
An introduction to Alloy
Alcino Cunha

“I conclude there are two ways of constructing a software
design: one way is to make it so simple there are
obviously no deficiencies, and the other way is to make it
so complicated that there are no obvious deficiencies.”

Tony Hoare

“I conclude there are two ways of constructing a software
design: one way is to make it so simple there are
obviously no deficiencies, and the other way is to make it
so complicated that there are no obvious deficiencies.”

Tony Hoare

“The first principle is that you must not fool yourself, and
you are the easiest person to fool.”

Richard Feynman

“The core of software development is the design of
abstractions.”

“An abstraction is not a module, or an interface, class, or
method; it is a structure, pure and simple - an idea
reduced to its essential form.”

“I use the term ‘model’ for a description of a software
abstraction.”

Daniel Jackson

Alloy in a nutshell

Declarative modeling language

Automated analysis

Lightweight formal methods

Alloy in a nutshell

Declarative modeling language

Automated analysis

Lightweight formal methods

http://alloy.mit.edu

http://alloy.mit.edu
http://alloy.mit.edu

Key ingredients

Key ingredients

Everything is a relation

Key ingredients

Everything is a relation

Non-specialized logic

Key ingredients

Everything is a relation

Non-specialized logic

Counterexamples within scope

Key ingredients

Everything is a relation

Non-specialized logic

Counterexamples within scope

Analysis by SAT

Small scope hypothesis

Most bugs have small counterexamples

Instead of building a proof look for a refutation

A scope is defined that limits the size of instances

Small scope hypothesis

Most bugs have small counterexamples

Instead of building a proof look for a refutation

A scope is defined that limits the size of instances

Relations

Relations

{(A1,B1),(A1,B2),(A2,B1),(A3,B2)}

Relations

A1 B1

A1 B2

A2 B1

A3 B2

{(A1,B1),(A1,B2),(A2,B1),(A3,B2)}

Relations

A1 B1

A1 B2

A2 B1

A3 B2

{(A1,B1),(A1,B2),(A2,B1),(A3,B2)}

A1 A2 A3

B1 B2 B3

Relations
Sets are relations of arity 1

Scalars are relations with size 1

Relations are first order... but we have multirelations

File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
Time = {(T1),(T2),(T3),(T4)}
root = {(D1)}
now = {(T4)}
path = {(D2)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
log = {(T1,F1,D1),(T3,D2,D1),(T4,F2,D2)}

The special ones

none empty set

univ universal set

iden identity relation

File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
none = {}
univ = {(F1),(F2),(F3),(D1),(D2)}
iden = {(F1,F1),(F2,F2),(F3,F3),(D1,D1),(D2,D2)}

Composition
A1 A2 A3

B1 B2 B3

C1 C2 C3

A1 A2 A3

C1 C2 C3

R = {(A1,B1),(A1,B2),(A2,B1),(A3,B2)}
S = {(B1,C2),(B1,C3),(B2,C2),(B3,C1)}
R.S = {(A1,C2),(A1,C3),(A2,C2),(A2,C3),(A3,C2)}

Composition
The swiss army knife of Alloy

It subsumes function application

Encourages a navigational (point-free) style

 R.S[x] = x.(R.S)

Person = {(P1),(P2),(P3),(P4)}
parent = {(P1,P2),(P1,P3),(P2,P4)}
me = {(P1)}
me.parent = {(P2),(P3)}
parent.parent[me] = {(P4)}
Person.parent = {(P2),(P3),(P4)}

Operators
. composition
+ union
++ override
& intersection
- difference
-> cartesian product
<: domain restriction
:> range restriction
~ converse
^ transitive closure
* transitive-reflexive closure

Operators

File = {(F1),(F2),(F3)}
Dir = {(D1),(D2)}
root = {(D1)}
new = {(F3,D2),(F1,D1),(F2,D1)}
parent = {(F1,D1),(D2,D1),(F2,D2)}
File + Dir = {(F1),(F2),(F3),(D1),(D2)}
parent + new = {(F1,D1),(D2,D1),(F2,D2),(F3,D2),(F2,D1)}
parent ++ new = {(F1,D1),(D2,D1),(F3,D2),(F2,D1)}
parent - new = {(D2,D1),(F2,D2)}
parent & new = {(F1,D1)}
parent :> root = {(F1,D1),(D2,D1)}
File -> root = {(F1,D1),(F2,D1),(F3,D1)}
new -> Dir = {(F3,D2,D1),(F3,D2,D2),(F1,D1,D1),(F1,D1,D2)}
~parent = {(D1,F1),(D1,D2),(D2,F2)}

Closures
No recursion... but we have closures

^R = R + R.R + R.R.R + ...

*R = ^R + iden

P1 P2

P4

P3

P5 P6

Multiplicities

A m -> m B

set any number

one exactly one

some at least one

lone at most one

Bestiary

A lone -> B A -> some B A -> lone B A some -> B

injective entire simple surjective

Bestiary

A lone -> some B A -> one B A some -> lone B

representation function abstraction
A lone -> one B A some -> one B

injection surjection
A one -> one B

bijection

A lone -> B A -> some B A -> lone B A some -> B

injective entire simple surjective

Signatures

Signatures allow us to introduce sets

Top-level signatures are mutually disjoint

sig File {}
sig Dir {}
sig Name {}

Signatures
A signature can extend another signature

The extensions are mutually disjoint

Signatures can be constrained with a multiplicity

sig Object {}
sig File extends Object {}
sig Dir extends Object {}
sig Exe,Txt extends File {}
one sig Root extends Dir {}

Signatures
A signature can be abstract

They have no elements outside extensions

Arbitrary subset relations can also be declared

abstract sig Object {}
abstract sig File extends Object {}
sig Dir extends Object {}
sig Exe, Txt extends File {}
one sig Root extends Dir {}
sig Temp in Object {}

Fields
Relations can be declared as fields

By default binary relations are functions

The range can be constrained with a multiplicity

abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File extends Object {}
sig Dir extends Object {}
sig Name {}

Fields
Multirelations can also be declared as fields

Fields can depend on other fields

Overloading is allowed for non-overlapping signatures

abstract sig Object {}
sig File, Dir extends Object {}
sig Name {}
sig FileSystem {
objects: set Object,
parent: objects -> lone (Dir & objects),
name: objects lone -> one Name

}

Command run
Instructs analyser to search for instances within scope

Scope can be fine tunned for each signature

The default scope is 3

Instances are built by populating sets with atoms up to
the given scope

Atoms are uninterpreted, indivisible, immutable

It returns all (non-symmetric) instances of the model

Command run
abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
run {} for 3 but 2 Dir, exactly 3 Name

Command run
abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
run {} for 3 but 2 Dir, exactly 3 Name

Dir0 File Dir1

Name0 Name1 Name2

Facts
Constraints that are assumed to always hold

Be careful what you wish for...

First-order logic + relational calculus

abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {}
fact ParentIsATree {}

Operators

! not negation
&& and conjunction
|| or disjunction
=> implies implication
<=> iff equivalence
A => B else C <=> (A && B) || (!A && C)

Operators

= equality

!= inequality

in is subset

no is empty

some is not empty

one is a singleton

lone is empty or a singleton

Quantifiers

∆ x:A | P[x]
all P holds for every x in A
some P holds for at least one x in A
lone P holds for at most one x in A
one P holds for exactly one x in A
no P holds for no x in A

∆ disj x,y:A | P[x,y] <=> ∆ x,y:A | x!=y => P[x,y]

A question of style

A question of style
The classic (point-wise) logic style

all disj x,y : Object | name[x] != name[y]

A question of style
The classic (point-wise) logic style

The navigational style

all disj x,y : Object | name[x] != name[y]

all x : Name | lone name.x

A question of style
The classic (point-wise) logic style

The navigational style

The multiplicities style

all disj x,y : Object | name[x] != name[y]

name in Object lone -> Name

all x : Name | lone name.x

A question of style
The classic (point-wise) logic style

The navigational style

The multiplicities style

The relational (point-free) style

all disj x,y : Object | name[x] != name[y]

name in Object lone -> Name

name.~name in iden

all x : Name | lone name.x

A static filesystem

abstract sig Object {
 name: Name,
 parent: lone Dir
}
sig File, Dir extends Object {}
sig Name {}
fact AllNamesDifferent {
 name in Object lone -> Name // name is injective
}
fact ParentIsATree {
	 all f : File | some f.parent // no orphan files
	 lone r : Dir | no r.parent // only one root
	 no o : Object | o in o.^parent // no cycles
}

Assertions and check
Assertions are constraints intended to follow from facts
of the model

check instructs analyser to search for counterexamples
within scope

assert AllDescendFromRoot {
	 lone r : Object | Object in r.*(~parent)
}

check AllDescendFromRoot for 6

check {name in Object lone -> Name <=> name.~name in iden}

Predicates and functions
A predicate is a named formula with zero or more
declarations for arguments

A function also has a declaration for the result

fun content [d : Dir] : set Object {
	 parent.d
}

pred leaf [o : Object] {
	 o in File || no content[o]
}

Lets and comprehensions

fun siblings [o : Object] : set Object {
	 let p = o.parent | parent.p
}
check {all o : Object | o in siblings[o]}

fun iden : univ -> univ {
 {x,y : univ | x = y}
}

let x = e | P[x]

{x1 : A1, ..., xn : An | P[x1,...,xn]}

Dynamic modeling
Define the signatures that capture your state

Define the invariants that constrain valid states

Model operations with predicates

Relationship between pre and post-states

Do not forget frame conditions

Check that operations are safe

Check for consistency using run

Be careful with over-specification

A dynamic filesystem

abstract sig Object {}
sig File, Dir extends Object {}
sig FS {
	 objects : set Object,
	 parent : Object -> lone Dir
}

pred inv [fs : FS] {
	 fs.parent in fs.objects -> fs.objects
	 all f : fs.objects & File | some fs.parent[f]
	 lone r : fs.objects & Dir | no fs.parent[r]
	 no o : fs.objects | o in o.^(fs.parent)
}
run inv for 3 but exactly 1 FS

A dynamic filesystem

pred rmdir [fs,fs' : FS, d : Dir] {
	 d in fs.objects && no fs.parent.d
	 fs'.objects = fs.objects - d
	 fs'.parent = fs.parent - (d -> Object)
}

pred rmdir_consistent [fs,fs' : FS, d : Dir] {
	 inv[fs] && rmdir[fs,fs',d]
}
run rmdir_consistent for 3 but 2 FS
assert rmdir_safe {
	 all fs,fs':FS,d:Dir | inv[fs]&&rmdir[fs,fs',d]=>inv[fs']
}
check rmdir_safe for 3 but 2 FS

Modules

util/ordering[elem]

Creates a single linear ordering over atoms in elem

Constrains all the permitted atoms to exist

Good for abstracting time, model traces, ...

util/integer

Collection of utility functions over integers

Integers
Scope limits bitwidth

2’s complement arithmetic: be careful with overflows

Int versus int

open util/integer
check {all x,y : Int | pos[y] => gt[add[x,y],x]}
sig Student {partial : set Int} {
	 all i : partial | nonneg[i]
}
fun total[s : Student] : Int {
	 Int[int[s.partial]]
}

Demos

Filesystem

I'm my own grandpa

Bank accounts

Train station

...

