
Métodos Formais em Engenharia de Software

José Carlos Bacelar Almeida

Departamento de Informática

Universidade do Minho

JML: beyond the basics

MI/MEI 2008/2009

1

Talk Outline

• JML: beyond the basics

- visibility

- most used clauses...

• Problem: Aliasing

- aliasing of arguments

- reference escaping

• Specification Inheritance

- inheritance rules

- common mistakes

• Abstraction in Specifications

- data groups

- model fields and representation
...these slides were prepared by adopting/adapting “teaching
material” from the JML and ESC/Java2 sites.

2

Visibility for Specifications

• JML adopts the same visibility rules from Java (private,
protected, public)

•
public class Bag{
 private int n;
...
 //@ requires n > 0;
 public int extractMin(){ ... }

public class XXX {
 public int x; private int y; private /*@ spec_public @*/ int z;
...
 //@ requires x>z;
 public int fff(){ ... }

 //@ requires y>0;
 private int ggg(){ ... }

3

Multiple Specification Cases

private /*@ spec_public @*/ int age;

/*@ requires 0 <= a && a <= 150;
 @ assignable age;
 @ ensures age == a;
 @ also
 @ requires a < 0;
 @ assignable \nothing;
 @ ensures age == \old(age);
 @*/
 public void setAge(int a)
 { if (0 <= a && a <= 150) { age = a; } }

• It is often easier to split complex specifications in multiple cases

4

• A JML assertion is taken to be valid if and only if:

- does not cause an exception to be raised

- returns value “true”

• Exceptions should be avoided by the specifier and tools are
encouraged to warn users when they detect them.

• To avoid exceptions during evaluation:

- practice good Java coding habits

- write specifications that prevent such exception:

• use of short-circuit Java operators (“&&” and “||”)

• multiple clauses

Assertion Semantics

/*@ requires field != null;
 @ requires field.data > 0;
 @ ensures ...;
 @*/
 public void setField(MyObject field)
 { ... }

5

Nested Specification Groups

/*@ requires 0 < n;
 @ {|
 @ requires n % 2 != 0;
 @ ensures \result == (3*n+1)/2;
 @ also
 @ requires n % 2 == 0;
 @ ensures \result == n/2;
 @ |}
 @*/
public static /*@ pure @*/ int h(int n) {
...
}

• ...more about multiple specification cases...

• first “requires” clause distributes with each case

6

Ghost variables

• Ghost fields behave like normal Java fields, but only affects
specifications (are ignored by the Java compiler...)

public class XXX {
 //@ public ghost boolean started = false;
...
 //@ require !started
 public void start() {
 //@ set started = true;
 ...
 }
 //@ require started
 public void end() {
 //@ set started = false;
 ...
 }
}

7

History Constraints

• Invariants specify state properties:

• Sometimes, it is convenient to specify the admissible state
transformations:

public class MonotoneCounter {
! private /*@ spec_public @*/ int val;
! //@ initially val==0;
 //@ constraint val>\old(val);
 ...
! public void tickCounter() {
! ! val ++;
! }
}

public class MonotoneCounter {
! private /*@ spec_public @*/ int val;
! //@ invariant val>=0;
 ...
 //@ ensures val==\old(val)+1;
! public void tickCounter() {
! ! val ++;
! }
}

8

Frame conditions

• Frame conditions (assignable clause) restrict possible side-effects
of the methods (i.e. “where” the method is allowed to make
changes)

• They are a crucial ingredient when reasoning about programs...

• Default assignable clause: assignable \everything.

• Pure methods are implicitly assignable \nothing.

• Synonyms: modifies, modifiable; ensures \only_assigned(gender)

/*@ requires amount >= 0;
 assignable balance; //balance is an instance variable...
 ensures balance == \old(balance)-amount;
 @*/
public void debit(int amount) {
 balance = balance - amount;
}

...
//@ assume name!=null;
debit(50);
// ??? name!=null ???
...

9

Loop Invariants

• When reasoning about cycles, we need to annotate them with
invariants and variants.

• JML clauses:

• JML tools often translate these to “appropriate” assert/assume
clauses

• ...but appropriateness in this context does not always mean
“sound”...

int f = 1 ;
int i = 1 ;
/*@ loop_invariant i <= n &&
 f == (\product int j ; 1 <= j && j <= i ; j) ;
 decreases n-i;
 @*/
while (i < n) {
 i = i + 1 ;
 f = f * i ;
}

10

Exceptional Behaviour

• The “ensures” clause characterises only the “normal” control flow
of methods.

• To specify properties under “exceptional” results, the signals
clause can be used:

- meaning: if “BankAccountException” is thrown, balance remains
unchanged.

• By default, exceptions (declared as “throwable”) are allowed (the
default clause is “signals (Exception e) true;”)

• To disallow them, an explicit “signals (Exception e) false;” must
be given.

/*@ requires amount >= 0;
 signals (BankAccountException e) balance==\old(balance);
 ensures balance == \old(balance)-amount;
 @*/
public void debit(int amount) {
 balance = balance - amount;
}

11

Lightweight vs. Heavyweight Specifications

• In fact, JML distinguishes between two forms of specifications:

- lightweight specifications: specify “normal behaviour” (possibly
with “\signal” clauses)

- heavyweight specification: separate “normal” and “exceptional”
behaviour specification.

• “normal_behavior” has an implicit “signals (Exception e) false;”

• “exceptional_behavior” has an implicit “ensures false;”

/*@ normal_behavior
 requires amount <= balance;
 ensures ...
 also
 exceptional_behavior
 requires amount > balance
 signals (BankException e) ...
 @*/
 public int debit(int amount) throws BankException
 { ... }

12

• “signals_only E1, ..., En” limits the set of allowed exceptions.

• “signals_only E1, ..., En” is a synonymous for:

Warning: exceptional specifications are easy to get wrong!

signals (Exception e) e instanceof E1
 || ...
 || e instanceof En;

13

Aliasing

public class Counter {
! private /*@ spec_public @*/ int val;
! //@ invariant val>=0;
 ...
 //@ ensures val==\old(val)+c.val;
! public void addCounter(/*@ non_null @*/ Counter c) {
! ! val += c.val;
! }
}

• Does the following method satisfy its contract?

14

• ...in fact, ESC/Java warns about a post-condition violation...

• But this actually anticipates deeper concerns when aliasing
comes into play:

“Modular verification is not possible in the presence of aliasing”

• ...and Java doesn’t constrain “reference leaks” in methods...

public class MyClass {
! private /*@ spec_public @*/ int a[];
! //@ invariant (\forall int i; 0<=i && i<N; a[i]>=0);
 ...
 //@ ensures result==a;
! public int[] getArray() { return a; }
}

Aliasing

public class Counter {
! private /*@ spec_public @*/ int val;
! //@ invariant val>=0;
 ...
 //@ ensures val==\old(val)+c.val;
! public void addCounter(/*@ non_null @*/ Counter c) {
! ! val += c.val;
! }
}

• Does the following method satisfy its contract?

14

• Solution #1 (ESC/Java)

- explicitly handles the ghost “owner” field (declared in the
Object class)

• Solution #2 (jmlc)

- Universes Type System (P. Müller) - statically enforces the
“owner as modifier” discipline

• small overhead on the programmer (rep, peer and readonly
type annotations)

- rep - owner is the receiver;

- peer - same owner as the receiver.

• but excludes some unproblematic situations...

15

Non-Functional Requirements

• JML supports some non-functional requirements

- time and space constraints (\duration, \space, \working_space
operators)

- concurrency (\when, \lockset, ...)

- ...

• Moreover, clever uses of ghost variables often allow for sound
encodings of some of these requirements (specification patterns)

- Method-call sequencing constraints

- Non-interference

- ...

• And, and course, a new extension can always be proposed...

- Architectural constraints (embedded ACL in JML),

- ...

16

Exercises:

http://www.cs.ru.nl/~erikpoll/Teaching/JML/taxpayer.html

17

Inheritance of Specifications

• Inheritance of specifications occur when:

- a class extends another (sub-classing);

- implementation of interfaces.

• All the behaviour specifications are inherithed:

- invariants, initially and history constraints;

- methods pre and post-conditions (actually, all the specification
cases)

class Parent {
private /*@ spec_public @*/ int age;
//@ invariant age <= 150;
...
}
class Child extends Parent {
//@ invariant age <= 18;
...
}

18

behavioural sub-typing

• Behavioural subtyping:

- objects from subclass Child “behave like” objects from
superclass Parent.

• Principle of substitutivity [Liskov]:

code will behave “as expected” if we provide a Child object
where a Parent object was expected.

• Consider the following example:

class Parent {
//@ requires i >= 0;
//@ ensures \result >= i;
int m(int i){ ... }
}
class Child extends Parent {
//@ also
//@ requires i <= 10;
//@ ensures \result <= i;
int m(int i){ ... }
}

19

behavioural sub-typing

• We might expect that method “m()” on the Child class
“specialises” the pre-condition...

• ... but the resultant specification is:

• Which specifies a “special case” (it does not override the
inherited one):

class Child extends Parent {
/*@ requires i >= 0;
 @ ensures \result >= i;
 @ also
 @ requires i <= 10;
 @ ensures \result <= i;
 @*/
int m(int i){ ... }
}

class Child extends Parent {
/*@ requires i <= 0 || i >= 0;
 @ ensures \old(i >= 0) ==> \result >= i;
 @ ensures \old(i <= 0) ==> \result <= i;
 @*/
int m(int i){ ... }
}

20

behavioural sub-typing

- When we are interested in characterising the exact behaviour
of methods acting on objects with a specific dynamic type, we
can do something like:

public class Object {
/*@ ensures (this == o) ==> \result;
 @ ensures \typeof(this) == \type(Object)
 @ ==> (\result == (this==o));
 @*/
public boolean equals(Object o);
}

/*@ requires p instanceof Doctor
 @ || p instanceof Nurse; @*/
public boolean isHead(final Staff p) {
 if (p instanceof Doctor) {
 Doctor doc = (Doctor) p;
 return doc.getTitle().startsWith("Head");
 } else {
 Nurse nrs = (Nurse) p;
 return nrs.isChief();
 }
}

21

Datagroups

• Assignable clauses are crucial for reasoning about specifications,
but they tend to:

- expose implementation details:

- become very long:

• Datagroups provide an abstraction mechanism for assignable
clauses.

public class Timer{
 /*@ spec_public @*/ int time_hrs, time_mins, time_secs;
 /*@ spec_public @*/ int alarm_hrs, alarm_mins, alarm_secs;

 //@ assignable time_hrs, time_mins, time_secs;
 public void tick() { ... }

 //@ assignable alarm_hrs, alarm_mins, alarm_secs ;
 public void setAlarm(int hrs, int mins, int secs) { ... }
}

22

Datagroups

• Datagroups can be nested

• There’s a default datagroup objectState defined in “Object.java”

• It’s good practice to declare that all instance fields are in
objectState

public class Timer{
 //@ public model JMLDatagroup time, alarm;
 int time_hrs, time_mins, time_secs; //@ in time;
 int alarm_hrs, alarm_mins, alarm_secs; //@ in alarm;

 //@ assignable time;
 public void tick() { ... }

 //@ assignable alarm;
 public void setAlarm(int hrs, int mins, int secs) { ... }
}

//@ public model JMLDatagroup time, alarm;//@ in objectState;

23

Abstraction in Specifications

• Model fields:

- used for specification purposes;

- “represent” concrete fields.

obs: “instance” modifier overrides default Java’s “static” modifier
for interface fields.

• Actual fields can be “abstracted by” the model field:

public interface Gendered {
 //@ public model instance String gender;

 //@ ensures \result == gender.equals("female");
 public /*@ pure @*/ boolean isFemale();
}

public class Animal implements Gendered {
 protected boolean gen; //@ in gender;
 /*@ protected represents
 @ gender <- (gen ? "female" : "male");
 @*/
 public /*@ pure @*/ boolean isFemale() {
 return gen;
 }

24

Abstract types for Specifications

• JML defines a rich set of data-types often used during
specifications:

- Object and Value Collections (Set, Bag, Collection, ...)

- Maps, Relations, ...

• Access to these types requires:
//@ model import org.jmlspecs.models.*;

• In general, these are immutable “pure” Java objects (suitable for
using in specifications).

• ...they shall be used with a “functional flavour”...

//@ model import org.jmlspecs.models.*;

...
/*@
 @ ...
 @ ensures \result
 @ ==> theCollection.equals(\old(theCollection.insert(o)));
 @*/

25

Using Separate Files for Specifications

• Sometimes, it is convenient (or necessary) to separate the JML
annotations from the java files

- in situations where we have no source files (e.g. specifying a
library, or in an early specification phase);

- in order to keep java files “clean” (avoiding cluttering up the
code).

• It is recommended that

- “.spec” or “.jml” for the first case;

- “.refines-java” for the second (and include a “refines
XXX.java” annotation in it).

• When we start by specifying the class, it is recommended to
name it “XXX.java-refined” and include, in the implementation
“XXX.java” the refine clause “refines XXX.java-refined”.

26

