Métodos Formais em Engenharia de Software

Design by Contract and JML:
concepts and tools

José Carlos Bacelar Almeida

Departamento de Informatica
Universidade do Minho

MI/MEI 2008/2009

Talk Outline

® Design by Contract (DBC)
- contracts in software
- contract the design
® Java Modelling Language (JML)
- basic usage
- tool support

® References

these slides were prepared by adopting/adapting “teaching material”
from the JML and ESC/Java?2 sites.

Design by Contract

® Introduced by Bertrand Meyer [Mey97] for Eiffel...

® .. as a systematic approach to specifying and implementing object-
oriented software components

® Interaction between these components is based on precisely
defined specifications of their mutual obligations - the contracts

® Contracts allow for:
— recording details of method responsibilities and assumptions

— document intention (specification) of software components (object
invariants; pre- and post-conditions of methods; etc.)

— avoiding constantly checking arguments

— assigning blame across interfaces

Contracts in Software (I)

® Software Requirements Specification...

O diagrama de use cases para a configuracao dos parametros pode ser visualizado
na Figura 11 e os requisitos pretendidos sdo os seguintes:

* Possuir opgao para ...
*

® Several methodologies targeted to different abstraction levels...
(often with an imprecise semantics).

® Purpose: refine them in order to reach clear and unambiguous
specifications for each component (contracts)

Input: the DL domain parameters ¢, r and g associated with the keys s and w'.
Assumptions: private key s, DL domain parameters ¢, and g, and public key w' are valid.

Output: the derived shared secret value, which is a nonzero field element z € GF (q)
Operation. The shared secret value z shall be computed by the following or an equivalent sequence of steps:
1. Compute a field element z = exp(w', s).

2. Output z as the shared secret value.

\

Contracts in Software (II)

® Contracts are certainly needed fo inform the programmer what
are the requirements during the coding process...

® ... but are equally valuable for documenting purposes:

-
/** Calcula valor que, quando multiplicado por ele préprio, se aproxima
* do argumento passado a funcao.
* @param x : argumento
* @return valor calculado
*//
public static double sqrt(double x)
{ ..}
\.

— records the specification of the function;
— ..and details of the API usage.

® Utility depends heavily on the pertinence/quality of descriptions:
— What does it mean “close t0”???

— Does it works with negative arguments?

Contracts in Software (III)

® Ideally, we expect a description language that has:
— Enough expressive power;

- Precise meaning;

/*@ requires x >= 0.0;
@ ensures Math.abs(\result*\result - x) < e;

@x/
public static double sqrt(double x)
{ ..}
Obligations Rights
Client Passes non-negative | Gets square
number root approximation
Computes and Assumes argument
Implementor) ;
returns square root Is non-negative

Advantages of DBC

® Contracts are:

— more abstract than code (e.g. sqrt might be implemented using
linear search, Newtons method, ...)

— not necessarily checkable (e.g. quantified over infinite types, or
just textual strings...)

— ..but in most cases it is possible to automatically generate
verification code for the tfests

- can always be up-to-date with implementations during development
® Allow blame assignment. Who is to blame if:

— Pre-condition doesnt hold?

— Post-condition doesnt hold?
® Avoids inefficient defensive checks:

//@ requires a!=null && x!=null;

//@ requires (* a is sorted *);

public static int binarySearch(Thing[] a, Thing x)
{ .}

More Advantages...

® Modularity of Reasoning:

source.close();
dest.close();
getFile().setLastModified(loc.modTime() .getTime());

..in order to understand this code we shall:
- read the methods contracts...
— instead of looking at “all” the code...

® Evaluate system quality through rigourous testing (specification-
driven code) or through formal verification of key subsystems

® Refine design by refining contracts

® (reverse DBC) Can be used to understand/document/improve/
maintain an existing code base

Java Modelling Language (JML)

® A Behaviour Interface Specification Language for Java (Gary T.

Leavens et al. [BCC+05])

® It permits fo:

- specify behaviour of Java classes

- record design & implementation decisions

® ..by adding assertions to Java source code

® JML syntax is well integrated with Java:

— JML assertions are added as comments in .java files,
between /*@ .. @*/, or after //@ ;

- Properties are specified as Java boolean expressions, extended
with some operators (\old, \forall, \result, ...),

— ..and some keywords (requires, ensures, signals, assignable,
pure, invariant, non_null, ...).

Pre- and Post-Conditions

® Pre and postconditions for methods are established through the
“requires” and “ensures” clauses:

7

/*@ requires amount >= 0;

public int debit(int amount) {

}

\old(balance)-amount;
balance;

@ ensures balance
@ ensures \result
@x/

\

® where
— \old(balance) refers to the value of balance before the
execution of the method;
-~ the multiple ensures clauses are equivalent fo their
conjunction;
— \result refers to the outcome of the method (return value).

JML properties

® JML properties are boolean Java expressions...

® ..with the proviso that their evaluation is “side-effect free” (i.e.
does not change the internal state).

® A method without side-effects is called pure. Programmers

might signal methods as pure:

public /*@ pure @*/ int getBalance(){...}

Directory /*@ pure non_null @*/ getParent(){...}

® The non_null clause signals that the result of getParent() can't
be null (can also be used in arguments and instance variables).

@ JML property language is extended with binding operators:
\forall, \exists, \sum, \product, \max, \min, ...

E.g.

(\forall int i ; O<=i && i<N ; a[i]==null)

Expressions and their Meaning (non-exhaustive list)

JML Expression

Meaning

requires p ;
ensures p ;
signals (E e) p;

loop_invariant p;

invariant p ;

\result ==e

\old(v)

(\product int x ; p(x); e(x))
(\sum int x ; p(x); e(x))
(\min int x ; p(x); e(x))
(\max int x ; p(x); e(x))
\forall type x ; p(x) ; q(x))
\exists type x ; p(x) ; q(x))
==> q

<==q

<==> q

<=!=> q

'o'g g g o~~~

p is a precondition for the call

p is a postcondition for the call

When exception type E is raised by

the call, then p is a postcondition

p is a loop invariant

p is a class invariant (sgee next section)

e is the result returned by the call

the value of v at entry to the call
[Trcpx) ©(x); ie., the product of e(x)

> rep(x) ©(x); 1.e., the sum of e(x)
minyecp(x) € x); i.e., the minimum of e (x)
MaX,cp(x) ©(x); i.e., the maximum of e(x)
vx € p(z) : q(x)

dx € p(z) : q(x)

P=49q

q=p

P=9q

~(p & q)

Invariants

® Invariants (aka class invariants) are properties that must be
maintained by all methods.

-
public class Wallet {

public static final short MAX BAL = 1000;
private short /*@ spec_public @*/ balance;
/*@ invariant 0 <= balance &&
balance <= MAX BAL;
ex/

(spec_public turns visibility of balance public for specification purposes)

® (Conceptually) Invariants are implicitly included in all pre- and
post-conditions.

® Invariants must also be preserved if an exception is thrown! (they
must hold whenever the control is outside objects methods)

® Invariants allow to define:
— acceptable states of an object (helps in understand the code),

— and consistency of an objects state (valuable for testing/
debugging).

assert and assume clauses

® JML assert and assume clauses allow to attach a property to a
given program location.

int x;

//@ assert x>=0;
x = £(x);

//@ assume x<0;

® The distinction is purely informative:

— in an assert clauses, we fake responsible for validating the
property;

— in assume, the property should follow from others guaranties
(e.g. pre-conditions or methods post-conditions).

® In short, it specifies who should be blamed if the property does
not hold.

DBC and JML

® DBC can roughly be seen as an expansion of pre- and post-

conditions as assert and assume clauses.

7

N
//@ requires x >= 0.0;
//@ ensures Math.abs(\result*\result - x) < e;
public static double sqgrt(double x)
{ .. }
b = sqrt(a);
| 2o°)
® ..expanded into... (JML tools):
e N
public static double sqrt(double x) {
//@ assume x>=0.0;
//@ assert Math.abs(r*r - x) < e;
return r;
}
//@ assert a>=0;
b = sqrt(a);
//@ assume Math.abs(b*b - a) < e;
__ J

JML Tool Universe

|Field Detail

SATURATED

18 SATURATED

Method Detail

JML Annotated Java

public class ArrayOps {

j m Id o C private /*@ spec_public @*/ Object]] a;

arin /l@ public invariant 0 < a.length;

Web pages /*@ requires 0 < arr.length;

@ ensures this.a == arr;
@/
public void init(Object[] arr) {

j m I u n |t this.a = arr;

}
Unit tests 4% :

iml
Jmie Bogor
Class file

Model checking
XVP

Warnings

%JavaZ

Daikon

R Data trace file

JACK, Jive, Krakatoa,
KeY, LOOP

Correctness proof

Runtime Assertion Checking (jmlc/jmlrac/ jmlunit)
® jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. (Iowa State
Univ.)

® Explore the fact that JML assertions are essentially Java boolean
expressions.

® Translates JML assertions into runtime checks
- performed during execution;
— all assertions (occurring on the execution path) are tested
— any violation of an assertion produces an (informative) error
® Checks binding expressions (with finite domains)

® Generates complicated test-code for free (abnormal behaviour,
inherited contracts, etc.)

® Particularly powerful when combined with unit testing (jmlunit):
— cheap & easy to do as part of existing testing practice

— better testing and better feedback, because more properties
are tested, at more places in the code

Using JML-tools (JML2)

® JML-tools offer replacements to the standard Java compiler and
runtime:

- jmlc --- compiles an instrumented version of the code where
JML-assertions are explicitly checked. Replaces javac command;

— jmlrac --- environment for the execution of jmlc compiled
programs (actually, a short script that adds jmlruntime.jar to the
class path. Replaces java command.

-
$ jmlc -Q -e Prog.java
$ jmlrac Prog

Exception in thread "main"
org.jmlspecs.jmlrac.runtime.JMLInternalPreconditionError: by method
Prog.myMethod

at Prog.main(Prog.java:1284)

.

® and also:
— jmldoc
— jmlunit

Extended Static Checking (ESC/Java2)

® ESC/Java was originally developed by Rustan Leino (DEC SRC), and
extended by David Cok and Joe Kirini (Eastman Kodak Company,
University College Dublin).

® Extended static checking = fully automated program verification,
with some compromises to achieve full automation.

® It verifies the code at compile time:
- generates proof-obligations from the annotated code;

— uses an automated prover (Simplify, ...) to check if generated
conditions are provable.

® But, since it is intended to be run in a fully automated manner, has
some shortcomings:

— it is not complete - ESC/Java may warn of errors that are
impossible;

— it is not sound - ESC/Java may miss an error that is actually
present.

® ..but finds lots of potential bugs quickly (good at proving absence of
runtime exceptions and verifying relatively simple properties).

Using ESC/Java2

® ESC/Java2 can be used:
— as a stand-alone tool;

r

.

$ escjava2 Prog.java

Prog: Prog() ...

1 warning

[0.033 s 17264696 bytes] passed
[1.723 s 17264696 bytes total]

— as an eclipse plugin... (real-time verification)

® Possible problems detected during analysis are always referred as
warnings --- the programmer should judge their pertinence (real
problem, lack of capability to derive the property, ...)

® obs.: default loop treatment is very primitive... (escjava unfolds its
definition a small number of times).

20

Static Checking vs. Runtime Checking

® ESC/Java2 checks specs at compile-time, jmlrac checks specs at
run-time.

® ESC/Java2 proves correctness of specs, jml only tests correctness
of specs. Hence:

— ESC/Java? is independent of any test suite, results of runtime
testing are only as good as the test suite;

— ESC/Java?2 provides higher degree of confidence.

® Buf, as soon as we depend on complex properties, ESC/Java2 is no
longer able to deal with them. IJmlrac can (maybe with a
perfomance penalty..., but that is something admissible in a testing
phase).

21

Tool Download and Instalation

® Both tools are available for the major operating systems (macosx,
linux, windows, ...)

® JML toolset:

— http://sourceforge.net/projects/ jmlspecs/

® ESC/Java?2 standalone tool:

— http://kind.ucd.ie/products/opensource/ESCIava2/

® ESC/Java2 Eclipse plugin (eclipse update site):

— http://kind.ucd.ie/products/opensource/ESCIava2/escjava-eclipse/updates

22

References

® Meyer, B. - Applying "Design by Contract” - IEEE Computer
(1992), 25(10): 40-51

® Leavens, G.; Poll, E.; Clifton, C.; Cheon, Y.; Ruby, C.; Cok, D.;
Mueler, P.; Kiniry, J. & Chalin, P. - JML Reference Manual -
(Draft), Nov. 2007

® Burdy, L.; Cheon, Y.; Cok, D.; Ernst, M.; Kiniry, J.; Leavens, G.;
Leino, K. & Poll, E. - An overview of JML tools and applications -
International Journal on Software Tools for Technology Transfer
(STTT), Springer, 2005, 7, 212-232.

® Chalin, P.; Kiniry, J.; Leavens, G. & Poll, E. - Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2
- Fourth International Symposium on Formal Methods for
Components and Objects (FMCO'05), Springer, 2005, 342-363

Demo...

23

24

Exercises:

http://www.cs.ru.nl/~erikpoll/Teaching/|JML/bagamount.html

