Software Analysis and Testing

Meétodos Formais em Engenharia de Software

January 2009 Arent Janszoon Ernststraat 595-H
Joost Visser NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

Jr

cV 21118
e Technical University of Delft, Computer Science, MSc 1997
» University of Leiden, Philosophy, MA 1997
o CWI (Center for Mathematics and Informatics), PhD 2003

Me

e Software Improvement Group, developer, consultant, etc, 2002-2003
e Universidade do Minho, Post-doc, 2004-2007
o Software Improvement Group, head R&D, 2007-...
Research
« Grammars, traversal, transformation, generation
e Functional programming, rewriting strategies

» Software quality, metrics, reverse engineering

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

< Yy
Software Improvement Group -l

Company 31118

e Spin-off from CWI in 2000, self-owned, independent

 Management consultancy grounded in source code analysis

* Winner of the Innovator Award 2007
Services

o Software Risk Assessments (snapshot) and Software Monitoring (continuous)
e Toolset enables to analyze source code in an automated manner

e Experienced staff transforms analysis data into recommendations

* We analyze over 50 systems annually

e Focus on technical quality, primarily maintainability / evolvability

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

< .y
Who is using our services? -

41118

Financials / Insurance companies Government Logistical IT Other

S <} ~ < ~

Nl es'oe Getignics

ABN-AMR S
F 0 rPGGIM Raden loor nmu shijsiand KL VT PinkRoccade __:gnergl'e
N VROMEY | | CENTRIC
ING 4D (lorg enZekerheid -~ & PRICEWATERHOUSE(GOPERS
O a7 ub Capgomml CAR
PGLITIE ;
“ At b
achmea D ZwitserLeven EURO MA)X(sortwars ‘
£ Friesland Bank delta lloyd nofolkine EEFE BXXIO
LegsePBn Allianz @) == ProRail CH®d cafe
Q) LD Togicacme

kadaster
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Our services <
am

-

51118

Software Risk
Assessment

Remeasurement

Monitor

Software

AGEWEIEE —— —

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Portfolio Monitor

Software Risk Assessment

'3

ftware Improvement Group

61118

Automated
analysis

uoIj_JUBWINI0(]

Benchmark Source code
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Quality Monitor i
-

Software Improvement Group

71118

Board

Interpretation
>

by SIG experts IT Management

Monitor

Software Engineers

Source code

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

81118

 Introduction SIG

» General overview of software analysis and testing
e Testing

e Patterns

e Quality & metrics

* Reverse engineering

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Engineering

Create

requirements analysis refactor, fix, patch understand, assess
design, code, compile maintain, renovate evaluate, test
configure, install evolve, update, improve measure, audit

> >

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Analysis < ;
(and Testing) -

101118

Analysis

Static Dynamic
Analysis Analysis

syntax checking testing
aebugging
code metrics program spectra
style cneckiig instrumentation
verification profiling
reverse engineering benchmarking
decompilation |og analysis

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Is testing un-cool?

Edsger Wybe Dijkstra (1930 - 2002)

111118

* “Program testing can be used to show the presence of bugs,
but never to show their absence!”
Notes On Structured Programming, 1970

* “Program testing can be a very effective way to show the presence of bugs,
but is hopelessly inadequate for showing their absence.”
The Humble Programmer, ACM Turing Award Lecture, 1972

Does not mean: “Don’t test!!”

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

S,,

]
|s testing un-cool? | -

|ndustry 121118

e Testers earn less then developers
e Testing is “mechanical”, developing is “creative”

» Testing is done with what remains of the budget in what remains of the time

Academia
e Testing is not part of the curriculum, or very minor part
 Verification is superior to testing

 Verification is more challenging than testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Analysis. How much? < -
-

Q
S |
O >

S
o 0\, S 131118
AR

‘\fﬁiﬁ:ﬁ“i‘“@ 50 - 75%

In a typical commercial development organization, the cost of

providing [the assurance that the program will perform
satisfactorily in terms of its functional and nonfunctional
specifications within the expected deployment environments]
via appropriate debugging, testing, and verification activities
can easily range from 50 to 75 percent of the total
development cost. (Hailpern and Santhanam, 2002)

Software Analysis. Enough? < .
- ol

o B
O >

Q&Q R\ §0&

N

141118
Q)
e $60 x 10°

Table ES-4. Costs of Inadequate Software Testing Infrastructure on the National Economy

The Cost of Inadequate Software Potential Cost Reduction from Feasible
Testing Infrastructure Infrastructure Improvements
(billions) (billions)
Software developers $21.2 $10.6
Software users $38.3 $11.7
Total $59.5 $22.2

of total impacts, and software users accounted for the about
60 percent.

Software Analysis. More?

)

-

&
s Sl
Q&Q R\ § °
O
N QQQ 0'&‘ 151118
> o d Y
¥ NS
«‘QQQG é‘QG é
0 m m
e high profile
° |
4 Iow frequency- |
o AN
DTN |
-
\ & |
Table 1-4. Recent Aerospace Losses due to Soﬂwm Failures
Ariane 5 Galileo Lewis
Poseidon Pathfinder Zenit 2 Delta 3 DS-1 Orion 3
Airbus A320 Flight 965 USAF Step Near Galileo Titan 48
(1993) (1996) (1997) (1998) {(1999)
Aggregate cost §640 million $116.8 million §255 million §1.6 billion
Loss of life 3 160
Loss of data Yes Yes Yes Yes

Software Analysis < :
Room for improvement? -

e e e e S L O
- AR TR,

P O R s T P

wist DN I AR

[. L A

e e S

I TR P VU

161118

1994 2004

Succeeded
16%

Succeeded
Failed

Challenged
53% Challenged
53%

Standish Group, “The CHAOS Report”

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Jr

171118

So

e Testing C Dynamic analysis C Analysis C S.E.
* Analysis is a major and essential part of software engineering

* Inadequate analysis costs billions

=

* More effective and more efficient methods are needed

* Interest will keep growing in both industry and research

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lectures

181118

Analysis

Static Dynamic
Analysis Analysis

metrics @patterns @l models testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

191118

TESTING

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing

Kinds
e Conformance
* Interoperability
e Performance
e Functional
e \White-box
* Black-box
e Acceptance
 Integration
e Unit
e Component
e System
 Smoke
e Stress

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Ways
 Manual
e Automated
« Randomized
* Independent
e User
e Developer

With
* Plans
e Harness
e Data
* Method
* Frameworks

Jr

@,

201118

Testing

V-model
1 I |

V-model =
" ”./ Coding \,

211118

(Acceptance
Testing /

Acceptance
7 TestDesign |
’

|

Requirements
B R Y
’/, ’I
~ =T S~
—— 2 SR
\
\
- — —
System __________ ,'/ Systom [System) \
' Design ™ Test Design / . Testing
" e / \,
7’ - - /
— .
\ /
\ !
\ S R /
/' Architecture "*‘ /' Integration __ -N/ Integration
\ Design |)x,_ Test Design | . Testing
——— ~—
\ ’
\ ’
\ /
\ ’
y — =
Module Unit
Design Testing
. ~——
\ ’
\ ’
’
/

programming!

Testing Q :
Eliminate waste - N

Waste 221118

e Coding and debugging go hand-in-hand

e Coding effort materializes in the delivered program

e Debugging effort? Evaporates!

Automated tests
e Small programs that capture debugging effort.
 Invested effort is consolidated ...

e ... and can be re-used without effort ad-infinitum

Unit testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

What is unit testing? Qi
[|

-

A unit test is ... 231118
e fully automated and repeatable
e easy to write and maintain

e non-intrusive TestCase
e documenting
» applies to the simplest piece of software A

Tool support

« JUnit and friends public void testMyMethod {

X X = ..
Y vy = myMethod (x) ;
Y VY = ..,

assertEquals (“WRONG”, vy, V)

J

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing goals < "
am

-

Unit testing has the following goals: 241118
e Improve quality
e Test as specification
e Test as bug repellent
e Test as defect localization
e Help to understand
e Test as documentation
e Reduce risk
e Test as a safety net
 Remove fear of change

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Observing unit-testing maturity in the wild < :
(characterization of the population) -

Organization 251118
 public, financial, logistics
e under contract, in house, product software
e with test departments, without test departments
Architecture & Process
e under architecture, using software factories
 model driven, handwritten
e open source frameworks, other frameworks
e Using use-cases/requirements
e with blackbox tools, t-map
Technology
e information systems, embedded
* webbased, desktop apps
* java, c#, 4GL’s, legacy
e |atest trend: in-code asserts (java.spring)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 1 < " :
No unit testing -

Observations: 261118
* Very few organizations use unit testing
» Also brand new OO systems without any unit tests
e Small software shops and internal IT departments

 In legacy environments: programmers describe in words what tests they have
done.

Symptoms:
e Code is instable and error-prone
 Lots of effort in post-development testing phases

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 1
No unit testing

Excuses:
* “It is just additional code to maintain®
* “The code is changing too much’
* “We have a testing department”
e “Testing can never prove the absence of errors”
e “Testing is too expensive, the customer does not
* “We have black-box testing”

Jr

want to pay for it’

271118

Action

* Provide standardized framework to lower
threshold

e Pay for unit tests as deliverable, not as effort

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, S

Junit Report

Test Summary:

Total: Pass: Fail: Errors:

2

Class Summary:

Package: Name:

example WidgetTestCase

Back to Top

Test Detail for:example.WidgetTestCase

testwidget

testFailure

i ‘{1114 No reason, just
junitframewark
example Widge

TV VST O T T O OV O T T TOTIT

Stage 2 Q :
Unit test but no coverage measurement -)

Observations 281118
e Contract requires unit testing, not enforced
» Revealed during conflicts
e Unit testing receives low priority
» Developers relapse into debugging practices without unit testing
* Good initial intentions, bad execution
e Large service providers

Symptoms:
e Some unit tests available
e Excluded from daily build
e No indication when unit testing is sufficient
e Producing unit test is an option, not a requirement

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 2 <
Unit test but no coverage measurement -

-

Excuses:
e “There is no time, we are under pressure”
e “We are constantly stopped to fix bugs”

Actions
e Start measuring coverage
 Include coverage measurement into nightly build
 Include coverage result reports into process

C3CLOVER

The industry standard in code
coverage just got seriously better

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

291118

Stage 3 Q :
Coverage, not approaching 100% - .

Observations 301118
e Coverage is measured but gets stuck at 20%-50%
 Ambitious teams, lacking experience
e Code is not structured to be easily unit-testable

Symptoms:
e Complex code in GUI layer
e Libraries in daily build, custom code not in daily build

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 3 < ;
Coverage, not approaching 100% -

Excuses 311118
» “we test our libraries thoroughly, that affects more customers”

Actions:
e Refactor code to make it more easily testable
e Teach advance unit testing patterns
e [nvest in set-up and mock-up

JUnlt \ xUNIT TEST '

PATTERNS

O'REILLY"

Software Analysis and Tes:

Stage 4 < ,, :
Approaching 100%, but no test quality - »

Observations 321118
 Formal compliance with contract
e Gaming the metrics
e Off-shored, certified, bureaucratic software factories

Symptoms:
 Empty tests
e Tests without asserts.
e Tests on high-level methods, rather than basic units

e Need unit tests to test unit tests

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 4 < " :
Approaching 100%, but no test quality -

331118

Anecdotes:
e Tell me how you measure me, and | tell you how | behave
* We have generated our unit tests (at first this seems a stupid idea)

Action:
* Measure test quality
e Number of asserts per unit test
 Number of statements tested per unit test
e Ratio of number of execution paths versus number of tests

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Stage 5 Q :
Measuring test quality - R

Enlightenment: 341118
* Only one organization: a Swiss company
* Measure:
e Production code incorporated in tests
e number of assert and fail statements
e low complexity (not too many ifs)
* The process
e part of daily build
 “stop the line process”, fix bugs first by adding more tests
* happy path and exceptions
e code first, test first, either way

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Testing < "
Intermediate conclusion -

-

Enormous potential for improvement:
e Do unit testing
 Measure coverage
e Measure test quality

e May not help Ariane 5
e Does increase success ratio for “normal” projects

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

351118

Randomized Testing < :
(quickcheck) =

Randomized testing: 361118
* QuickCheck: initially developed for Haskell
e Parameterize tests in the test data
* Property = parameterized test
e Generate test data randomly
e Test each property in 100 different ways each time

Test generation

-—- | Range of 1nverse 1s domailn.
prop RngInvDom r

= rng (inv r) == dom r
Fault-injection where

Model-driven testing

types = r::Rel Int Integer

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

< .y
s testing un-cool? -
H 1HENNE |

371118
Edsger Wybe Dijkstra (1930 - 2002)

* “Program testing can be used to show the presence of bugs,
but never to show their absence!”

Martin Fowler

* “Don’t let the fear that testing can’t catch all bugs stop you
from writing the tests that will catch most bugs.”

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Jr

Simple test metrics .

Line coverage 381118
e Nr of test lines / nr of tested lines

Decision coverage
e Nr of test methods / Sum of McCabe complexity index

Test granularity
e Nr of test lines / nr of tests

Test efficiency
e Decision coverage / line coverage

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

391118

Analysis

Static Dynamic
Analysis Analysis

metrics @patterns @l models testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

401118

PATTERNS

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns < "
a

-

Coding style and coding standards 411118
» E.g. layout, identifiers, method length, ...

Secure coding guidelines

» E.g. SQL injection, stack trace visibility

Bug patterns

e E.g. null pointer dereferencing, bounds checking

Code smells

7 11

e E.g. “god class”, “greedy class’, ..

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns Qi :
Style and standards = .

Checking coding style and coding standards 421118

e Layout rules (boring)
* |dentifier conventions
e Length of methods
» Depth of conditionals
Aim
e Consistency across different developers
e Ensure maintainability
Tools
e E.g. CheckStyle, PMD, ...
 |ntegrated into IDE, into nightly build

e Can be customized

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns Qi :
Secure coding - .

431118

Checking secure coding guidelines

e SQL injection attack

e Storing and sending passwords

o Stack-trace leaking

e Cross-site scripting
Aim

e Ensure security

e Security = Confidentiality + Integrity + Availability
Tools

e E.g. Fortify, Coverity

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Patterns < " :
Bugs -

441118

Detecting bug patterns
* Null-dereferencing
 Lack of array bounds checking
 Buffer overflow
Aim
e Correctness
 Compensate for weak type checks
Tools:
e e.g. FindBugs
e Esp. for C, C++

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

451118

Analysis

Static Dynamic
Analysis Analysis

metrics @patterns @l models testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

461118

METRICS & QUALITY

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software analysis < :
What? -

471118

uality

performance
defects
adaptabilit
P 4 _ reliability
complexity
Size usability

correctness |

security

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

The bermuda triangle of software quality < :
-

COBIT Security 481118
CMMI
(Scampi) SAS7 :28;%8?
BS7799
Process :
(organizational) TICkIT
1ISO9001:2000
ISO 20000
o ITIL Prince2
Six Sigma
’ DSDM
J2EE | People Project
(BM) | (individual) (individual) PMI
TMap :
> Siebe RUP
ISTQB (Mcr?soﬁ) (Oracle) (IBM)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Quality < :
Process -

Capability Maturity Model® Integration (CMMI®) 491118

e “... IS a process improvement approach that provides organizations with the
essential elements of effective processes..” (SEI)

o CMMI for Development (CMMI-DEV), Version 1.2, August 2006.
e consists of 22 process areas with capability or maturity levels.

« CMMI was created and is maintained by a team consisting of members from
industry, government, and the Software Engineering Institute (SEI)

e http://www.sei.cmu.edu/cmmi

The Standard CMMI Appraisal Method
for Process Improvement (SCAMPI)

e “... is the official SEI method to provide CMM';:
benchmark-quality ratings relative to CMMI models.” / '

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software Quality
Process

g
r === Software Engineering Institute

Jr

‘ Carnegie Mellon

— Organization
- Organization Name: Accenture
: Appraisal Sponsor Name: Jack Ramsay, Marco Spaziani Testa, Maria Angeles Ramirez
'c Lead Appraiser Name: John Voss
; SEl Partner Name: Accenture LLP
—
(7))
8 — Model Scope and Appraisal Ratings
. | Level 2 I Level 3 I Level 4 I Level 5
g | Satisfied REQM | Satisfied RD . OutofScope OPP . OutofScope OID
— | Satisfied PP | Gatisfied TS Out of Scope | QPM Outof Scope | CAR
O . Satisfied PMC . Satisfied PI
3 ~ Not Applicable SAM | Satisfied VER
= | Satisfied MA | Satisfied VAL
. . Satisfied PPQA | Satisfied OPF
@ | Satisfied CM | Satisfied OPD
g— | Satisfied oT
— | Satisfied IPM
© [Gatisfied | RSKM
Q | Satisfied DAR
q
0 - . . .
~—~ Organizational Unit Maturity Level Rating: 3
Additional Information for Appraisals Resulting in Capability or Maturity Level 4 or 5 Ratings:

Software Quality < :
Process -

Levels Process Areas 511118
. e Causal Analysis and Resolution
* L1: Initial » Configuration Management
e L2: Managed « Decision Analysis and Resolution

) . * Integrated Project Management
L3: Defined * Measurement and Analysis
L4: Quantitatively I\/Ianaged e Organizational Innovation and Deployment
L5- Optimizin » Organizational Process Definition
- VP g » Organizational Process Focus
» Organizational Process Performance
» Organizational Training
* Product Integration
» Project Monitoring and Control
* CMMI Project Planning
* Process and Product Quality Assurance
» Quantitative Project Management

http :IIWWW.Cmm i .de « Requirements Development

.
* Requirements Management
(browser) . Kok anaganen CVimMmi

» Supplier Agreement Management
e Technical Solution

e Validation

» Verification

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

The bermuda triangle of software quality < :
-

COBIT Security 521118
CMMI
(Scampi) SAS7 :28;%8?
BS7799
Process :
(organizational) TICkIT
1ISO9001:2000
ISO 20000
o ITIL Prince2
Six Sigma ISO 9126 DSDM
ISO 14598 ,
J2EE | People Project
IBM (individual) (individual) PMI
TMap()
> Siebe RUP
ISTQB (Mcr?soﬁ) (Oracle) (IBM)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

But ... S :

531118

What is software quality?

What are the technical and functional aspects of quality?

How can technical and functional quality be measured?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Software product quality standards <
am

-

ISO/IEC 9126 541118

Software engineering -- Product quality
1. Quality model
2. External metrics ol International
3. Internal metrics J 21 8] Organization for
4. Quality in use metrics Standardization

ISO/IEC 14598

Information technology -- Software product evaluation
1. General overview

Planning and management

Process for developers

Process for acquirers

Process for evaluators

Documentation of evaluation modules

ok wN

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1 < .-l.
Quality perspectives -

551118

phase metrics

iInternal quality build 9126, Part 3

software
product

external quality test 9126, Part 2

’——~
~~

effect of

software quality in use deploy 9126, Part 4
product

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1 < .-l.
Product quality model: internal and external -

56 1118
Internal/External Quality
functionalit . - ortabilit
y reliability - e efficiency P y
| usability maintainability |
suitability : .t' | | — 'h . adaptability
maturi ime behavior ; it
accuracy)) understandability analysability mstall.ablllty
interoperability| | fault-tolerance | bilit h bilit co-existence
security recoverability earnablliity changeabliity resource replaceability
operability stability utilisation
attractiveness testability

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO 9126, Part 1 Q .-l.
Maintainability (= evolvability) -

Maintainability = o7 e
e Analyzability. easy to understand where and how to modify?
e Changeability: easy to perform modification?
o Stability. easy to keep coherent when modifying?
e Testability: easy to test after modification?

Maintain >\
Analyze Change Stabilize Test

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

1ISO 9126, Part 1 < .-l.
Reliability -

Reliability = o818
e Maturity: how much has been done to prevent failures?
e Fault tolerance: when failure occurs, is it fatal?
e Recoverability: when fatal failure occurs, how much effort to restart?

Degree of failure >

Prevent Tolerate Recover

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1

Product quality model: quality-in-use

Jr

ISO/IEC 9126
Quality in Use
effectiveness -
productivity safety

satisfaction

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

591118

ISO 9126 < .-l.
Part 2.3: metrics -

External metrics, e.g.: 601118

e Changeability: “change implementation elapse time”,
time between diagnosis and correction

o Testability: “re-test efficiency”, time between correction and conclusion of test

Internal metrics, e.g.:

» Analysability: “activity recording”,
ratio between actual and required number of logged data items

e Changeability: “change impact’,
number of modifications and problems introduced by them

Critique
e Not pure product measures, rather product in its environment
* Measure after the fact

e No clear distinction between functional and technical quality

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

The issue -
Jir

611118

e Companies innovate and change

e Software systems need to adapt in the same pace as the business changes

e Software systems that do not adapt lose their value

e The technical quality of software systems is a key element

Clients
Business

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Functional vs technical quality <
am

-

621118

low cost & risk

Technical
quality

high cost & risk

Functional quality —

Software with high technical quality can evolve with low cost and
risk to keep meeting functional and non-functional requirements.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

ISO/IEC 9126, Part 1

Product quality model: technical quality

functionality

ISO/IEC 9126
Software Product Quality

reliability

interoperability
security

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

maturity
fault-tolerance
recoverability

maintainability

analysability
changeability

stability
testability

)

-

631118
o ortabilit
efficiency P /
|
I adaptability
time behavior | | jnstallability

resource
utilisation

co-existence
replaceability

So ... S :

641118

What is software quality?
What are the functional and technical aspects of quality/:

How can technical quality be measured? ?

<

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

A Challenge < -
- ol

Use source code metrics to measure technical quality? 651118

Plenty of metrics defined in literature

e LOC, cyclomatic complexity, fan in/out, coupling,
cohesion, ...

=
e Halstead, Chidamber-Kemener, Shepperd, ... ’

SECOND EDITION

Plenty of tools available
e Variations on Lint, PMD, FindBugs, ...
e Coverity, FxCop, Fortify, QA-C, Understand, ... T o o e o
« Integrated into IDEs el s

Software Metrics

A Rigorous & Practical Approach

REVISED PRINTING

But:

e Do they measure technical quality of a system?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software |

Source code metrics Qi :
Lines of code (LOC) - .

661118

e Easy! Or ...

e SLOC = Source Lines of Code

e Physical (= newlines)

» Logical (= statements)
e Blank lines, comment lines, lines with only “}"
e Generated versus manually written

» Measure effort / productivity: specific to programming language

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics < :
Function Point Analysis (FPA) -

671118

e A.J. Albrecht - IBM - 1979

S _ _ Table 2. Sample Function Point Calculations
» Objective measure of functional size

Raw Data Weights Function Points
e Counted manually 1 Input X4 = 4
e |[FPUG, Nesma, Cocomo 1 Output X5 = 5
e Large error margins 1 Inguiry X4 = 4
1 Data File X10 = 10
e Backfiring 1 Interface X7 = 7
e Per language correlated with LOC Unadueiad Total 20
‘ SPR’ QSM Compexity Adjustment None
Adjusted Function Points 30

» Problematic, but popular for estimation

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics < :
Cyclomatic complexity -

e T. McCabe, IEEE Trans. on Sw Engineering, 1976 681118
» Accepted in the software community

 Number of independent, non-circular paths per method

e |ntuitive: number of decisions made in a method

e 1 + the number of if statements (and while, for, ...)

v

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

: : -y
Code duplication < I
Definition - |
Code duplication measurement 691118

0: abc 34 XXXXX

1: def 35: def Number of

2: ghi 36: ghi duplicated lines:
3: jk 37: jk 14

4: mno 38: mno

5: par 39: par

6: stu 40: stu

7. VWX 41: vWX

8:yz 42 XXXXXX

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Code duplication < -
-l

Code duplication 701118

450000 - -
0,
400000 1 8% 1
350000 -

300000 -

250000 - . Lines

—i— Percentage
200000 -

150000 - 25% T
22%

100000 - T

50000 - . T
O 4

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code metrics <
am

.y
Coupling -

» Efferent Coupling (Ce) Figure 1. Coupling graph
 How many classes do | depend on? Class A

» Afferent Coupling (Ca)
« How many classes depend on me? l

* Instability = Ce/(Ca+Ce) € [0,1]
» Ratio of efferent versus total coupling

e 0 = very stable = hard to change ‘/\

Class B

e 1 = very instable = easy to change

Class C Class D +#—={ ClassC
Tabie 1. Results of compiling a single class

Class o Compile Other Classes Compiled Affsrent Couplings Efferent Couplings Instability Factor

A B.C.0OE 0 4 1

B C.DE 1 J 0.75

C - 2 i n

D E 3 1 0.25

E (B d 1 0.25

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

A Challenge
Do metrics measure technical quality?

721118

-4

500.000 LOC Java code source code analyzer

= 7

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

i
i-'-l aililies '

P - 4\, . Weélth of technical data at code level
e must be translated into:

a- Quality information

> Business risks
'-'"ﬂ!i;.

 Decisions

at system level.

Source code metrics < :
Cyclomatic complexity -

751118

e T. McCabe, IEEE Trans. on Sw Engineering, 1976

» Accepted in the software community

e Academic: number of independent paths per method
e Intuitive: number of decisions made in a method

» Really, the number of if statements (and while, for, ...)
e Software Engineering Institute:

Table 4: Cyclomatic Complexity

Cyclomatic Complexity|[Risk Evaluation

1-10 a simpla program, withaut much risk
1120 mare complex, modarate risk

21-50 complax, high risk program

greater than 50 untestabla program (vary high risk)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Complexity per unit € ;
Quality profiles -

Aggregation by averaging is fundamentally flawed 761118
high Vegozigh very high
7% 11%

moderate
13%

low
59%

moderate
14%

low
78%

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Quality profiles, in general <
am

-

e type Input metric = Map x (metric,LOC)

Risk groups
e type Risk = Low | Moderate | High | Very High
e risk :: metric — Risk very high
11%
Output
 type ProfileAbs = Map Risk LOC Te%

 type Profile = Map Risk Percentage

low
59%

Aggregation
e profile :: Input metric — Profile moderate

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Combining metrics Qi
The SIG approach -

781118

ISO 9126 quality sub-characteristics
e.g. changeability

influences

can be caused by _
source code properties

e.g. complexity

indicates

can be measured by

source code measures
e.g. cyclomatic complexity

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

sub-characteristics

791118

Mapping source code properties onto quality < " :
am

Q o) ¢
“, e, N2\, \%,
2o ‘b&» ®/"e 60’) 6;{9
Analysability X X X
Changeability X X
Stability X
Testability X X X

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Source code properties and metrics < |
L

-

Volume 801118
e LOC, within the context of a single language
* Man years via backfiring function points

Complexity per unit
e McCabe’s cyclomatic complexity, SEI risk categories, %LOC for each category

Duplication
e Duplicated blocks, threshold 6 lines, %LOC

Unit size
e LOC, risk categories, %LOC for each category

Unit testing

e Unit test coverage
 Number of assert statements (as validation)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Duplication

Analysability X

Changeability
Stability
Testability

duplication
0-3%
Duplicate blocks 3-5%
e Over 6 lines 5-10%

e String comparison =P 10.20%/
e Remove leading spaces b TATE XS ’

e 20-100%

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

811118

Complexity

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

821118
Analysability
Changeability
Stability
Testability
Maximum relative LOC
Software Engineering Institute - -
Rank moderate high very high
complexity risk 5% Yy 0%
* * * * * o o o
10 ow Fokkokc 30% 5% 0%
21-50 high Jok e 50% 15% 5%
>50 very high * - - -

< .y
Rating example -

831118

Q o) ¢
%, g, \ % %”ée,. %’&@,.
o’e ‘b‘;} /"e /O/) /”o
Yook | drooor | okooor | Yok | dokokox
Analysability X X X) 0.0, PAPAS
Changeability X X) 0, PX QAN
Stability X FokAlve
Testability X X X) 0, PX QAN

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

S,,

.y
That's all? a

Practical 841118

e Fast, repeatable, technology independent

e Sufficiently accurate for our purposes

e Explainable

Beyond core model ...
* Only one instrument in Software Risk Assessments and Software Monitor
» Weighting schemes
e Dynamic analysis

e Quality of process, people, project

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Further reading

See

|. Heitlager, T. Kuipers, J. Visser.
A pragmatic model for measuring maintainability.
QUATIC 2007.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

851118

Jr

861118

What is software quality?

What are the technical aspects of quality?

How can technical quality be measured?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 1 < " :
Curbing Erosion -

System 871118
e About 15 years old
* Automates primary business process
* Maintenance has passed through various organizations
* New feature requests at regular intervals

Questions
e Improve management’'s control over quality and associated costs

Metrics in this example

* Volume
e Duplication

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 1
Curbing Erosion

C ~Eb
20TtWa

Ml]‘(yrove

ement Group

90000

Lines of code

80000

70000
60000
50000
40000 -
30000 -
20000 -
10000 -
0 - r T T
X X+1 X+2 X+3

881118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 1
Curbing erosion

60

50

40

30

20

Duplication [%0]

10

X X+1 X+2 X+3

oftware Improvement Gro

891118

 All growth is caused by
duplication

e There is no “real’
productivity

90000

80000

70000

60000

50000

40000

Software Analysis and Testing, MFES Universidade do Minho by Joost

30000

20000

10000

X x+1 X+2 X+3

Case 2 Qi :
Systems accounting from code churn -

System 901118
* 1.5 MLOC divided over 7000 files
e Estimated 240 people divided over 25 subcontractors

Questions
e |s staffing justified?

Metrics in this example
e Code churn = number of added, changed, deleted LOC

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 2
Systems accounting from code churn

8000

7000

6000

5000

4000

3000

2000

1000

-1000

iA
=}

ri

% deleted

M added

“ changed

“ unchanged
I total

Case 2
Systems accounting from code churn

)

Volume over time

950000

900000 -

850000

800000

Lines of Code

750000

700000
1 2 3 4 5 6 7 8 9

months

11 12

- |0C

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

921118

Case 2
System accounting from code churn

iA

] 931118
Volume over time
950000 e
m g
900000 - = -
= g
(]
2 850000 g S
O]
“ - —=—|oc
® 800000 _ fte
c _ S
- . m i
750000 -
-
700000 -
i 2 3 4 5 6 7 8 9 10 11 12
months

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 3 Qi :
Learn from failure - R

System 941118
e Electronic commerce
» Replacement for functionally identical system which failed in rollout
e Qutsourced development

Questions
e Monitor productivity and quality delivered by the developer

Metrics in this example

* Volume
o Complexity

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Case 3
Learn from failure

Total lines sources

50,000
40,000
30,000
20,000
10,000
0

L LN o wn wn w

= o = = = =

= = = = = b=

'E"-I_ f'-l_ N_ E\l_ ["4_ {"-l_

5 e = a e =

z a 5 £ = <

Software Analysis and Testing, MFES Universidade do V.

moderate
5%

high
1%
very high
0%

low
94%

)

-

very high

high
18%

moderate
13%

12%

951118

100000 200000

300000

400000

Blava

BOther

500000

600000

low
57%

What should you remember (so far) < ’/ :
from this lecture? - R

Testing 96 1118
e Automated unit testing!

Patterns
e Run tools!

Quality and metrics
e Technical quality matters in the long run
e A few simple metrics are sufficient
e |If aggregated in well-chosen, meaningful ways

e The simultaneous use of distinct metrics allows zooming in on root
causes

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Structure of the lecture

971118

Analysis

Static Dynamic
Analysis Analysis

metrics @patterns @l models testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

981118

REVERSE ENGINEERING

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Terminology < (=
- ol

991118

Models / Specifications

UML, ER, VDM, ...
Re-engineering
abstract
concrete
Reverse !
engineering Programs

Java, SQL, Perl, ...

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Reverse engineering Qi
a

-

Dependencies and graphs 1001118
e Extraction, manipulation, presentation
e Graph metrics
e Slicing

Advanced
* Type reconstruction
e Concept analysis
* Programmatic join extraction

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Reverse engineering trinity < |
-

-

1011118

Extraction

From program sources, extract basic information into an initial
source model.

Manipulation

Combine, condense, aggregate, or otherwise process the basic
information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

-

1021118

Example S

Green oval = module
Blue oval = table

Purple arrow = select operation

Yellow arrow = insert/update operation
/(//'lﬂ!lﬂw"“ Y

D g
"'"'..EE\

Brown arrow = delete operation

X

= ==

i \\\g’}/l,
BN

L. -

P

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Example

1031118

Tables used by multiple modules. Tables used by a single module.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Relations and graphs Qi
[|

-

1041118
Relation
type Rel a b = Set (a,b) set of pairs
Graph
type Gph a = Rel a a endo-relation

Labeled relation

type LRel a b 1 = Map (a,b) 1 map from pairs

Note

Rel a b = Set(a,b)= Map(a,b) ()= LRel a b ()

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Slicing (forward) < " :

1051118

o o

O
/
O O

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Slicing (backward) C .-l.
[|

1061118

O \Q/.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Chop

= Forward N Backward

Jr

Software Analy

and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

1071118

Generic slicing < :
am

108 1 118
Graph slice
(control flow, (interactive)
data flow,
structure, ...)
abstract A4 \
concrete
extract
Java new program
program = al transform’ | spregdsheet
spreadsheet System [architecture

architecture

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Further reading

1091118

See

Arun Lakhotia.

Graph theoretic foundations of program slicing and integration.

The Center for Advanced Computer Studies, University of Southwestern Louisiana.
Technical Report CACS TR-91-5-5, 1991.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Type reconstruction C :
(from type-less legacy code) -

1101118

See

. Arie van Deursen and Leon Moonen. An empirical Study Into Cobol Type
Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)

- assign: ex.a := Db
- expression: ex.a <= b
- arraylndex: ex. A1]

2. Compute derived relations
- typeEquiv: variables belong to the same type
- subtypeOf: variables belong to super/subtype
- extensional notion of type: set of variables

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Type reconstruction < ;
(from type-less legacy code) -

1111118

Pseudo code from paper

arraylndexEquiv := arraylndex™"

o arraylndex
typeEquiv := arraylndexEquiv U expression
subtypeOf := assign
repeat
subtypeEquiv := equiv(subtypeOf + N (subtypeOf+)~!)
typeEquiv := equiv(typeEquiv U subtypeEquiv)
subtypeOf := subtypeOf \ typeEquiv
subtypeOf := subtypeOf U subtypeOf o typeEquiv U typeEquiv o subtypeOf
until fixpoint of (typeEquiv, subtypeOf)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Type reconstruction C :
(from type-less legacy code) -

1121118

Data
type VariableGraph v array

= (Rel v v, Rel v array, Rel v v)
type TypeGraph x

= (Rel x x, Rel x x) -- subtypes and type equiv
Operation
typeInference

(Ord v, Ord array) =>
VariableGraph v array -> TypeGraph v

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Formal concept analysis Qi
[|

-

1131118

See

Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working
with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
- matrix of objects vs. properties

2. Compute concept lattice
- a concept = (extent,intent)
- ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Formal concept analysis < :
pseudo-code (1/2) -

NEIGHBORS ((G, M), (G, M,T)) e
1 min «— G\ G
2 neighbors « ()
3 foreach g€ G\ G do
4 M — (Gu{g})
5 G1 — Mj
6 if (minN(Gy\ G\ {g})) =0) then
7
8
9
0

neighbors < neigbors U {(G1, M1)}
else
min < min \ {g}

10 return neighbors

Note that " operation denotes computation of intent from extent, or
vice versa, implicitly given a context.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Formal concept analysis < :
pseudo-code (2/2) -

LATTICE (G, M,T) 1o s
1 c— (0,0
2 insert (e, L)
3 loop
4 foreach x in NEIGHBORS (¢, (G, M,T))
5 try x «— lookup (2, L)

6 with NotFound — insert (x, L)

7

8

9

0

1

Ty — x, U{c}
c* — c*u{z}
try ¢ < next (¢, L)
with NotFound — exit
return L

1
1

Transposition to Haskell?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Formal concept analysis

Representation

type Context g m =

type Concept g m =

type Conceptlattice g m
= Rel (Concept g m)

Rel gm

Algorithm

neighbors (Ord g, Ord m)
=> Set g - =
-> Context g m - =
-> [Concept g m] -=

lattice (Ord g, Ord m)

=> Context g m -
-> ConceptLattice gm --

:EE,

-

1161118

(Set g, Set m)

(Concept g m)

extent of concept
formal context
list of neighbors

formal context
concept lattice

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Ongoing projects at SIG < -
- ol

Reverse engineering 1171118
 Java library for binary relational algebra (+ slicing + fork)

Repository mining
e Analyze relationships between code/commits/issues through time
 Clustering and decision trees

Quality and metrics
e Generalized method for derivation of quality profiles
e Metrics for architectural quality and evolution
e Benchmarking commercial and open source software

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

Possible MFES projects at SIG < (=
-

1181118

Java library binary relational algebra
e Extend to “labeled” relations
e Extend with advanced algorithms (e.g. concept analysis)

Randomized testing for Java

e Study existing approaches
e Build / extend tool

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

More info? Feel free to contact...

1191118

Dr. ir. Joost Visser

E: j.visser@sig.nl
W: www.sig.nl
T. +3120 3140950

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

1201118

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2009.

