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Functional architectures

The architecture of functional designs

Interfaces: f :: · · · −→ · · ·
Components: f = · · ·
Connectors: ·, 〈 , 〉, ×, +, ...
Configurations: functions assembled by composition
Properties: invariants (pre-, post-conditions)
Behavioural effects: monads and Kleisli compostion
Underlying maths: universal algebra and relational calculus
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Functional architectures

In particular, we’ve studied several ways of glueing functions
... each one leading to a different way of aggregating information:

Pipelining: leading to function space BA (dependency)

A
f // B

g // C

Conjunction: leading to product A× B (spatial aggregation)

C
〈f ,g〉 // A× B

where 〈f , g〉 (c) = (f c , g c)
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Functional architectures

Disjunction: leading to coproduct (or disjoint union) A + B
(choice)

A + B = {1} × A ∪ {2} × B
[f ,g ] // C

where [f , g ] (x) = (x = (1, a))→ f a

(x = (2, b))→ g b

Constants & points:

empty () : A←− ∅
collapse ! : 1←− A

points a : A←− 1
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Functional architectures

The underlying ‘semantic universe’ assumes an elementary

• space of types and typed arrows ...

• with the structure of a (partial) monoid

• ... taken in the sequel as sets and set-theoretical functions

upon which combinators are defined by universal arrows

• associated to the product, sum and exponential constructions

• which behave ... as they should (formally, form a ccc)

but what is a category?

what does universal mean?
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A parenthesis to come later ...

( ... )
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Functional architectures

The algebra of functions provides

• provides a tool to think with when approaching a design
problem

• and the possibility of animating and iterating models

It also paves the way to the ability of calculating within the models
and transform them into effective programs. But this often
requires both

• a notational shift (eg, getting rid of variables!)

• a wider mathematical framework (namely, relations and the
relational calculus)
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Functional architectures

Example: modelling vs calculation

The explicit definition of the pairing function looks obvious but is
difficult to handle:

〈f , g〉 (c) = (f c , g c)

Now show:

that any function which builds a pair is a pairing function, ie,

〈π1 · h, π2 · h〉 = h
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Functional architectures

Proof. Suppose ha = 〈b, c〉. Then,

〈π1 · h, π2 · h〉a

= { pairing definition, composition }

(π1(ha), π2(ha))

= { definition of h }

(π1〈b, c〉, π2〈b, c〉)

= { definition of projection functions π1 and π2 }

(b, c)

= { definition of h again }

ha
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Functional architectures

Alternative universal definition

〈f , g〉 is the unique solution of equations

π1 · x = f and π2 · x = g

that is
k = 〈f , g〉 ⇔ π1 · k = f ∧ π2 · k = g

Note that

• ⇒ gives existence and ⇐ gives uniqueness
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Functional architectures

Proof.

h = 〈π1 · h, π2 · h〉

≡ { universal property with f = π1 · h, g = π2 · h }

π1 · h = π1 · h ∧ π2 · h = π2 · h

• simpler and smaller proof

• both proof and definition are generic and hold in other
modelling universes (eg, relations, partial maps or ordered
structures, ...)
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Question

Can such a calculational discipline, well established in functional
programming, be extended to reason about the architecture of
dynamic, reactive, state-based systems?

• persistence, i.e., internal state and state transitions

• continued interaction along the whole
computational process

• potential infinite behaviour

• observability through well-defined interfaces to
ensure flow of data
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Behaviour

Example: the Multiplier component

•

��	�

��
Multiplier

R

R

??
??

??
R

��
��

��

Its tranformational behaviour is captured by relation:

M : R←− R× R . (a× b) M (a, b)
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Behaviour

But its successful composition as a part in any larger system
requires the knowledge of other properties, eg

• does the Multiplier consume a and b in a specific order?

• does it consume whichever of a and b that arrives first?

• does it consume a and b only when both are available?

• does it consume a and b atomically?

• does it compute and produce the result atomically together
with its last input?
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Behaviour

Example: the Buffer component

•

��	�

��
Buffer

E

E

Behavioural constraints:

• the sequence ofdata items that goes in is exactly the same
that comes out: nothing is lost, the buffer generates no data
of its own, and the order of the data items is preserved.

• every data item can come out only after it goes in.
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Antecipating

B∗ – finite sequences

[nil, cons] : L←− 1 + B × L

In general:

a tool box:
eee

an assembly process: artifact
a←−

eee
artifact

• abstract data structures as (initial) algebras

• emphasis is on construction
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Antecipating

Bω – streams

〈at,m〉 : B × U ←− U

In general:

a lens: ©_©

an observation structure: ©_© universe
c←− universe

• abstract behavioural structures as (final) coalgebras

• emphasis is on observation
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Antecipating

• The lens describes the shape (or sginature) of legal
observations, whose collection corresponds to the system’s
generated behaviour.

• The observation structure describes the system’s one-step
dynamics; It’s a sort of behaviour generating machine.
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Automata

state space U
transition function m : U ←− U
attribute (or label) at : B ←− U

i.e.,
p = 〈at,m〉 : B × U ←− U

Notation:

u −→p u′ ≡ m u = u′

u ↓p b ≡ at u = b
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Automata

The behaviour of p at (from) a state u ∈ U is revealed by
successive observations (experiments):

[(p)] u = [at u, at (m u), at (m (m u)), ...]

[(p)] = cons · 〈at, [(p)] ·m〉

which means that

Automata behaviours are elements of Bω (i.e., streams)
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Streams as functions

Bω = {σ| σ : B ←− ω}

hd s = s 0 initial value
tl s n = s (n + 1) first derivative
s0 = s and sk+1 = tl (sk) high-order derivatives
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Streams as functions

Exercise. Prove that s n = sn 0.

s n

= { tl s definition }

tl s (n − 1)

= { induction }

tl s(n−1) 0

= { tl s definition }

sn 0
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Automata

Example: A twist automata

state space U = N× N
transition function m (n, n′) = (n′, n)
attribute at (n, n′) = n

i.e.,
twist = 〈π1, s〉

Exercise. Represent graphically this automata and describe its
behaviour.
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Automata

Example: A stream automata

state space U = Bω

transition function m s = tl s
attribute at s = hd s

i.e.,
ω = 〈hd, tl〉

Automata behaviours form themselves an automata
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Automata morphisms
A morphism

h : q ←− p

where

p = 〈at,m〉 : B × U ←− U

q = 〈at′,m′〉 : B × V ←− V

is a function h : V ←− U such that

U
p //

h
��

B × U

id×h
��

V
q // B × V

i.e.,
at = at′ · h and h ·m = m′ · h

Exercise. Derive the equational characterisation of h above.
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A stream automata

Th: Behaviour [(p)] is an automata morphism from p to ω

because

at = hd · cons · 〈at, [(p)] ·m〉

= { hd · cons = π1 }

at = π1 · 〈at, [(p)] ·m〉

= { × cancellation }

at = at

and

[(p)] ·m = tl · cons · 〈at, [(p)] ·m〉

= { tl · cons = π2 }

[(p)] ·m = π2 · 〈at, [(p)] ·m〉

= { × cancellation }

[(p)] ·m = [(p)] ·m



Motivation Streams and deterministic automata

Question

How to reason about automata behaviours?
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Sequences & Streams

Reasoning about B∗

len(map f l) = len l

where functions are defined inductively by their effect on B∗

constructors

len [] = 0

len(h : t) = 1 + len t

map f [] = []

map f (h : t) = f (h) : map f t
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Sequences & Streams
Proof (by structural induction).
Base case is trivial. Then,

len(map f (h : t))

= { map f definition }

len(f (h) : map f t)

= { len definition }

1 + len(map f t)

= { induction hypothesis }

1 + len t

= { len definition }

len(h : t)
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Sequences & Streams

Inductive reasoning requires that, by repeatedly unfolding the
definition, arguments become smaller, i.e., closer to the elementary
constructors

... but what happens if this unfolding process does not
terminate?
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Sequences & Streams
Consider

map f (h : t) = (f h) : map f t

gen f x = x : gen f (f x)

• definition unfolding does not terminate but ...

• ... reveals longer and longer prefixes of the result: every
element in the result gets uniquely determined along this
process

Strategy
To reason about circular definitions over infinite structures,
our attention shifts from argument’s structural shrinking to
the progressive construction of the result which becomes
richer in informational contents.
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Coinduction & Bisimulation

Reasoning about Bω: global view

Stream equality

〈∀ n : n ≥ 0 : s n = t n〉

can be established by induction over n
However, it

• requires a (workable) formula for arguments s n, t n, often not
available

• does not scale easily to other behaviour types
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Coinduction & Bisimulation

Reasoning about Bω: local view

Two streams s and r are observationally the same if

• they have identical head observations: hd s = hd r ,

• and their tails — tl s and tl r — support a similar verification.

Relation R : Bω ←− Bω is a (stream) bisimulation iff

〈x , y〉 ∈ R ⇒ hd x = hd y ∧ 〈tl x , tl y〉 ∈ R

(i.e., R is closed under the computational dynamics )
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Coinduction & Bisimulation

Th (coinduction): Bisimilarity (∼) coincides with stream
equality

Stream equality is, obviously, a bisimulation. Then,

s ∼ r

≡ { ∼ definition }

〈∃ R : Bω ←− Bω : R bisimulation : 〈s, r〉 ∈ R〉

⇒ { induction on n }

〈∃ R : Bω ←− Bω : R bisimulation : 〈∀ n : n ≥ 0 : 〈sn, rn〉 ∈ R〉〉

⇒ { R bisimulation }

〈∀ n : n ≥ 0 : sn 0 = rn 0〉

≡ { s n = sn 0 }

〈∀ n : n ≥ 0 : s n = r n〉

≡ { stream equality }

s = t
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Coinduction & Bisimulation

Coinduction as a proof principle:

• a systematic way of strengthening the statement to prove:
from equality s = r to a larger set R which contains pair 〈s, r〉

• ensuring that such a set is a bisimulation, i.e., the closure of
the original set under taking derivatives

Note that,

• for proving stream equality, coinduction is both sound and
complete

• moreover, it generalises from streams to a large class of
behaviour types
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Coinduction & Bisimulation
Exercise. Check that R below is a bisimulation

R = {〈map f (gen f x) , gen f (f x)〉| x ∈ ..., f ∈ ...}

• hd (map f (gen f x)) = f f x = hd (gen f (f x))

• tl (map f (gen f x)) = map f tl (gen f x) and
tl (gen f (f x)) = gen f (f f x). Thus,

〈tl (map f (gen f x)), tl (gen f (f x))〉 ∈ R

Remark:
In general, however, much larger relations have to be considered
and the construction of bisimulations is not trivial

Remark:
Note the proof can be presented in a equational style which leaves
implicit the bisimulation relation:
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Coinduction & Bisimulation

map f (gen f x)

= { gen definition }

map f (x : gen f (f x))

= { map definition }

(f x) : map f (gen f (f x)))

= { coinduction hypothesis }

(f x) : gen f (f (f x))

= { gen definition }

gen f (f x)

Remark:
The underlying bisimulation allows an instance of the theorem to
be used in a guarded context, i.e, in the tail of the stream.
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Coinduction & Bisimulation

Th: Behaviour [(p)] is the unique morphism from p to ω

because

f and g are automata morphisms

≡ { morphism definition }

hd ·f = at = hd ·g and tl ·f = f ·m , tl ·g = g ·m
≡ { definition of bisimulation }

relation R = {〈f u, g u〉| u ∈ U} is a bisimulation

≡ { coinduction }

〈∀ u : u ∈ U : f u = g u〉

≡ { function equality }

f = g
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An universal property

Existence and uniqueness of [(p)] can be captured by the following
universal property:

k = [(p)] ⇔ ω · k = (id× k) · p

• Existence ≡ definition principle (co-recursion)

• Uniqueness ≡ proof principle (co-induction)

From which:

cancellation ω · [(p)] = (id× [(p)]) · p
reflection [(ω)] = idω

fusion [(p)] · h = [(q)] if p · h = (id× h) · q
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An universal property

Example: fusion law

[(p)] · h = [(q)]

≡ { universal law }

ω · [(p)] · h = (id× ([(p)] · h)) · q

≡ { cancellation law and functoriality }

(id× [(p)]) · p · h = (id× [(p)]) · (id× h) · q

⇐ { function equality }

p · h = (id× h) · q
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An universal property

... from which the following (main) result is a direct corollary:

Th: morphisms preserve behaviour: [(p)] = [(q)] · h
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Definition by coinduction

Example: Stream gen, merge and twist

Bω
〈hd,tl〉 // B × Bω

B

gen

OO

M // B × B

id×gen

OO

gen = [(M)]

M carries the ‘genetic inheritance’ of the generating process

From a programming viewpoint it is the eureka! step
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Definition by coinduction

Coinductive Definition = behaviour given under all the observers

(id× gen)· M = 〈hd, tl〉 · gen

= { M definition }

(id× gen) · 〈id, id〉 = 〈hd, tl〉 · gen

= { × absorption and fusion }

〈id, gen〉 = 〈hd · gen, tl · gen〉

= { structural equality }

hd · gen = id ∧ tl · gen = gen

= { going pointwise }

hd (gen a) = a ∧ tl (gen a) = gen a
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Definition by coinduction

Stream merge

Bω
〈hd,tl〉 // B × Bω

Bω × Bω

merge

OO

g // B × (Bω × Bω)

id×merge

OO

g = 〈hd · π1, s · (tl× id)〉
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Definition by coinduction

Unfolding the diagram and going pointwise, we get an explicit
definition of stream merge:

hd merge (s, t) = hd s

tl merge (s, t) = merge (t, tl s)

Exercise. Define operators odd and even to build the stream of
elements in odd (resp., even) positions. Derive the corresponding
explicit definitions.
Exercise. Prove, by constructing a suitable bisimulation that
even ·merge = π1 .
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Definition by coinduction

Stream twist

Bω
〈hd,tl〉 // B × Bω

B × B

twist=[(g)]

OO

g // B × (B × B)

id×twist

OO

g = 〈π1, s〉

Exercise. Derive the explicit definition of this operator.
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Proof by coinduction

Lemma: merge · 〈even, odd〉 = id

• Start with R = {〈merge(even s, odd s), s〉| s ∈ Bω}
• Check the two conditions on bisimulations

• Clearly

hdmerge(even s, odd s) = hd even s = hd s

• The following pair is not in R:

〈tl merge(even s, odd s), tl s〉 = 〈merge(odd s, tl(even s)), tl s〉
= 〈merge(odd s, (even tl tl s)), tl s〉

• Extend R to R ∪ {〈merge(odd s, (even tl tl s)), tl s〉| s ∈ Bω}
and iterate the construction
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Proof by coinduction

• Check the two conditions on bisimulations
• Clearly

hdmerge(odd s, even tl tl s) = hd odd s = hd tl s

• The following pair is in R:

〈tl merge(odd s, (even tl tls)), tl tl s〉
= 〈merge(even tl tl s, tl odd s), tl tl s〉
= 〈merge(even tl tl s, odd tl tl s), tl tl s〉

Exercise. Repeat this proof avoiding the explicit construction of a
bisimulation.
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Proof by coinduction

Lemma: merge (aω, bω) = (ab)ω

i.e.

merge · (gen× gen) = twist
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Proof by coinduction

merge · (gen× gen) = twist

= { merge definition }

[(〈hd · π1, s · (tl× id)〉)] · (gen× gen) = [(〈π1, s〉)]

⇐ { coinduction fusion }

〈hd · π1, s · (tl× id)〉 · (gen× gen) = id× (gen× gen) · 〈π1, s〉

= { × absorption and reflection }

〈hd · gen · π1, s · ((tl · gen)× gen)〉 = id× (gen× gen) · 〈π1, s〉

= { tl · gen = gen and hd · gen = id }

〈π1, s · (gen× gen)〉 = id× (gen× gen) · 〈π1, s〉
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Proof by coinduction

〈π1, s · (gen× gen)〉 = id× (gen× gen) · 〈π1, s〉

= { × absorption }

〈π1, s · (gen× gen)〉 = 〈π1, (gen× gen) · s〉

= { s is natural, i.e., (f × g) · s = s · (g × f ) }

〈π1, s · (gen× gen)〉 = 〈π1, s · (gen× gen)〉

Exercise. Repeat this proof by explicitly building a suitable
bisimulation.
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