
Métodos Formais em Engenharia de Software

José Carlos Bacelar Almeida

Departamento de Informática 

Universidade do Minho

Unit-testing with JML

MI/MEI 2008/2009

1

Talk Outline

• Unit Testing

- software testing

- JUnit framework

- testing coverage

• JML-Unit

- basic usage

- tool support

2



• Goal: detect software failures so that defects may be corrected

• Problem: it is often impossible to test software systems under all  
possible inputs and admissible states 

“Testing is able to signal the presence of faults, but can’t 
demonstrate their absence”

• Usually performed on different levels:

- unit testing

- functional testing

- integration testing

- system testing, acceptance testing, ...

• Important to allow an early fault-detection.

Software Testing

Time Detected

Requirements Architecture Construction System Test Post-Release

Time 

Introduced

Requirements 1! 3! 5–10! 10! 10–100!

Architecture - 1! 10! 15! 25–100!

Construction - - 1! 10! 10–25!

3

Unit Testing

• Tests the minimal software component, or module (e.g. a Java 
class).

• Isolate each part of the program and show that the individual 
parts are correct.

• Unit test cases embody characteristics that are critical to the 
success of the unit --- to some extent, they act as 
specifications of appropriate/inappropriate uses.

• Typically done by software developers to ensure that the code 
meets software requirements and behaves as intended.

• Good unit test design produces test cases that cover all paths 
through the unit with attention paid to loop conditions.

• It relies on a sustainable process for ensuring that test case 
failures are reviewed daily and addressed immediately.

• Dependencies with other parts of the system (e.g. databases) is 
abstracted by mock-objects. 

4



JUnit framework

• Java framework that supports unit-testing.

• Some terminology:

- Test Case - set of conditions/variables/invocations that 
exercises the target code 

- Assertions - act of comparing the outcome of tests with 
expected results

- Fixture - appropriate environment for running the test cases

- Test Suite - collection of test cases

- Test Runner - program that runs the tests

• Availability:

- http://www.junit.org/

- current version: 4.5 

obs.: version 4.X uses Java annotations (a Java5 feature...). Thus, 
when using JUnit and JML, it is preferable to use version 3.8.2.

5

JUnit usage

• JUnit is Java framework to assist programmers in writing unit-
tests for their code 

• Basic usage steps:

- write a TestCase

- write a TestSuite

- run the tests

• Benefits of unit testing greatly depend on: 

- programmers commitment in writing quality test cases

- organisational procedures for evaluate and monitorise tests 
(build system; code/tests organization; ...)

• Recommended reading: 

- JUnit Primer - (http://clarkware.com/articles/
JUnitPrimer.html)

- JUnit - A Cook's Tour (http://junit.sourceforge.net/doc/
cookstour/cookstour.htm)

6



TestCase classes

• Collects the tests for the intended “code unit”

• Extends JUnit TestCase abstract class

• Each test is a public method with name “testXXX()”

• Outcome of tests is checked against expected values (assert 
methods)

- assertTrue/False, assert(Not)Equals, assert(Not)Same

- assertArray(Not)Equals

- fail

• (Test Fixture) initialisation of common objects under test is 
performed by overriding method “setUp()” (“tearDown()” to 
release them).

• (optional) static method “suite()” defines the default TestSuite for 
the test methods.

7

TestCase example
import junit.framework.TestCase;

public class ShoppingCartTest extends TestCase {

    private ShoppingCart cart;

    private Product book1;

    protected void setUp() {

        cart = new ShoppingCart();

        book1 = new Product("Pragmatic Unit Testing", 29.95);

        cart.addItem(book1);

    }

    /**

     * Tests emptying the cart.

     */

    public void testEmpty() {

        cart.empty();    

        assertEquals(0, cart.getItemCount());

    }

    ...

// collects test methods from this class...

    public static Test suite() {

        TestSuite suite= new TestSuite(MoneyTest.class);

        return suite;

    }

}

8



TestSuite classes

• TestSuite is the smallest execution unit in JUnit

• Is a composite of other tests (either TestCases or TestSuites)

• Adopt often an hierarchical structure (mirroring the package 
structure)

•import junit.framework.Test;

import junit.framework.TestSuite;

public class EcommerceTestSuite {

    public static Test suite() {

        TestSuite suite = new TestSuite();

  

        suite.addTestSuite(ShoppingCartTest.class);

        suite.addTest(CreditCardTestSuite.suite());

        return suite;

    }

    /**

     * Runs the test suite using the textual runner.

     */

    public static void main(String[] args) {

        junit.textui.TestRunner.run(suite());

    }

}

9

Code Coverage

• One of the most widely used approach to measure software 
testing quality is the adoption of some “coverage measure”

• Different possible measurements:

- function coverage (functions tested)

- line coverage (lines of code exercised by tests)

- branch coverage (coverage of decision points)

- path coverage (control flow paths)

- entry/exit coverage, ...

• Like any software metric, results should be taken with caution:

- can be blind to “that obvious problem”

- often very easy to trick

• Several (free) tools available (e.g. Emma)

10



JML-Unit

• A Behaviour Interface Specification Language for Java (Gary T. 
Leavens et al. [BCC+05])

• It permits to:

- specify behaviour of Java classes

- record design & implementation decisions

• ...by adding assertions to Java source code

• JML syntax is well integrated with Java:

- JML assertions are added as comments in .java files, 
between /*@ ... @*/, or after //@ ;

- Properties are specified as Java boolean expressions, extended 
with some operators (\old, \forall, \result, ... ),

- ...and some keywords (requires, ensures, signals, assignable, 
pure, invariant, non_null, ... ).

11

JML-Unit usage

• Pre and postconditions for methods are established through the 
“requires” and “ensures” clauses:

• where

- \old(balance) refers to the value of balance before the 
execution of the method;

- the multiple ensures clauses are equivalent to their 
conjunction;

- \result refers to the outcome of the method (return value).

/*@ requires amount >= 0; 

  @ ensures balance == \old(balance)-amount;

  @ ensures \result == balance; 

  @*/ 

public int debit(int amount) { 

... 

} 

12



JML-Unit (data generators)

• JML properties are boolean Java expressions...

• ...with the proviso that their evaluation is “side-effect free” (i.e. 
does not change the internal state).

• A method without side-effects is called pure. Programmers 
might signal methods as pure:

• The non_null clause signals that the result of getParent() can’t 
be null (can also be used in arguments and instance variables).

• JML property language is extended with binding operators: 
\forall, \exists, \sum, \product, \max, \min, ...

               E.g.        (\forall int i ; 0<=i && i<N ; a[i]==null)

public /*@ pure @*/ int getBalance(){...}

Directory /*@ pure non_null @*/ getParent(){...}

13

JML-Unit
• Unit tests are built around

- input data

- code execution

- result check

• JML runtime assertion check is clearly interesting for checking 
successful test results: “a method call is successful whenever its 
post-condition is valid (+class invariant)” (if input data validates 
precondition...)

• JmlUnit adds to the equation “JUnit+JML” some ingredients:

- systematically generates (JUnit) TestCases that exercise all 
public class methods;

- preconditions are used to filter out irrelevant method calls

- post-conditions/invariant violations capture test failures

• ...the user only needs to provide “interesting input data”

14



• 1st step: setup CLASSPATH

- include “jmlruntime.jar, jmljunitruntime.jar, junit.jar”

• 2nd step: run jmlunit on the target jml-annotated java file

• 3rd step: add test-values to  “MyJmlClass_JML_TestData.java” 

• 4th step: java-compile test case

• 5th step: jml-compile MyJmlClass.java

• 6th step: run the tests

$ jmlunit MyJmlClass.java

generates “MyJmlClass_JML_Test.java” and “MyJmlClass_JML_TestData.java”

JMLUnit usage

$ javac MyJmlClass_JML_*.java

$ jmlc MyJmlClass.java

$ jml-junit MyJmlClass_JML_TestCase

15

• Edit the “MyJmlClass_JML_TestData.java” file:

• Clonable objects (Strings, ints, ....)

• Non-Clonable objects

private org.jmlspecs.jmlunit.strategies.StrategyType

    vjava_lang_StringStrategy

    = new org.jmlspecs.jmlunit.strategies.StringStrategy()

        {protected java.lang.Object[] addData() {

              return new java.lang.String[] {

                  // replace this comment with test data if desired

"Jose", "Maria", "Manuel"

                  };

              }

         };

Test Data

    private org.jmlspecs.jmlunit.strategies.StrategyType

        vUserStrategy

        = new org.jmlspecs.jmlunit.strategies.NewObjectAbstractStrategy()

            {

                protected Object make(int n) {

                    switch (n) {

                      // replace this comment with test data if desired

  case 0: return new User(“user1”,”pass1”);

                      case 1: return new ...

//                    ...

                    }

16


