
Architecture as coordination:
the Orc perspective

L.S. Barbosa

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI-CCTC, UM, 2009

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Introduction

Architectural design as a coordination problem

A typical scenario: Applications acquire data from services,
compute over these data, invoke yet other services with the results.

Additionally,

• invoke multiple services simultaneously for failure tolerance

• repeatedly poll a service

• ask a service to notify the user when it acquires the
appropriate data.

• download a service and invoke it locally.

• ...

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Orc — orc.csres.utexas.edu/

A process calculus for service orchestration, ie

• A model for expressing coordination of independent services
using the following rationale: a Orc expression invokes
multiple (external or local) services to achieve a goal while
managing time-outs, priorities, and failures of services or
communications;

• assuming the form of a process calculus, with an operational
semantics based on a lts labelled by pairs (event, time),

• but, unlike classical concurrency models, introduces an
asymmetric relationship between a program and the services
that constitute its environment: An orchestration invokes and
receives responses from the external services, which do not
initiate communication.

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Orc — orc.csres.utexas.edu/

A full language for structured concurrent programming

• Structured programming: sequential component composition
(Dijkstra, 1968) vs concurrent component composition (cf,
paralelism, asynchrony, failures, timeouts, ...)

• functional flavour (yet handling many non-functional issues:
spawning of concurrent threads, time-outs, etc);

• particularly suitable to express workflows, internet scripting,
and, in general, service orchestration at large scale;

• efficient implementation, with easy integration with Java

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sites

A site represents a service or component, local or remote, that can
be invoked

• called like procedures, but with a strict calling discipline

• a call returns at most one value, which is publisehd

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sites

A site may respond, halt (ie, report it will not respond, eg, when
facing an invalid operation, system error or non data availability)
or neither respond nor halt

Special sites

• let (the identity site: publishes its own argument

• if (conditional): responds with a signal if its argument is true,
and otherwise halts.

• signal (equivalent to if (true))

• stop (equivalent to if (false))

• Rtimer(t), for t an integer: responds with a signal t milisecs
later

• ...

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Combinators

A Orc program consists of a set of definitions and a goal
expression which calls sites and publishes values.

Sites are orchestrated in an expression through a set of 4
combinators (ordered by decreasing precedence):

• pipelining: f > x > g

• parallel composition: f | g

• pruning: f < x < g

• sequential composition: f ; g

... no notions of thread, channel, process, synchronisation, etc.

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Parallel composition: f | g

example:
CNN(d) | BBC (d)

• f and g are evaluated independently

• publish all values from both

• no direct interaction between f and g (can communicate only
through sites).

• (commutative and associative)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Pipelining: f > x > g

example:
(CNN(d) | BBC (d)) > r > email(addr , r)

• ie, for all values published by f , invoke g

• publish only values. if any, returned by g

• execution of f continues in parallel with those of g

• (left associative)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Pruning: f < x < g

example:
email(addr , r) < r < (CNN(d) | BBC (d))

• ie, for some value published by g , invoke f

• f and g evaluate in parallel

• calls (in f) depending on x are suspended

• when g returns a first value, binds it ti x , terminates and
resume suspended calls.

• (right associative)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sequential composition: f ; g

example:
(CNN(d);BBC (d)) > x > email(addr , x)

• first invoke f

• if f publishes no values and then halts, then g executes.

• f halts if all site calls in f have either responded or halted, f
will never call any more sites and will never publish any more
values

• (associative)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Definitions

example:
def metronome(t) = signal | Rtimer(t) >> metronome(t)

• similar to declaration of functions

• unlike a site call, a function call does not suspend if one of its
arguments is a variable with no value

• a function call may publish more than one value: it publishes
every value published by the execution of f

• definitions may be recursive

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

The calculus

• bisimulation equalities (wrt to the lts sematics [Wehrman et al
2008])

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

The calculus

• almost a Kleene algebra

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

The functional core

• function definitions:
def sumto(n) = ifn < 1 then 0 else n + sumto(n − 1)

• variable bindings:
val x = 1 + 2
val y = x + x

val x = 1/0
val y = 4 + 5
if false then x else y

• patterns:
val ((a, b), c) = ((1, true), (2, false))

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

• Operators become site call:
1 + (2 + 3) to add(1, x) < x < add(2, 3)
if t then f else g to (if (b)f | not(b) > c > if (c)g) < b < t

• Bidings become combinator expressions:
val x = g f to f < x < g

• Function definitions become ... standard Orc definitions

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Orc expressions may contain functional expressions and vice-versa
example: (1 + 2) | (2 + 3) becomes
((let(x) | let(y)) < x < add(1, 2)) < y < add(2, 3)

example: (1|2) + (2|3) becomes
(add(x , y) < x < (1 | 2)) < y < (2 | 3)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Taking time seriously

example (interrupt):
email(addr , x) < x < (BBC (d) | Rtimer(5000) >> ”error”)

example (count replies within a time interval):
def callCount([]) = 0
def callCount(H : T) =

(H() >> 1 | Rtimer(10) >> 0) + callCount(T)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Fork-Join pattern

is expressed just as (P,Q), which equivales to
((x , y) < x < P) < y < Q

example (electronic auction):
def auction([]) = 0
def auction(b : bs) = max(b.ask(), auction(bs))

Note that all bidders are called simultaneously.
But what if one of them fails to reply?

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Fork-Join pattern

example (electronic auction with time-out):

def auction([]) = 0
def auction(b : bs) =
val bid = b.ask() | Rtimer(5000) >> 0
max(bid , auction(bs))

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Synchronization barrier

from

P() > x > F | Q() > x > G

to

(P(),Q()) > (x , y) > (F | G)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sequential Fork-Join pattern

example (print lines, signal the end):
F > x > println(x) >> stop ; signal

• A recursive fork-join solution requires lines be stored in a
traversable data structure like a list, rather than streamed as
publications from F

• Here, since ; only evaluates its RHS if the LHS does not
publish, suppress the publications on the LHS using stop

• Need to assume detection of F halting (what if the sending
party never closes the socket?)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Priority

• publish Qs response asap, but no earlier than 1 unit from now:
val (u,) = (Q(),Rtimer(1))

• call P,Q together and publish P´s response if obtained within
one unit; other wise publish the first response to come:
val x = P() | u

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Parallel Disjunction pattern

let(
val a = P
val b = Q
(a||b) | if (a) >> true | if (b) >> true
)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Network of iterative processes

example (iterative process: input from c , output to e):

def P(c , e) = c .get() > x > Compute(x) > y > e.put(y) >>
P(c , e)

example (network: input from c , d , output to e):

def Net(c , d , e) = P(c , e) | P(d , e)

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Routing

example (generalised time-out):

val c = Buffer()
repeat(c .get) <<

P > x > c .put(x) >> stop
| Rtimer(1000) >> c .closenb()

• allows P to execute for one second and then terminates it

• each value by P is routed through channel c to avoid end P

• after one second, Rtimer(1000) responds, triggering the call
c .closenb() which closes c and publishes a signal

• function repeat repeatedly take and publish values from c
until it is closed

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Routing

example (interrupt based on a signal from elsewhere):

val c = Buffer()
val done = Semaphore(0)
repeat(c .get) <<

P > x > c .put(x) >> stop
| done.acquire() >> c .closenb()

• dot notation

• instead of waiting for a timer wait for the semaphore done to
be released

• any call to done.release will terminate the expression, because
it will cause done.acquire()topublish

• but otherwise P executes normally and may publish any
number of values

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Our approach to Software Architecture

Architectural design as a coordination problem

• The main architectural challenge is to coordinate multiple,
heterogeneous, distributed, loosely-coupled, autonomous
entities with limited access through (often fragmentary)
published interfaces.

• recall web-service orchestration, choreography, etc.

The scenario:

• a palette of computational units treated as black
boxes

• and a canvas into which they can be dropped

• connections are established by drawing wires

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Our approach to Software Architecture

Recall our programme:

• Express architectural designs as coordination patterns for
service-based designs: interfaces as sets of ports through
which data flows; interaction is anonymous and handled by
complex connectors; clear separation between computation
and coordination

• Introduce two complementary perspectives:
• Orc: focus on action patterns, with ephemeral interaction

(in the tradition of process algebra)
• Reo: focus on (continued) interaction as a first-class citizen

• Emphasise formal models for the key notions: interaction,
behaviour, concurrency, building on top of process calculi and
automata theory.

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Conclusion

Where shall I go from here, please Your Majesty?
asked Alice

That depends a great deal on where you want to get to
said the Cat.

time for the mini-projects!

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Big projects

• Orc as an Haskell domain-specific language (paper at
[FOCLASA09])

• Reasoning about architectural patterns
• Express typical architectural patterns in Orc or Reo
• Build a ”patter deployer” wrt applications
• Establish patterns properties using the underlying calculi (may

involve some effort in developing suitable calculi)

• A calculus of coordination schemes
• motivation: how many catas are there in a ... cata?
• ... start revisiting the typical functional recursive patterns

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Revisiting recursive schemes

(from [Kitchin et al, 2009])

with associative reduction

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Revisiting recursive schemes

with associative and commutative reduction

Behavioural effects Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Small projects

• A folder from two stacks in Reo and Orc; variants.

• Express typical architectural styles in both Reo and Orc
Illustrate with an application.

• Publish-Subscribe
• Event-Bus
• Peer-2-Peer
• Blackboard

• Mapping Reo connectors to Orc
(homepages.cwi.nl/ proenca/webreo/)

• Feedback loop, Or-selector and Discriminator
• Ordering, Sequencer and Inhibitor

	Behavioural effects
	Introduction
	Basic Calculus
	Functional Core
	Orc(hestration) Examples
	Conclusion

