
Calculus of Inductive Constructions
Software Formal Verification

Maria João Frade

Departmento de Informática
Universidade do Minho

2008/2009

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 1 / 36

Pure Type Systems

Pure Type Systems (PTS) provide a framework to specify typed λ-calculi.

The typed lambda calculi that belong to the class of PTS have only one type
constructor (Π) and a computation rule (β). (Therefore the name “pure”).

The framework of PTS provides a general description of a large class of
typed λ-calculi and makes it possible to derive lot of meta theoretic
properties in a generic way.

PTS were originally introduced (albeit in a different from) by S.Berardi and
J. Terlouw as a generalization of Barendregt’s λ-cube, which itself provides a
fine-grained analysis of the Calculus of Constructions.

PTS are formal systems for deriving judgments of the form Γ ` M : A were
both M and A are pseudo-terms and Γ is a list of variable declarations.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 2 / 36

PTS - syntax

PTS have a single category of expressions, which are called pseudo-terms.

The definition of pseudo-terms is parametrized by a countable set V of
variables and a set S of sorts (constants that denote the universes of the
type system). We let s range over S.

The set T of pseudo-terms is defined by the abstract syntax

T ::= S | V | T T | λV :T .T | ΠV :T . T

Both Π and λ bind variables.
We have the usual notation for free and bound variables.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 3 / 36

PTS - definitions

Pseudo-terms inherit much of the standard definitions and notations of λ-calculi.

FV(M) denote the set of free variables of the pseudo-term M .

We write A→B instead of Πx :A.B whenever x 6∈ FV(B).

M [x := N] denote the substitution of N for all the free occurrences of x in
M .

We identify pseudo-terms that are equal up to a renaming of bound
variables (α-conversion).

We assume the standard variable convention, so all bound variables are
chosen to be different from free variables.

β-reduction is defined as the compatible closure of the rule

(λx :A.M)N →β M [x := N]

�β is the reflexive-transitive closure of→β .

=β is the reflexive-symmetric-transitive closure of→β .

Application associates to the left, abstraction to the right and application
binds more tightly than abstraction.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 4 / 36

Salient features of PTS

PTS describe λ-calculi à la Church (λ-abstraction carry the domain of
bound variables).

PTS are minimal (just Π type construction and β reduction rule),
which imposes strict limitations on their applicability.

PTS model dependent types. Type constructor Π captures in the type
theory the set-theoretic notion of generic or dependent function space.

Dependent functions

The type of this kind of functions is Πx :A.B, the product of a family {B(x)}x:A
of types. Intuitively

Πx :A.B(x) =
{
f : A→

⋃
x:A

B(x) | ∀a :A. fa : B(a)
}

i.e., a type of functions f where the range-set depends on the input value.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 5 / 36

PTS - specifications

The typing system of PTS is parametrized by a triple (S,A,R) where:

S is the set of universes of the type system;
A determine the typing relation between universes;
R determine which dependent function types may be found and where they live.

A PTS-specification is a triple (S,A,R) where

S is a set of sorts

A ⊆ S × S is a set of axioms

R ⊆ S × S × S is a set of rules

Following standard practice, we use (s1, s2) to denote rules of the form
(s1, s2, s2).

Every specification S induces a PTS λS.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 6 / 36

PTS - contexts and judgments

Contexts are used to declare free variables.

The set G of contexts is given by the abstract syntax: G ::= 〈〉 | G,V : T
We let Γ,∆ range over G.

The domain of a context is defined by the clause
dom(x1 :A1, ..., xn :An) = {x1, ..., xn}

A judgment is a triple of the form Γ ` A : B where A,B ∈ T and Γ is a
context.

A judgment is derivable if it can be inferred from the typing rules of next
slide.

I If Γ ` A : B then Γ, A and B are legal.
I If Γ ` A : s for s ∈ S we say that A is a type.

The typing rules are parametrized.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 7 / 36

Typing rules for PTS

(axiom) 〈〉 ` s1 : s2 if (s1, s2) ∈ A

(start)
Γ ` A : s

Γ, x :A ` x : A
if x 6∈ dom(Γ)

(weakening)
Γ ` M : A Γ ` B : s

Γ, x :B ` M : A
if x 6∈ dom(Γ)

(product)
Γ ` A : s1 Γ, x :A ` B : s2

Γ ` (Πx :A.B) : s3
if (s1, s2, s3) ∈ R

(application)
Γ ` M : (Πx :A.B) Γ ` N : A

Γ ` MN : B[x := N]

(abstraction)
Γ, x :A ` M : B Γ ` (Πx :A.B) : s

Γ ` λx :A.M : (Πx :A.B)

(conversion)
Γ ` M : A Γ ` B : s

Γ ` M : B
if A =β B

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 8 / 36

Properties of PTS

Substitution property

If Γ, x : B,∆ ` M : A and Γ ` N : B , then
Γ,∆[x := N] ` M [x := N] : A[x := N] .

Correctness of types

If Γ ` A : B , then either B ∈ S or Γ ` B : s for some s ∈ S .

Thinning

If Γ ` A : B is legal and Γ ⊆ ∆ , then ∆ ` A : B .

Strengthening

If Γ1, x : A,Γ2 ` M : B and x 6∈ FV(Γ2) ∪ FV(M) ∪ FV(B) , then
Γ1,Γ2 ` M : B .

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 9 / 36

Properties of PTS

Confluence
If M =β N , then M�β R and N�β R , for some term R .

Subject reduction

If Γ ` M : A and M�β N , then Γ ` N : A .

Uniqueness of types

If Γ ` M : A and Γ ` M : B , then A =β B . This property holds if
A ⊆ S × S and R ⊆ (S × S)× S are functions.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 10 / 36

Properties of PTS

Normalization

A term M is weak normalizing if there is a reduction sequence starting from
M that terminates (in a normal form).

A term M is strongly normalizing if every reduction sequence starting from
M terminates.

A PTS is (weakly or strongly) normalizing if all its legal terms are (weakly or
strongly) normalizing.

Strong normalization holds for some PTS (e.g., all subsystems of λC) and for
some not.

Decidability of type checking

In a PTS that is (weakly or strongly) normalizing and with S finite, the problems
of type checking and type synthesis are decidable.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 11 / 36

Barendregt’s λ-Cube

Barendregt’s λ-Cube was proposed as fine-grained analysis of the Calculus of
Constructions (λC).

The λ-Cube
The cube of typed lambda calculi consists of eight PTS all of them having
S = {∗,�} and A = {∗ : �} and the rules for each system as follows:

System R
λ→ (∗, ∗)
λ2 (∗, ∗) (�, ∗)
λP (∗, ∗) (∗,�)
λω (∗, ∗) (�,�)
λω (∗, ∗) (�, ∗) (�,�)
λP2 (∗, ∗) (�, ∗) (∗,�)
λPω (∗, ∗) (∗,�) (�,�)
λC (∗, ∗) (�, ∗) (∗,�) (�,�)

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 12 / 36

The λ-Cube

Note that arrows denote inclusion of one system in another.

λω // λC

λ2

??����������
// λP2

??����������

λω

OO

// λPω

OO

λ→
(∗,�)

//

(�,�)

??����������

(�,∗)

OO

λP

??����������

OO

In logical terms, systems in the left side of the cube correspond to propositional
logics and systems in the right side of the cube correspond to predicate logics.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 13 / 36

Calculus of Inductive Constructions

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 14 / 36

Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CIC) is the underlying calculus of Coq.

CIC can be described by the following specification:

S = Set, Prop, Typei , i ∈ N
A = (Set : Type0), (Prop : Type0), (Typei : Typei+1) , i ∈ N
R = (Prop,Prop), (Set,Prop), (Typei,Prop), (Prop,Set), (Set,Set),

(Typei,Set), (Typei,Typej ,Typemax(i,j)) , i, j ∈ N

Cumulativity: Prop ⊆ Type0, Set ⊆ Type0 and Typei ⊆ Typei+1, i ∈ N.

Inductive types and a restricted form of general recursion.

In the Coq system, the user will never mention explicitly the index i when
referring to the universe Typei. One only writes Type. The system itself
generates for each instance of Type a new index for the universe and checks that
the constraints between these indexes can be solved.

From the user point of view we consequently have Type : Type.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 15 / 36

Dependencies

Sort Prop is the universe of propositions.
The sorts Set and Type form the universes of domains.

(Prop,Prop) allows the formation of implication of two formulae

φ : Prop, ψ : Prop ` φ→ψ : Prop

(Set,Prop) allows quantification over sets

A : Set, φ : Prop ` (Πx :A. φ)︸ ︷︷ ︸
∀x:A.φ

: Prop

(Set,Type) allows the formation of first-order predicates

A : Set ` A→Prop : Type

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 16 / 36

Dependencies

(Type,Prop) allows quantification over predicate types

A : Set ` (ΠP :A→Prop.Πx :A.Px→Px)︸ ︷︷ ︸
∀P:A→Prop. ∀x:A.Px→Px

: Prop

(Set, Set) allows function types

A : Set, B : Set ` A→B : Set

(Type, Set) allows polymorphism

` (ΠA :Set. A→A) : Set

(Type,Type) allows higher order types

A : Set ` (ΠP :A→ Prop.Prop) : Type

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 17 / 36

Impredicativity

In CIC, thanks to rules (Typei,Prop) and (Typei,Set), the following judgements
are derivable:

Γ ` (ΠA :Set. A→A) : Set

Γ ` (ΠA :Prop. A→A) : Prop

which means that:

it is possible to construct a new element of type Prop by quantifying over all
elements of type Prop;

it is possible to construct a new element of type Set by quantifying over all
elements of type Set.

These kind of types is called impredicative.

We say that Prop and Set are impredicative universes.

Coq version V7 was based in CIC.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 18 / 36

Impredicativity

Coq version V8 is based in a weaker calculus:

the Predicative Calculus of Inductive Constructions (pCIC)

In pCIC the rule (Typei,Set) was removed, so the universe Set become
predicative.

Within this calculus the type ΠA :Set. A→A has now sort Type.

Prop is the only impredicative universe of pCIC.

Remark:
The only possible universes where impredicativity is allowed are the ones at the
bottom of the hierarchy. Otherwise the calculus would turn out inconsistent.
(This justifies the rules (Typei,Typej ,Typemax(i,j)), i, j ∈ N)

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 19 / 36

Inductive types

Induction is a basic notion in logic and set theory.

When a set is defined inductively we understand it as being “built up
from the bottom” by a set of basic constructors.

Elements of such a set can be decomposed in “smaller elements” in a
well-founded manner.

This gives us principles of
I “proof by induction” and
I “function definition by recursion”.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 20 / 36

Inductive types

We can define a new type I inductively by giving its constructors together with
their types which must be of the form

τ1→ . . .→τn→I , with n ≥ 0

Constructors (which are the introduction rules of the type I) give the
canonical ways of constructing one element of the new type I.

The type I defined is the smallest set (of objects) closed under its
introduction rules.

The inhabitants of type I are the objects that can be obtained by a finite
number of applications of the type constructors.

Type I (under definition) can occur in any of the “domains” of its constructors.
However, the occurrences of I in τi must be in positive positions in order to assure the
well-foundedness of the datatype.

For instance, assuming that I does not occur in types A and B: I→B→I,
A→(B→I)→I or ((I→A)→B)→A→I are valid types for a constructor of I, but
(I→A)→I or ((A→I)→B)→A→I are not.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 21 / 36

Induction types - examples

The inductive type N : Set of natural numbers has two constructors

0 : N
S : N→ N

A well-known example of a higher-order datatype is the type O : Set of ordinal
notations which has three constructors

Zero : O
Succ : O→ O
Lim : (N→ O)→ O

To program and reason about an inductive type we must have means to analyze
its inhabitants.

The elimination rules for the inductive types express ways to use the objects of
the inductive type in order to define objects of other types, and are associated to
new computational rules.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 22 / 36

Recursors

When an inductive type is defined in a type theory the theory should automatically
generate a scheme for proof-by-induction and a scheme for primitive recursion.

The inductive type comes equipped with a recursor that can be used to
define functions and prove properties on that type.

The recursor is a constant RI that represents the structural induction
principle for the elements of the inductive type I, and the computation rule
associated to it defines a safe recursive scheme for programming.

For example, RN, the recursor for N, has the following typing rule:

Γ ` P : N→Type Γ ` a : P 0 Γ ` a′ : Πx :N. P x→P (Sx)
Γ ` RN P aa

′ : Πn :N. P n

and its reduction rules are

RN P aa
′ 0 → a

RN P aa
′ (Sx) → a′ x (RN P aa

′ x)

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 23 / 36

Proof-by-induction scheme

The proof-by-induction scheme can be recovered by setting P to be of type
N→Prop.

Let indN := λP :N→Prop.RN P we obtain the following rule

Γ ` P : N→Prop Γ ` a : P 0 Γ ` a′ : Πx :N. P x→P (Sx)
Γ ` indN P aa

′ : Πn :N. P n

This is the well known structural induction principle over natural numbers. It
allows to prove some universal property of natural numbers (∀n :N. Pn) by
induction on n.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 24 / 36

Primitive recursion scheme

The primitive recursion scheme (allowing dependent types) can be recovered by
setting P : N→Set.

Let recN := λP :N→Set.RN P we obtain the following rule

Γ ` T : N→Set Γ ` a : T 0 Γ ` a′ : Πx :N. T x→T (Sx)
Γ ` recN T a a

′ : Πn :N. T n

We can define functions using the recursors.

For instance, a function that doubles a natural number can be defined as follows:

double := recN (λn :N.N) 0 (λx :N. λy :N.S (S y))

This approach gives safe way to express recursion without introducing
non-normalizable objects.

However, codifying recursive functions in terms of elimination constants is quite
far from the way we are used to program. Instead we usually use general recursion
and case analysis.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 25 / 36

Case analysis

Case analyses gives an elimination rule for inductive types.

For instance, n : N means that n was introduced using either 0 or S, so we may
define an object case n of {0⇒ b1 | S⇒ b2} in another type σ depending on
which constructor was used to introduce n.

A typing rule for this construction is

Γ ` n : N Γ ` b1 : σ Γ ` b2 : N→σ

Γ ` case n of {0⇒ b1 | S⇒ b2} : σ

and the associated computation rules are

case 0 of {0⇒ b1 | S⇒ b2} → b1
case (Sx) of {0⇒ b1 | S⇒ b2} → b2 x

The case analysis rule is very useful but it does not give a mechanism to define
recursive functions.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 26 / 36

General recursion

Functional programming languages feature general recursion, allowing recursive
functions to be defined by means of pattern-matching and a general fixpoint
operator to encode recursive calls.

The typing rule for N fixpoint expressions is

Γ ` N→θ : s Γ, f : N→θ ` e : N→θ

Γ ` (fix f = e) : N→θ

and the associated computation rules are

(fix f = e) 0 → e[f := (fix f = e)] 0
(fix f = e) (Sx) → e[f := (fix f = e)] (Sx)

Of course, this approach opens the door to the introduction of non-normalizable
objects, but it raises the level of expressiveness of the language.

Using this, the function that doubles a natural number can be defined by

(fix double = λn : N. case n of {0⇒ 0 | S⇒ (λx : N.S (S (doublex)))})

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 27 / 36

About termination

Checking convertibility between types may require computing with recursive
functions. So, the combination of non-normalization with dependent types
leads to undecidable type checking.

To enforce decidability of type checking, proof assistants either require
recursive functions to be encoded in terms of recursors or allow restricted
forms of fixpoint expressions.

A usual way to ensure termination of fixpoint expressions is to impose
syntactical restrictions through a predicate Gf on untyped terms. This
predicate enforces termination by constraining all recursive calls to be applied
to terms structurally smaller than the formal argument of the function.

The restricted typing rule for fixpoint expressions hence becomes:

Γ ` N→θ : s Γ, f : N→θ ` e : N→θ

Γ ` (fix f = e) : N→θ
if Gf (e)

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 28 / 36

Coq

Recall that typing judgments in Coq are of the form E |Γ ` M : A, where E is
the global environment and Γ is the local context.

Computations are performed as series of reductions.

β-reduction for compute the value of a function for an argument:

(λx :A.M)N →β M [x := N]

δ-reduction for unfolding definitions:

M → δ N if (M := N) ∈ E |Γ

ι-reduction for primitive recursion rules, general recursion and case analysis

ζ-reduction for local definitions: let x := N in M → ζ M [x := N]

Note that the conversion rule is

E |Γ ` M : A E |Γ ` B : s
E |Γ ` M : B

if A =βιδζ B and s ∈ {Prop,Set,Type}

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 29 / 36

Natural numbers

Inductive nat :Set := O : nat

| S : nat -> nat.

The declaration of this inductive type introduces in the global environment not only the
constructors O and S but also the recursors: nat rect, nat ind and nat rec

Check nat rect.

nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Print nat ind.

nat_ind = fun P : nat -> Prop => nat_rect P

: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Print nat rec.

nat_rec = fun P : nat -> Set => nat_rect P

: forall P : nat -> Set,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 30 / 36

Lists

An example of a parametric inductive type: the type of lists over a type A.

Inductive list (A : Type) : Type :=
| nil : list A
| cons : A -> list A -> list A.

In this definition, A is a general parameter, global to both constructors. This kind
of definition allows us to build a whole family of inductive types, indexed over the
sort Type.

The recursor for lists:

Check list rect.

list_rect
: forall (A : Type) (P : list A -> Type),
P nil ->
(forall (a : A) (l : list A), P l -> P (cons a l)) ->
forall l : list A, P l

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 31 / 36

Vectors of length n over A.

Inductive vector (A : Type) : nat -> Type :=
| Vnil : vector A 0
| Vcons : A -> forall n : nat, vector A n -> vector A (S n).

Remark the difference between the two parameters A and n:
– A is a general parameter, global to all the introduction rules,
– n is an index, which is instantiated differently in the introduction rules.

The type of constructor Vcons is a dependent function.

Variables b1 b2 : B.

Check (Vcons b1 (Vcons b2 (Vnil))).

Vcons B b1 1 (Vcons B b2 0 (Vnil B)) : vector B 2

Check vector rect.

vector_rect

: forall (A : Type) (P : forall n : nat, vector A n -> Type),

P 0 (Vnil A) ->

(forall (a : A) (n : nat) (v : vector A n),

P n v -> P (S n) (Vcons A a n v)) ->

forall (n : nat) (v : vector A n), P n v
Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 32 / 36

Equality

In Coq, the propositional equality between two inhabitants a and b of the same
type A, noted a = b, is introduced as a family of recursive predicates “to be equal
to a”, parameterized by both a and its type A. This family of types has only one
introduction rule, which corresponds to reflexivity.

Inductive eq (A : Type) (x : A) : A -> Prop :=
| refl_equal : (eq A x x).

The induction principle of eq is very close to the Leibniz’s equality but not exactly
the same.

Check eq ind.

eq_ind : forall (A : Type) (x : A) (P : A -> Prop),
P x -> forall y : A, x = y -> P y

Notice that the syntax “a = b” is an abbreviation for “eq a b”, and that the
parameter A is implicit, as it can be inferred from a.

Inductive eq (A : Type) (x : A) : A -> Prop :=
| refl_equal : x = x.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 33 / 36

Relations as inductive types

Some relations can also be introduced as an inductive family of propositions. For
instance, the order n ≤ m on natural numbers is defined as follows in the
standard library:

Inductive le (n:nat) : nat -> Prop :=
| le_n : (le n n)
| le_S : forall m : nat, (le n m) -> (le n (S m)).

Notice that in this definition n is a general parameter, while the second
argument of le is an index. This definition introduces the binary relation
n ≤ m as the family of unary predicates “to be greater or equal than a given
n”, parameterized by n.

The Coq system provides a syntactic convention, so that “le x y” can be
written “x <= y”.

The introduction rules of this type can be seen as rules for proving that a
given integer n is less or equal than another one. In fact, an object of type
n ≤ m is nothing but a proof built up using the constructors le n and le S.

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 34 / 36

Logical connectives in Coq

In the Coq system, most logical connectives are represented as inductive types,
except for ⇒ and ∀ which are directly represented by→ and Π-types, negation
which is defined as the implication of the absurd and equivalence which is defined
as the conjunction of two implications.

Definition not := fun A : Prop => A -> False.

Notation "~ A" := (not A) (at level 75, right associativity).

Inductive True : Prop := I : True.

Inductive False : Prop := .

Inductive and (A : Prop) (B : Prop) : Prop :=
| conj : A -> B -> (and A B).

Notation "A /\ B" := (and A B) (at level 80, right associativity).

Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 35 / 36

Logical connectives in Coq

Inductive or (A : Prop) (B : Prop) : Prop :=
| or_introl : A -> (or A B)
| or_intror : B -> (or A B).

Notation "A \/ B" := (or A B) (at level 85, right associativity).

Inductive ex (A : Type) (P : A -> Prop) : Prop :=
| ex_intro : forall x : A, P x -> ex P.

exists x:A, P is an abbreviation of ex A (fun x:A => P).

Definition iff (P Q:Prop) := (P -> Q) /\ (Q -> P).

Notation "P <-> Q" := (iff P Q) (at level 95, no associativity).

The constructors are the introduction rules.
The induction principle gives the elimination rules.

All the (constructive) logical rules are now derivable.
Maria João Frade (DI-UM) Calculus of Inductive Constructions MFES 2008/09 36 / 36

