-evident. This means that a small

program can verify them. The program just follows whether locally the correct

steps are being made.
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Type-theoretic approach to interactive theorem proving

provability of formula A ⇐⇒ inhabitation of type A
proof checking ⇐⇒ type checking

interactive theorem proving ⇐⇒ interactive construction of a term
of a given type

So, decidability of type checking is at the core of the type-theoretic
approach to theorem proving.
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Proof assistants based on type theory

The first systems of proof checking (type checking) based on the
propositions-as-types principle were the systems of the AUTOMATH project.

Modern proof assistants, aggregate to the proof checker a proof-development
system for helping the user to develop the proofs interactively.

Examples of proof assistants based on type theory:

Coq - based on the Calculus of Inductive Constructions

Lego - based on the Extended Calculus of Constructions

Agda - based on Martin-Lof’s type theory

Nuprl - based on extensional Martin-Lof’s type theory
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Higher-Order Logic and Type Theory
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Higher-order logic and type theory

Following Church’s original definition of higher-order logic, simply typed λ-calculus
is used to describe the language of HOL.

Recall the basic constructive core (∀,⇒) of HOL:

(axiom) ∆ ` φ if φ ∈ ∆

(⇒I)

∆, φ ` ψ
∆ ` φ⇒ ψ

(⇒E)

∆ ` φ⇒ ψ ∆ ` φ
∆ ` ψ

(∀I)
∆ ` ψ

∆ ` ∀x :σ. ψ if x : σ 6∈ FV(∆)

(∀E)

∆ ` ∀x :σ. ψ

∆ ` ψ[x := e] if e : σ

(conversion)

∆ ` ψ
∆ ` φ if φ =β ψ
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Higher-order logic and type theory

Following the Curry-Howard isomorphism, why not introduce a λ-term notation for
proofs ?

(axiom) ∆ `Γ x : φ if x : φ ∈ ∆

(⇒I)

∆, x : φ `Γ e : ψ

∆ `Γ λx :φ.e : φ⇒ ψ

(⇒E)

∆ `Γ a : φ⇒ ψ ∆ `Γ b : φ

∆ `Γ a b : ψ

(∀I)
∆ `Γ,x:σ e : ψ

∆ `Γ λx :σ.e : ∀x :σ. ψ if x : σ 6∈ FV(∆)

(∀E)

∆ `Γ t : ∀x :σ. ψ

∆ `Γ t e : ψ[x := e] if Γ ` e : σ

(conversion)

∆ `Γ t : ψ

∆ `Γ t : φ if φ =β ψ
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Higher-order logic and type theory

Here we have two “levels” of types theories:

the (simple) type theory describing the language of HOL

the type theory for the proof-terms of HOL

These levels can be put together into one type theory: λHOL.
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λHOL

Instead of having two separate categories of expressions (terms and types)
we have a unique category of expressions, which are called pseudo-terms.

Pseudo-terms The set T of pseudo-terms is defined by

A,B,M,N ::= Prop | Type | Type′ | x | M N | λx :A.M | Πx :A.B

We assume a countable set of variables: x, y, z, . . .

S def= {Prop,Type,Type′} is the set of sorts (constants that denote the
universes of the type system). We let s range over S.

Both Π and λ bind variables. We have the usual notation for free and bound
variables.

Both ⇒ and ∀ are generalized by a single construction Π.

We write A→B instead of Πx :A.B whenever x 6∈ FV(B).
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λHOL

Contexts and judgments

Contexts are used to declare free variables.

The set of contexts is given by the abstract syntax: Γ ::= 〈〉 | Γ, x : A

The domain of a context is defined by the clause
dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

A judgment is a triple of the form Γ ` A : B where A,B ∈ T and Γ is a
context.

A judgment is derivable if it can be inferred from the typing rules of next
slide.

I If Γ ` A : B then Γ, A and B are legal.
I If Γ ` A : s for s ∈ S we say that A is a type.

The typing rules are parametrized.
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λHOL - typing rules

(axioms) 〈〉 ` Prop : Type 〈〉 ` Type : Type′

(var)
Γ ` A : s

Γ, x :A ` x : A
if x 6∈ dom(Γ)

(weak)
Γ ` M : A Γ ` B : s

Γ, x :B ` M : A
if x 6∈ dom(Γ)

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` (Πx :A.B) : s2

if (s1, s2) ∈ {(Type,Type),

(Prop,Prop), (Type,Prop)}

(app)
Γ ` M : (Πx :A.B) Γ ` N : A

Γ ` MN : B[x := N ]

(λ)
Γ, x :A ` M : B Γ ` (Πx :A.B) : s

Γ ` λx :A.M : (Πx :A.B)

(conv)
Γ ` M : A Γ ` B : s

Γ ` M : B
if A =β B
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λHOL - dependencies

(Π)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` (Πx :A.B) : s2

if (s1, s2) ∈ {(Type, Type), (Prop, Prop), (Type, Prop)}

(Type,Type) forms the function type A→B for A : Type and B : Type; predicate

types. This comprises

I unary or binary predicates like: A→ Prop or A→ A→ Prop;
I higher-order predicates like: (A→ A→ Prop) → Prop.

(Prop,Prop) forms the propositional type φ→ ψ for φ : Prop and ψ : Prop;
propositional formulas.

(Type,Prop) forms the dependent propositional type (Πx :A.ψ) for A : Type and
ψ : Prop; universally quantified formulas.
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Dependent types

Type constructor Π captures in the type theory the set-theoretic notion of generic
or dependent function space.

Dependent functions

The type of this kind of functions is Πx :A.B, the product of a family {B(x)}x:A
of types. Intuitively

Πx :A.B(x) =
{
f : A→

⋃
x:A

B(x) | ∀a :A. fa : B(a)
}

i.e., a type of functions f where the range-set depends on the input value.

If f : Πx :A.B(x), then f is a function with domain A and such that fa : B(a)
for every a : A.
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Dependent types

A dependent type is a type that may depend on a value, typically like:

a predicate, which depends on its domain. For instance, the predicate even over
natural numbers

even : nat→Prop

Universal quantification is a dependent function. For instance, ∀x : nat. evenx is
encoded by

Πx :nat. evenx

an array type (or vector), which depends on its length. For instance, the
polymorphic dependent type constructor

Vec : Type→nat→Type

Here is an example of a dependent function in a Haskell like syntax:

gen :: Πx :nat. a→Vec an
gen 0 x = []
gen (n+ 1) x = x : (gennx)
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λHOL - examples

Recall the Leibniz equality. For A :Type, x :A, y :A,

(x =L y)
def
= ΠP :A→Prop. Px→Py

Let Γ
def
= A : Type, x : A

Reflexivity A : Type, x : A ` (λP :A→ Prop.λq :Px.q) : (x =L x)

(3)

Γ, P :A→ Prop ` Px : Prop

Γ, P :A→ Prop, q :Px ` q : Px
(var)

(2)

Γ, P :A→ Prop ` Px→ Px : Prop

Γ, P :A→ Prop ` λq :Px.q : Px→ Px
(λ)

(1)

Γ ` (x =L x) : Prop

Γ ` (λP :A→ Prop.λq :Px.q) : (x =L x)
(λ)

(1)

(4)

Γ ` A→ Prop : Type

(4)

Γ ` A→ Prop : Type

Γ, P :A→ Prop ` A→ Prop : Type
(weak)

(2)

Γ, P :A→ Prop ` Px→ Px : Prop

Γ ` ΠP :A→Prop. Px→Px : Prop
(Π)
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λHOL - examples

(2)

(3)

Γ, P :A→ Prop ` Px : Prop

(3)

Γ, P :A→ Prop ` Px : Prop

(3)

Γ, P :A→ Prop ` Px : Prop

Γ, P :A→ Prop, z :Px ` Px : Prop
(weak)

Γ, P :A→ Prop ` Px→ Px : Prop
(Π)

(3)

(4)

Γ ` A→ Prop : Type

Γ, P :A→ Prop ` P : A→ Prop
(var)

` Type : Type′
(axiom)

A :Type ` A : Type
(var)

Γ ` x : A
(var)

(4)

Γ ` A→ Prop : Type

Γ, P :A→ Prop ` x : A
(weak)

Γ, P :A→ Prop ` Px : Prop
(app)
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λHOL - examples

(4)

(5)

Γ ` A : Type

` Prop : Type
(axiom)

` Type : Type′
(axiom)

A :Type ` Prop : Type
(weak)

(5)

Γ ` A : Type

Γ ` Prop : Type
(weak)

(5)

Γ ` A : Type

Γ, z :A ` Prop : Type
(weak)

Γ ` A→ Prop : Type
(Π)

(5)

` Type : Type′
(axiom)

A :Type ` A : Type
(var)

` Type : Type′
(axiom)

A :Type ` A : Type
(var)

Γ ` A : Type
(weak)
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λHOL - examples

Recall the Leibniz equality. For A :Type, x :A, y :A,

(x =L y)
def
= ΠP :A→Prop. Px→Py

Let us now prove symmetry for the Leibniz equality.

Let Γ
def
= A :Type, x :A, y :A, t : (x =L y)

Symmetry Γ ` t(λz :A. z =L x)(λP :A→Prop. λq :Px. q) : (y =L x)

.

.

.

Γ ` t : (x =L y)

.

.

.

Γ ` (λz :A. z =L x) : A→ Prop

Γ ` t(λz :A. z =L x) : (λz :A. z =L x)x→ (λz :A. z =L x)y

.

.

.

Γ ` t(λz :A. z =L x) : (x =L x) → (y =L x)
(conv)

.

.

.

Γ ` w : (x =L x)

Γ ` t(λz :A. z =L x)w : (y =L x)

where w is the proof-term of reflexivity (λP :X→Prop. λq :Px. q)
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Properties of λHOL

There is a formulas-as-types isomorphism between intuitionistic HOL and λHOL

Uniqueness of types

If Γ ` M : A and Γ ` M : B , then A =β B .

Subject reduction

If Γ ` M : A and M�β N , then Γ ` N : A .

Strong normalization

If Γ `M : A, then all β-reductions from M terminate.

Confluence
If M =β N , then M�β R and N�β R , for some term R .
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Properties of λHOL

Recall the decidability problems:

Type Checking Problem (TCP) Γ ` M : A ?
Type Synthesis Problem (TSP) Γ ` M : ?
Type Inhabitation Problem (TIP) Γ ` ? : A

For λHOL:

TIP is undecidable.

TCP and TSP are decidable.

Remark

Normalization and type checking are intimately connected due to (conv) rule.

Deciding equality of dependent types, and hence deciding the well-typedness of a
dependent typed terms, requires to perform computations. If non-normalizing
terms are allowed in types, then TCP and TSP become undecidable.
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Encoding of logic in type theory

Direct encoding.

Each logical construction have a counterpart in the type theory.

Theorem proving consists of the (interactive) construction of a proof-term,
which can be easily checked independently.

Examples:

I Coq - based on the Calculus of Inductive Constructions
I Agda - based on Martin-Lof’s type theory
I Lego - based on the Extended Calculus of Constructions
I Nuprl - based on extensional Martin-Lof’s type theory
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Encoding of logic in type theory

Shallow encoding (Logical Frameworks).

The type theory is used as a logical framework, a meta system for encoding
a specific logic one wants to work with.

The encoding of a logic L is done by choosing an appropriate context ΓL, in
which the language of L and the proof rules are declared.

Usually, the proof-assistants based on this kind of encoding do not produce
standard proof-objects, just proof-scripts.

Examples:

I HOL, based on the Church’s simple type theory. This is a classical
higher-order logic.

I Isabelle, based on intuitionistic simple type theory (used as the meta
logic). Various logics (FOL, HOL, sequent calculi,...) are described.
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