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FOL strengths and weaknesses

First-order logic is much more expressive than propositional logic,
having predicate and function symbols, as well as quantifiers.

First-order logic is a powerful language but, as all mathematical
notations, has its weaknesses. For instance,

I It is not possible to define finiteness or countability.

I In FOL without equality it is not possible to express “there exist n
elements satisfying ψ” for some fixed finite cardinal n.

I It is not possible to express reachability in graphs.

I FOL does not include types into the notation itself. One can provide
such information using the notation available in FOL, but expressions
become more complex.
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Second-order logic

Second-order logic (SOL) is the extension of first-order logic that allows
quantification of predicates.

The symbols of SOL are the same symbols used in FOL.

The syntax of SOL is defined by adding two rules to the syntax of
FOL.

ψ ::= . . . | ∀P.ψ | ∃P.ψ

The additional rules make SOL far more expressive than FOL.

The proof system of natural deduction for SOL consists of the
standard deductive system for FOL augmented with substitution rules
for second-order terms.

The standard semantics for SOL leads to a failure of completeness.
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Second-order logic

In SOL, it is possible to write formal sentences which say “the domain is finite”,

“the domain is of countable cardinality”, or “state v is reachable from state u”.

For instance,

“the domain is infinite” can be expressed by

∃R.ψ1 ∧ ψ2 ∧ ψ3 ∧ ψ4 where

ψ1
def= ∀x.∀y.∀z.R(x, y) ∧R(y, z)→ y = z ψ3

def= ∀x.∃y.R(x, y)
ψ2

def= ∀x.∀y.∀z.R(x, y) ∧R(z, y)→ x = z ψ4
def= ∃y.∀x.¬R(x, y)

“v is R-reachable from u” can be expressed by

∀P.∃x.∃y.∃z.¬φ1 ∨ ¬φ2 ∨ ¬φ3 ∨ ¬φ4 where

φ1
def= P (x, x) φ3

def= P (u, v)→ ⊥
φ2

def= P (x, y) ∧ P (y, z)→ P (x, z) φ4
def= R(x, y)→ P (x, y)
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Higher-order logic

There is no need to stop at second-order logic; one can keep going.

We can add to the language “super-predicate” symbols, which take as
arguments both individual symbols and predicate symbols. And then
we can allow quantification over super-predicate symbols.

And we can keep going further...

We reach the level of type theory.

Higher-order logics allows quantification over “everything”.

One needs to introduce some kind of typing scheme.

The original motivation of Church (1940) to introduce simple type
theory was to define higher-order (predicate) logic.

Maria João Frade (DI-UM) Beyond First-Order Logic MFES 2008/09 5 / 37



Simply typed lambda calculus - λ→
Types

Assume a denumerable set of type variables: α, β, . . .

Types are just variables or arrow types:

τ, σ ::= α | τ→σ

Terms

Assume a denumerable set of variables: x, y, z, . . .

Terms are built up from variables by λ-abstraction and application:

e, a, b ::= x | λx :τ.e | a b

Convention

The usual conventions for omitting parentheses are adopted:

application is left associative; and

the scope of λ extends to the right as far as possible.
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Simply typed lambda calculus - λ→
Free and bound variables

FV(e) denote the set of free variables of an expression e

FV(x) = {x}
FV(λx :τ.a) = FV(a)\{x}

FV(a b) = FV(a) ∪ FV(b)

A variable x is said to be free in e if x ∈ FV(e).

A variable in e that is not free in e is said to be bound in e.

An expression with no free variables is said to be closed.

Convention

We identify terms that are equal up to a renaming of bound variables
(or α-conversion). Example: λx :τ. yx = λz :τ. yz.

We assume standard variable convention, so, all bound variables are
chosen to be different from free variables.
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Simply typed lambda calculus - λ→
Typing

Functions are classified with simple types that determine the type of
their arguments and the type of the values they produce, and can be
applied only to arguments of the appropriate type.

We use contexts to declare the free variables: Γ ::= ∅ | Γ, x : τ
Typing rules

(var)
(x : σ) ∈ Γ
Γ ` x : σ

(abs)
Γ, x : τ ` e : σ

Γ ` λx :τ.e : τ→σ

(app)
Γ ` a : τ→σ Γ ` b : τ

Γ ` a b : σ

A term e is well-typed if there are Γ and σ such that Γ ` e : σ.
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Simply typed lambda calculus - λ→

Example of a typing derivation

z : τ, y : τ→τ ` y : τ→τ
(var)

z : τ, x : τ→τ ` z : τ
(var)

z : τ, y : τ→τ ` yz : τ
(app)

z : τ ` (λy :τ→τ.yz) : (τ→τ)→τ
(abs)

z : τ, x : τ ` x : τ
(var)

z : τ ` (λx :τ.x) : τ→τ
(abs)

z : τ ` (λy :τ→τ.yz)(λx :τ.x) : τ
(app)
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Simply typed lambda calculus - λ→

Substitution

Substitution is a function from variables to expressions.

[x1 := e1, . . . , xn := en] to denote the substitution mapping xi to ei
for 1 ≤ i ≤ n, and mapping every other variable to itself.

[~x := ~e] is an abbreviation of [x1 := e1, . . . , xn := en]
t[~x := ~e] denote the expression obtained by the simultaneous
substitution of terms ei for the free occurrences of variables xi in t.

Remark

In the application of a substitution to a term, we rely on a variable
convention. The action of a substitution over a term is defined with
possible changes of bound variables.

(λx :τ.yx)[y := wx] = (λz :τ.yz)[y := wx] = (λz :τ.wxz)
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Simply typed lambda calculus - λ→
Computation

Terms are manipulated by the β-reduction rule that indicates how to
compute the value of a function for an argument.

β-reduction →β is defined as the compatible closure of the rule

(λx :τ.a) b →β a[x := b]

I �β is the reflexive-transitive closure of →β .
I =β is the reflexive-symmetric-transitive closure of →β .
I terms of the form (λx :τ.a) b are called β-redexes

By compativel closure we mean that

if a→β a
′ , then ab→β a

′b
if b→β b

′ , then ab′ →β ab
′

if a→β a
′ , then λx :τ.a→β λx :τ.a′
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Simply typed lambda calculus - λ→

Usually there are more than one way to perform computation.

(λx :τ.f(fx))((λx :τ.x)z)

�
�*

(λx :τ.f(fx))((λy :τ→τ.yz)(λx :τ.x))

HHj
λx :τ.f(f((λy :τ→τ.yz)(λx :τ.x)))

Normalization

The term a is in normal form if it does not contain any β-redex, i.e.,
if there is no term b such that a→β b.

The term a strongly normalizes if there is no infinite β-reduction
sequence starting with a.
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Properties of λ→

Uniqueness of types

If Γ ` a : σ and Γ ` a : τ , then σ = τ .

Type inference

The type synthesis problem is decidable, i.e., one can deduce automatically
the type (if it exists) of a term in a given context.

Subject reduction

If Γ ` a : σ and a�β b , then Γ ` b : σ .

Strong normalization

If Γ ` e : σ, then all β-reductions from e terminate.
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Properties of λ→

Confluence

If a =β b , then a�β e and b�β e , for some term e .

Substitution property

If Γ, x : τ ` a : σ and Γ ` b : τ , then Γ ` a[x := b] : σ .

Thinning

If Γ ` e : σ and Γ ⊆ Γ′, then Γ′ ` e : σ.

Strengthening

If Γ, x : τ ` e : σ and x 6∈ FV(e), then Γ ` e : σ.
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Higher-order logic

Church used Simple Theory of Types to define higher-order logic.

In λ→we add the following:

prop as a basic type (to denote the sort of booleans)

⇒: prop→prop→prop (implication)

∀σ : (σ→prop)→prop (for each type σ)

This defines the language of higher-order logic (HOL).

Thus, an expression of type

τ→σ, represents a function from individuals of type τ to individuals
of type σ.

σ→prop, represents a unary predicate over individuals of type σ.

prop, is defined to be a formula.
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Higher-order logic

The induction principle can be expressed in HOL.

∀N→prop( λP :N→prop. (P0)
⇒ (∀N (λn :N.(P n⇒ P (S n))))
⇒ ∀N (λx :N.P x))

We use the following notation:

∀P :N→prop.( (P0)
⇒ (∀n :N. (P n⇒ P (S n)))
⇒ ∀x :N.P x)
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Deduction rules for HOL (following Church)

Natural deduction style

Rules are “on top” of simple type theory

Judgements are of the form: ∆ `Γ ψ

I ∆ = ψ1, . . . , ψn

I Γ is a λ→- context

I Γ ` ψ : prop, Γ ` ψ1 : prop, ..., Γ ` ψn : prop

I Γ is usually left implicit: ∆ ` ψ
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Deduction rules for HOL (following Church)

(axiom) ∆ ` φ if φ ∈ ∆

(⇒I)
∆, φ ` ψ

∆ ` φ⇒ ψ

(⇒E)
∆ ` φ⇒ ψ ∆ ` φ

∆ ` ψ

(∀I)
∆ ` ψ

∆ ` ∀x :σ. ψ if x : σ 6∈ FV(∆)

(∀E)
∆ ` ∀x :σ. ψ

∆ ` ψ[x := e] if e : σ

(conversion)
∆ ` ψ
∆ ` φ if φ =β ψ
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Deduction rules for HOL (following Church)

Church’s formulation of higher-order logic has additional things:

¬ : prop→ prop (negation).

Classical logic
∆ ` ¬¬φ

∆ ` φ

Define other connectives in terms of ⇒, ∀,¬ (classically)

Choice operator: ισ : (σ → prop)→ σ

Rule for ι
∆ ` ∃!x :σ.P x
∆ ` P (ισ P )

This (Church’s original higher-order logic) is basically the underlying logic
of the proof-assistants HOL and Isabelle.

However, the underlying formal language of Coq is a Calculus of
Constructions with Inductive Definitions
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Higher-order logic

The other connectives can be (constructively) defined in terms of ⇒ and ∀
as follows:

⊥ def= ∀α :prop.α

¬φ def= φ⇒ ⊥
φ ∧ ψ def= ∀α :prop.(φ⇒ ψ ⇒ α)⇒ α

φ ∨ ψ def= ∀α :prop.(φ⇒ α)⇒ (ψ ⇒ α)⇒ α

∃x :σ.φ def= ∀α :prop.(∀x :σ.φ⇒ α)⇒ α

For x, y : σ define the equality predicate =L called Leibniz equality.

(x =L y) def= ∀P :σ→prop. Px⇒ Py
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HOL - formal proof

It is not difficult to check that the intuitionistic elimination and
introduction rules for the logic connectives (∧,∨,⊥,¬ and ∃) are sound.

A ∧B ` A (∧-elimination)

Statements Justification

1. A ∧B ` ∀α :prop.(A⇒ B ⇒ α)⇒ α axiom (def)
2. A ∧B ` (A⇒ B ⇒ A)⇒ A ∀E 1 [α := A]

3. A ∧B ` A⇒ B ⇒ A lemma
4. A ∧B ` A ⇒E 2, 3

lemma

Statements Justification

1. A ∧B,A,B ` A axiom
2. A ∧B,A ` B ⇒ A ∀I 1
3. A ∧B ` A⇒ B ⇒ A ∀I 2
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HOL - formal proof

Leibniz equality is reflexive, symmetric and transitive.

Prove reflexivity and transitivity of =L. (easy)

Symmetry is tricky (we need to find an adequate predicate P ).

x = y ` y = x

Statements Justification

1. x = y ` ∀P :σ→prop. Px⇒ Py axiom (def)
2. x = y ` (λz :σ.z = x)x⇒ (λz :σ.z = x) y ∀E 1 [P := (λz :σ.z = x)]

3. x = y ` x = x⇒ x = y conversion
4. x = y ` x = x theorem
5. x = y ` y = x ⇒E 3, 4

The conversion rule is crucial here!
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The Coq proof-assistant

The Coq system is a proof-assistant is that
I allows the expression of mathematical assertions, and mechanically

checks proofs of these assertions;
I helps to find formal proofs;
I extracts a certified program from the constructive proof of its formal

specification.

The underlying formal language of Coq is a calculus of constructions
with inductive definitions:

the Calculus of Inductive Constructions (CIC)

(We will come back to this later.)
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The Coq proof-assistant

Main features:

Interactive theorem proving

Powerful specification language
(includes dependent types and inductive definitions)

Tactic language to build proofs

Type-checking algorithm to check proofs

More concrete stuff:

3 sorts to classify types: Prop, Set, Type

Inductive definitions are primitive

Elimination mechanisms on such definitions

Maria João Frade (DI-UM) Beyond First-Order Logic MFES 2008/09 24 / 37



The Coq proof-assistant

In CIC all objects have a type (or specification). There are

types for functions (or programs)

atomic types (especially datatypes)

types for proofs

types for the types themselves.

Types are classified by the three basic sorts

Prop (logical propositions)

Set (mathematical collections)

Type (abstract types)

which are themselves atomic abstract types.
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Coq syntax

λx :A. λ y :A→B. y x fun (x:A) (y:A->B) => y x

∀x :A.P x→P x forall x:A, P x -> P x

Inductive types

Inductive nat :Set := O : nat
| S : nat -> nat.

This definition yields: – constructors: O and S
– recursors: nat ind, nat rec and nat rect

General recursion and case analysis

Fixpoint double (n:nat) :nat :=
match n with
| O => O
| (S x) => S (S (double x))

end.
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Coq in brief

In the Coq system the well typing of a term depends on an environment
which consists in a global environment and a local context.

The local context is a sequence of variable declarations, written x : A (A is
a type) and “standard” definitions, written x := t : A (that is abbreviations
for well-formed terms).

The global environment is list of global declarations and definitions. This
includes not only assumptions and “standard” definitions, but also
definitions of inductive objects. (The global environment can be set by
loading some libraries.)

We frequently use the names constant to describe a globally defined
identifier and global variable for a globally declared identifier.

The typing judgments are as follows:

E |Γ ` t : A
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Declarations and definitions

The environment combines the contents of initial environment, the loaded
libraries, and all the global definitions and declarations made by the user.

Loading modules
Require Import ZArith.
This command loads the definitions and declarations of module ZArith which is
the standard library for basic relative integer arithmetic.

The Coq system has a block mechanism (similar to the one found in many
programming languages) Section id. ... End id. which allows to manipulate the
local context (by expanding and contracting it).

Declarations

Parameter max int : Z. Global variable declaration
Section Example.
Variables A B : Set. Local variable declarations
Variables Q : Prop.
Variables (b:B) (P : A->Prop).
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Declarations and definitions

Definitions

Definition min int := (1 - max int) Global definition

Let FB := B -> B. Local definition

Proof-terms

Lemma trivial : forall x:A, P x -> P x.
intros x H.
exact H.
Qed.

Using tactics a term of type forall x:A, P x -> P x has been created.

Using Qed the identifier trivial is defined as this proof-term and add to
the global environment.
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Computation

Computations are performed as series of reductions. The Eval command
computes the normal form of a term with respect to some reduction rules (and
using some reduction strategy: cbv or lazy).

β-reduction for compute the value of a function for an argument:

(λx :A. a) b →β a[x := b]

δ-reduction for unfolding definitions:

e → δ t if (e := t) ∈ E |Γ

ι-reduction for primitive recursion rules, general recursion. and case analysis

ζ-reduction for local definitions: let x := a in b → ζ b[x := a]

Note that the conversion rule is

E |Γ ` t : A E |Γ ` B : s
E |Γ ` t : B

if A =βιδζ B and s ∈ {Prop,Set,Type}
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Proof example

Section EX.

Variables (A:Set) (P : A->Prop).

Variable Q:Prop.

Lemma example : forall x:A, (Q -> Q -> P x) -> Q -> P x.

Proof.

intros x H H0.

apply H.

assumption.

assumption.

Qed.

Print example.

example =

fun (x : A) (H : Q -> Q -> P x) (H0 : Q) => H H0 H0

: forall x : A, (Q -> Q -> P x) -> Q -> P x

example = λx :A.λH :Q→ Q→P x.λH0:Q.H H0H0
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Proof example

Observe the analogy with the lambda calculus.

example = λx :A.λH :Q→ Q→P x.λH0:Q.H H0H0

A : Set, P : A→Prop, Q : Prop ` example : ∀x :A, (Q⇒ Q⇒ Px) ⇒ Q⇒ Px

End EX.

Print example.

example =

fun (A:Set) (P:A->Prop) (Q:Prop) (x:A) (H:Q->Q->P x) (H0:Q) => H H0 H0

: forall (A : Set) (P : A -> Prop) (Q : Prop) (x : A),

(Q -> Q -> P x) -> Q -> P x

` example : ∀A :Set, ∀P :A→Prop, ∀Q :Prop,∀x :A, (Q⇒ Q⇒ P x) ⇒ Q⇒ P x

Maria João Frade (DI-UM) Beyond First-Order Logic MFES 2008/09 32 / 37



Induction

Induction is a basic notion in logic and set theory.

When a set is defined inductively we understand it as being “built up
from the bottom” by a set of basic constructors.

Elements of such a set can be decomposed in “smaller elements” in a
well-founded manner.

This gives us principles of
I “proof by induction” and
I “function definition by recursion”.
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Mathematical induction

Mathematical induction is a method of mathematical proof typically used
to establish that a given statement is true of all natural numbers.

Axiom schema (induction)

P (0)∧ base case
(∀n : N. P (n)→ P (n+ 1)) inductive step
→ ∀x : N. P (x) conclusion
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Well-founded induction

well-founded relation

A binary predicate ≺ over a set A is a well-founded relation iff there does
not exist an infinite decreasing sequence

. . . ≺ a3 ≺ a2 ≺ a1

The following relation is well-founded over an inductive type I.

t′ ≺ t iff t′ is a strict subterm of t

Axiom schema (well-founded induction)

(∀n. (∀n′. n′ ≺ n→ P (n′))→ P (n)) inductive step
→ ∀x. P (x) conclusion
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Structural induction

Elements of inductive types are well-founded with respect to the structural
order induced by the constructors of the type.

Structural induction principle

To prove a desired property of an inductive type I,

Inductive step
Assume the inductive hypothesis, that for arbitrary term t, the desired
property holds for every strict subterm t′ of t.
Then prove that t has the property.

Since atomic terms do not have strict subterms, they are treated as
base cases.
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Coq quick start

The Coq Proof Assistant - A Tutorial
coq.inria.fr/V8.2/doc/html/tutorial.html

Coq in a Hurry (Yves Bertot, 2008)
cel.archives-ouvertes.fr/docs/00/33/44/28/PDF/coq-hurry.pdf

Introduction to Coq (Yves Bertot, 2005)
www.cs.chalmers.se/Cs/Research/Logic/TypesSS05/Extra/bertot sl.pdf

Coq-lab (C. Paulin & J.-C. Filliâtre, 2007)
www.lri.fr/∼paulin/TypesSummerSchool/lab.pdf
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