
Métodos Formais em Engenharia de Software

José Carlos Bacelar Almeida

Departamento de Informática

Universidade do Minho

Design by Contract and JML:
concepts and tools

MI/MEI 2008/2009

1

Talk Outline

• Design by Contract (DBC)

- contracts in software

- contract the design

• Java Modelling Language (JML)

- basic usage

- tool support

• References

these slides were prepared by adopting/adapting “teaching material”
from the JML and ESC/Java2 sites.

2

Design by Contract

• Introduced by Bertrand Meyer [Mey97] for Eiffel...

• ... as a systematic approach to specifying and implementing object-
oriented software components

• Interaction between these components is based on precisely
defined specifications of their mutual obligations - the contracts

• Contracts allow for:

- recording details of method responsibilities and assumptions

- document intention (specification) of software components (object
invariants; pre- and post-conditions of methods; etc.)

- avoiding constantly checking arguments

- assigning blame across interfaces

3

Contracts in Software (I)

 Input: the DL domain parameters q, r and g associated with the keys s and w!.

 Assumptions: private key s, DL domain parameters q, r and g, and public key w! are valid.

 Output: the derived shared secret value, which is a nonzero field element z " GF (q)

 Operation. The shared secret value z shall be computed by the following or an equivalent sequence of steps:

 1. Compute a field element z = exp(w!, s).

 2. Output z as the shared secret value.

O diagrama de use cases para a configuração dos parâmetros pode ser visualizado

na Figura 11 e os requisitos pretendidos são os seguintes:

* Possuir opção para ...

* ...

• Software Requirements Specification...

• Several methodologies targeted to different abstraction levels...
(often with an imprecise semantics).

• Purpose: refine them in order to reach clear and unambiguous
specifications for each component (contracts)

4

Contracts in Software (II)

/** Calcula valor que, quando multiplicado por ele próprio, se aproxima

 * do argumento passado à função.

 * @param x : argumento

 * @return valor calculado

 *//

public static double sqrt(double x)

{ … }

• Contracts are certainly needed to inform the programmer what
are the requirements during the coding process...

• ... but are equally valuable for documenting purposes:

- records the specification of the function;

- ...and details of the API usage.

• Utility depends heavily on the pertinence/quality of descriptions:

- What does it mean “close to”???

- Does it works with negative arguments?

- ...

5

Contracts in Software (III)

/*@ requires x >= 0.0;

 @ ensures Math.abs(\result*\result - x) < e;

 @*/

public static double sqrt(double x)

{ … }

Client

Implementor

Obligations Rights

Passes non-negative

number

Gets square

root approximation

Computes and

returns square root

Assumes argument

is non-negative

• Ideally, we expect a description language that has:

- Enough expressive power;

- Precise meaning;

6

Advantages of DBC

• Contracts are:

- more abstract than code (e.g. sqrt might be implemented using
linear search, Newton’s method, ...)

- not necessarily checkable (e.g. quantified over infinite types, or
just textual strings...)

- ...but in most cases it is possible to automatically generate
verification code for the tests

- can always be up-to-date with implementations during development

• Allow blame assignment. Who is to blame if:

- Pre-condition doesn’t hold?

- Post-condition doesn’t hold?

• Avoids inefficient defensive checks:

//@ requires a!=null && x!=null;

//@ requires (* a is sorted *);

public static int binarySearch(Thing[] a, Thing x)

{ … }

7

More Advantages...

• Modularity of Reasoning:

...in order to understand this code we shall:

- read the methods contracts...

- instead of looking at “all” the code...

• Evaluate system quality through rigourous testing (specification-
driven code) or through formal verification of key subsystems

• Refine design by refining contracts

• (reverse DBC) Can be used to understand/document/improve/
maintain an existing code base

…

source.close();

dest.close();

getFile().setLastModified(loc.modTime().getTime());

…

8

Java Modelling Language (JML)

• A Behaviour Interface Specification Language for Java (Gary T.
Leavens et al. [BCC+05])

• It permits to:

- specify behaviour of Java classes

- record design & implementation decisions

• ...by adding assertions to Java source code

• JML syntax is well integrated with Java:

- JML assertions are added as comments in .java files,
between /*@ ... @*/, or after //@ ;

- Properties are specified as Java boolean expressions, extended
with some operators (\old, \forall, \result, ...),

- ...and some keywords (requires, ensures, signals, assignable,
pure, invariant, non_null, ...).

9

Pre- and Post-Conditions

• Pre and postconditions for methods are established through the
“requires” and “ensures” clauses:

• where

- \old(balance) refers to the value of balance before the
execution of the method;

- the multiple ensures clauses are equivalent to their
conjunction;

- \result refers to the outcome of the method (return value).

/*@ requires amount >= 0;

 @ ensures balance == \old(balance)-amount;

 @ ensures \result == balance;

 @*/

public int debit(int amount) {

...

}

10

JML properties

• JML properties are boolean Java expressions...

• ...with the proviso that their evaluation is “side-effect free” (i.e.
does not change the internal state).

• A method without side-effects is called pure. Programmers
might signal methods as pure:

• The non_null clause signals that the result of getParent() can’t
be null (can also be used in arguments and instance variables).

• JML property language is extended with binding operators:
\forall, \exists, \sum, \product, \max, \min, ...

 E.g. (\forall int i ; 0<=i && i<N ; a[i]==null)

public /*@ pure @*/ int getBalance(){...}

Directory /*@ pure non_null @*/ getParent(){...}

11

Expressions and their Meaning (non-exhaustive list)

12

Invariants

• Invariants (aka class invariants) are properties that must be
maintained by all methods.

(spec_public turns visibility of balance public for specification purposes)

• (Conceptually) Invariants are implicitly included in all pre- and
post-conditions.

• Invariants must also be preserved if an exception is thrown! (they
must hold whenever the control is outside object’s methods)

• Invariants allow to define:

- acceptable states of an object (helps in understand the code),

- and consistency of an object’s state (valuable for testing/
debugging).

public class Wallet {

 public static final short MAX_BAL = 1000;

 private short /*@ spec_public @*/ balance;

 /*@ invariant 0 <= balance &&

 balance <= MAX_BAL;

 @*/

...

}

13

assert and assume clauses

• JML assert and assume clauses allow to attach a property to a
given program location.

• The distinction is purely informative:

- in an assert clauses, we take responsible for validating the
property;

- in assume, the property should follow from others guaranties
(e.g. pre-conditions or methods post-conditions).

• In short, it specifies who should be blamed if the property does
not hold.

 int x;

 ...

 //@ assert x>=0;

 x = f(x);

 ...

 //@ assume x<0;

 ...

14

DBC and JML

• DBC can roughly be seen as an expansion of pre- and post-
conditions as assert and assume clauses.

• ...expanded into... (JML tools):

//@ requires x >= 0.0;

//@ ensures Math.abs(\result*\result - x) < e;

public static double sqrt(double x)

{ … }

...

b = sqrt(a);

...

public static double sqrt(double x) {

 //@ assume x>=0.0;

 …

 //@ assert Math.abs(r*r - x) < e;

 return r;

}

...

//@ assert a>=0;

b = sqrt(a);

//@ assume Math.abs(b*b - a) < e;

...

15

public class ArrayOps {

private /*@ spec_public @*/ Object[] a;

//@ public invariant 0 < a.length;

/*@ requires 0 < arr.length;

@ ensures this.a == arr;

@*/

public void init(Object[] arr) {

this.a = arr;

}

}

ESC/Java2

Warnings

Daikon

Data trace file

JML Annotated Java

JACK, Jive, Krakatoa,

KeY, LOOP

Correctness proof
Class file

jmlc

Unit tests

jmlunit

jmldoc

Web pages

Bogor

Model checking
XVP

JML Tool Universe

16

Runtime Assertion Checking (jmlc/jmlrac/jmlunit)

• jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. (Iowa State
Univ.)

• Explore the fact that JML assertions are essentially Java boolean
expressions.

• Translates JML assertions into runtime checks

- performed during execution;

- all assertions (occurring on the execution path) are tested

- any violation of an assertion produces an (informative) error

• Checks binding expressions (with finite domains)

• Generates complicated test-code for free (abnormal behaviour,
inherited contracts, etc.)

• Particularly powerful when combined with unit testing (jmlunit):

- cheap & easy to do as part of existing testing practice

- better testing and better feedback, because more properties
are tested, at more places in the code

17

Using JML-tools (JML2)

• JML-tools offer replacements to the standard Java compiler and
runtime:

- jmlc --- compiles an instrumented version of the code where
JML-assertions are explicitly checked. Replaces javac command;

- jmlrac --- environment for the execution of jmlc compiled
programs (actually, a short script that adds jmlruntime.jar to the
class path. Replaces java command.

• and also:

- jmldoc

- jmlunit

- ...

$ jmlc -Q -e Prog.java

$ jmlrac Prog

...

Exception in thread "main"

org.jmlspecs.jmlrac.runtime.JMLInternalPreconditionError: by method

Prog.myMethod

! at Prog.main(Prog.java:1284)

18

Extended Static Checking (ESC/Java2)

• ESC/Java was originally developed by Rustan Leino (DEC SRC), and
extended by David Cok and Joe Kirini (Eastman Kodak Company,
University College Dublin).

• Extended static checking = fully automated program verification,
with some compromises to achieve full automation.

• It verifies the code at compile time:

- generates proof-obligations from the annotated code;

- uses an automated prover (Simplify, ...) to check if generated
conditions are provable.

• But, since it is intended to be run in a fully automated manner, has
some shortcomings:

- it is not complete - ESC/Java may warn of errors that are
impossible;

- it is not sound - ESC/Java may miss an error that is actually
present.

• ...but finds lots of potential bugs quickly (good at proving absence of
runtime exceptions and verifying relatively simple properties).

19

Using ESC/Java2

• ESC/Java2 can be used:

- as a stand-alone tool;

- as an eclipse plugin... (real-time verification)

• Possible problems detected during analysis are always referred as
warnings --- the programmer should judge their pertinence (real
problem, lack of capability to derive the property, ...)

• obs.: default loop treatment is very primitive... (escjava unfolds its
definition a small number of times).

$ escjava2 Prog.java

...

Prog: Prog() ...

 [0.033 s 17264696 bytes] passed

 [1.723 s 17264696 bytes total]

1 warning

20

Static Checking vs. Runtime Checking

• ESC/Java2 checks specs at compile-time, jmlrac checks specs at
run-time.

• ESC/Java2 proves correctness of specs, jml only tests correctness
of specs. Hence:

- ESC/Java2 is independent of any test suite, results of runtime
testing are only as good as the test suite;

- ESC/Java2 provides higher degree of confidence.

• But, as soon as we depend on complex properties, ESC/Java2 is no
longer able to deal with them. Jmlrac can (maybe with a
perfomance penalty..., but that is something admissible in a testing
phase).

21

Tool Download and Instalation

• Both tools are available for the major operating systems (macosx,
linux, windows, ...)

• JML toolset:

- http://sourceforge.net/projects/jmlspecs/

• ESC/Java2 standalone tool:

- http://kind.ucd.ie/products/opensource/ESCJava2/

• ESC/Java2 Eclipse plugin (eclipse update site):

- http://kind.ucd.ie/products/opensource/ESCJava2/escjava-eclipse/updates

22

References

• Meyer, B. - Applying "Design by Contract" - IEEE Computer
(1992), 25(10): 40-51

• Leavens, G.; Poll, E.; Clifton, C.; Cheon, Y.; Ruby, C.; Cok, D.;
Mueler, P.; Kiniry, J. & Chalin, P. - JML Reference Manual -
(Draft), Nov. 2007

• Burdy, L.; Cheon, Y.; Cok, D.; Ernst, M.; Kiniry, J.; Leavens, G.;
Leino, K. & Poll, E. - An overview of JML tools and applications -
International Journal on Software Tools for Technology Transfer
(STTT), Springer, 2005, 7, 212-232.

• Chalin, P.; Kiniry, J.; Leavens, G. & Poll, E. - Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2
- Fourth International Symposium on Formal Methods for
Components and Objects (FMCO'05), Springer, 2005, 342-363

23

Demo...

24

Exercises:

http://www.cs.ru.nl/~erikpoll/Teaching/JML/bagamount.html

25

