
Proof obligation discharge using the PF
transform

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

DI/UM, 2008



Summary

Learning outcomes:

• Discharging proof obligations via PF-transform. Pre/post
conditions. Invariants.

• Extended static checking in the PF-style. PF-calculation
of weakest pre-conditions for invariant maintenance.

• Three examples



Broad picture: a “all-in-one” strategy for PO discharge



Poof obligations in the PF-style

In general:

Input/output property preservation (functions)

Proof obligation

〈∀ x : p x : q (f x)〉 (1)

stating that function f ensures property q on its output every
time property p holds on its input PF-transforms to

f · Φp ⊆ Φq · f cf. diagram A

f

��

A
Φp

oo

f

��

B B
Φq

oo

(2)



Predicates as “types”

We will write “type declaration”

Φq Φp
foo (3)

to mean (2).

Exercise 1: Show that (2) and

f · Φp ⊆ Φq · ⊤ (4)

are the same.

�

Exercise 2: Prove the equivalence

Φq Φp
idoo ≡ q⇐ p (5)

�



Exercises

Exercise 3: Infer from (3) and properties (59) to (61) the following
ESC (extended static checking) properties:

Φq Φp1 ∪ Φp2

foo ≡ Φq Φp1

foo ∧ Φq Φp2

foo (6)

Φq1 ·Φq2 Φp
foo ≡ Φq1 Φp

foo ∧ Φq2 Φp
foo (7)

�

Exercise 4: Using (4) and the relational version of McCarthy’s
conditional combinator which follows,

c → f , g = f ·Φc ∪ g ·Φ¬c (8)

infer the conditional ESC rule which follows:

Φq Φp
c→f ,g
oo ≡ Φq Φp ·Φc

foo ∧ Φq Φp ·Φ¬c
g

oo (9)

�



Relationship with Hoare Logic

Let us show that Hoare triples such as

{p}P{q} (10)

are also instances of ESC proof obligations. First we spell out the
meaning of (10):

〈∀ s : p s : 〈∀ s ′ : s P // s ′ : q s ′〉〉 (11)

Then (recording the meaning of program P as relation [[P ]] on
program states) we PF-transform (11) into

Φp ⊆ [[P ]] \ (Φq · ⊤) (12)

thanks to the introduction of relational (left) division,

b (R \ S) a ≡ 〈∀ c : c R b : c S a〉 (13)



Relationship with Hoare Logic

Thanks to “al-djabr” rule

R · X ⊆ S ≡ X ⊆ R \ S (14)

we obtain

[[P ]] · Φp ⊆ Φq · ⊤ (15)

equivalent to

[[P ]] · Φp ⊆ Φq · [[P ]]

which shares the same scheme as

f · Φp ⊆ Φq · f

earlier on.



Summary

In general, we will write “type declaration”

Ψ Φ
Roo (16)

to mean

R · Φ ⊆ Ψ · R (17)

In words:

• Notation (16) can be regarded as the type assertion that, if
fed with values (or starting on states) “of type Φ”
computation R yields results (moves to states) “of type Ψ” (if
it terminates).

• So functional ESC POs and Hoare triples are one and the
same device: a way to type computations, be them specified
as (always terminating, deterministic) functions or encoded
into (possibly non-terminating, non-deterministic) programs.



The invariant maintenance (IM) PO

Pointfree:

Φinv Φinv
Roo (18)

that is,

R · Φinv ⊆ Φinv · R (19)

Pointwise (functions):

〈∀ a : inv a : inv(f a)〉 (20)

Pointwise (relations):

〈∀ a : inv a : 〈∀ a′ : a′ R a : inv a′〉〉 (21)



Mid point: pre-conditioned functions

The most typical situation corresponds to R being a function
restricted by some precondition:

• Let R := f · Φpre in (18), where pre is a given precondition.

• Then (18) becomes

Φinv Φinv

f ·Φpre
oo

≡ { definition }

f · Φpre · Φinv ⊆ Φinv · ⊤

≡ { definition }

Φinv Φpre · Φinv
foo

≡ { going pointwise }

〈∀ a :: pre a ∧ inv a⇒ inv(f a)〉 (22)



Calculating Preconditions for IM

• Very often f and inv are given and pre is the “unknown”: the
idea is to find pre which is “enough” for (22) to hold.

• In fact, wherever f does not ensure maintenance of invariant
inv , there is always a pre-condition pre which enforces this at
the cost of partializing f : in the limit, pre is the everywhere
false predicate.

• As a rule, the average programmer will become aware of such
a pre-condition at runtime, in the testing phase.

• One can find it much earlier, at specification time, when
trying to discharge the standard proof obligation (22).



PF-ESC instead of invent & verify

However,

• Bound to invent pre, we’ll hope to have guessed the weakest
such pre-condition. Otherwise, future use of f will be
spuriously constrained.

• Can we be sure of having hit the weakest pre-condition?

Our approach (PF-ESC) will be as follows:

• We take the PF-transform of inv(f a) in (22) — at data level
— and attempt to rewrite it to a term involving inv a and
possibly “something else”: the calculated pre-condition.

• This will be the weakest provided the calculation stays within
equivalence steps (as shown in the next slides).



Weakest pre-conditions

• Let us strengthen (22) to equivalence

〈∀ a :: (pre a) ∧ (inv a) ≡ inv(f a)〉 (23)

which PF-transforms to equality

Φpre · Φinv = ⊤ · Φinv · f (24)

• Later on we will show that (24) ensures pre as the weakest
(up to logical equivalence) pre-condition for inv to be
preserved.

• Weakest = sufficient + necessary for inv(f a) to hold.



Case study 1: PF-ESC at work

We want to calculate the WP for

add x l △ x : l

to preserve the no duplicates invariant on finite lists.

• First step: PF-transform X ⋆ to IN ⇀ X (simple relation
telling which elements take which position in list).

Then the no duplicates invariant on L is encoded as
ker L ⊆ id (L is injective)

Finally, add x L PF-transforms to

x · 1◦ ∪ L · succ◦ (25)

cf. back to points: {1 7→ x} ∪ {i + 1 7→ (L i) : i ← δ L}.



Case study 1: PF-ESC at work

• Second step: we start from the right hand side inv(add x L)
of (23) and re-write it by successive equivalence steps until we
reach:

• condition inv l ...
• ... “plus something else” — the calculated weakest

pre-condition.

• Since the PF-transformed proof has to do with injectivity of
union of relations, the following fact

R ∪ S is injective ≡

R is injective ∧ S is injective ∧ R◦ · S ⊆ id (26)

(easy to prove) is likely to be of use.



Case study 1: PF-ESC at work

add x L has no duplicates

≡ { cf. (25) etc }

x · 1◦ ∪ L · succ◦ is injective

≡ { (26) }

x · 1◦ is injective ∧ L · succ◦ is injective ∧ (x · 1◦)◦ · L · succ◦ ⊆ id

≡ { definition of injective (twice) ; “al-djabr” (59) }

1 · x◦ · x · 1◦ ⊆ id ∧ succ · L◦ · L · succ◦ ⊆ id ∧ x◦ · L ⊆ 1◦ · succ

≡ { “al-djabr” (59,60) as much as possible }

x◦ · x ⊆ 1◦ · 1 ∧ L◦ · L ⊆ succ◦ · succ ∧ x◦ · L ⊆ 1◦ · succ

≡ { kernel of constant function is ⊤; succ is an injection }

True ∧ L◦ · L ⊆ id ∧ x◦ · L ⊆ 1◦ · succ



Case study 1: summary

We have thus calculated:

add x L has no duplicates ≡ L is injective
︸ ︷︷ ︸

no duplicates in L

∧ x◦ · L ⊆ 1◦ · succ
︸ ︷︷ ︸

WP

PW-expansion of the calculated WP:

x◦ · L ⊆ 1◦ · succ

≡ { go pointwise: (48) twice }

〈∀ n :: x L n⇒ 1 = 1 + n〉

≡ { L models list l }

〈∀ n : n ∈ inds l : x = (l n)⇒ 1 = 1 + n〉

≡ { 1 = 1 + n always false (n ∈ IN) }

〈∀ n : n ∈ inds l : (l n) 6= x〉



Case study 2: PF-ESC at work

From the mobile phone directory problem we select maintenance of
the no duplicates invariant by function

store x △ (take 10) · (x :) · filter(x 6=)

Remarks:

• It’s sufficient to show that (x :) · filter(x 6=) preserves
injectivity, since take n L ⊆ L (∀n) and smaller than injective
is injective

• Defined over PF-transformed lists, filter becomes

filter(x 6=)L △ (¬ρ x) · L (27)

where the negated range operator (¬ρ) satisfies property

Φ ⊆ ¬ρR ≡ Φ · R ⊆ ⊥ (28)



Case study 2: PF-ESC at work

x : (filter(x 6=)L) is injective

≡ { case study 1, (27) }

(¬ρ x) · L is injective ∧ x◦ · (¬ρ x) · L ⊆ 1◦ · succ

⇐ { smaller than injective is injective }

L is injective ∧ x◦ · (¬ρ x) · L ⊆ 1◦ · succ

≡ { converses }

L is injective ∧ L◦ · (¬ρ x) · x ⊆ succ◦ · 1

≡ { (¬ρ x) · x = ⊥ by left-cancellation of (28) }

L is injective ∧ L◦ · ⊥ ⊆ succ◦ · 1

≡ { bottom is below anything }

L is injective ∧True



Case study 2: PF-ESC at work

Moral of this case study:

Although the implication in the second step of the
reasoning could put weakness of calculated pre-condition
at risk, we’ve calculated the weakest of all conditions
anyway (True).

Exercise 5: Show that (28) stems from “al-djabr” rule

Φ ⊆ ¬δ R ≡ R ⊆ ⊥/Φ (29)

among others.

�

Exercise 6: Prove (26).

�



Case study 3: Verified File System

A real-life case study:

• VSR (Verified Software Repository) initiative

• VFS (Verified File System) on Flash Memory — challenge put
forward by Rajeev Joshi and Gerard Holzmann (NASA JPL)
[2]

• Two levels — POSIX level and (NAND) flash level

• Working document: Intel R© Flash File System Core
Reference Guide (Oct. 2004) is POSIX aware.



Case study 3: Verified File System



Case study 3: Verified File System

The problem (sample):



Verified File System Project

Sample of model’s data types (simplified):

System = {table : OpenFileDescriptorTable, tar : Tar}

inv sys △ 〈∀ ofd : ofd ∈ rng (table sys) : path ofd ∈ dom tar sys〉

where

OpenFileDescriptorTable = FileHandler ⇀ OpenFileDescriptor

Tar = Path ⇀ File

inv tar △ 〈∀ p : p ∈ dom tar : dirName(p) ∈ dom tar ∧

fileType(attributes(tar(dirName p))) = Directory〉

OpenFileDescriptor = {path : Path, ...}



Verified File System Project

(Sample) API function:

FS DeleteFileDir : Path→ System→ (System × FFS Status)

FS DeleteFileDir p sys △

if p 6= Root ∧ p ∈ dom (tar sys) ∧ pre-FS DeleteFileDir System p sys

then (FS DeleteFileDir System p sys,FFS StatusSuccess)

else (sys,FS DeleteFileDir Exception p sys)

where

FS DeleteFileDir System : Path→ System→ System

FS DeleteFileDir System p (h, t) △

(h,FS DeleteFileDir Tar {p} t)

pre

〈 ∀ buffer
buffer ∈ rng h :

path buffer 6= p ∧ pre-FS DeleteFileDir Tar p t

〉



Verified File System Project

Sample API function (continued):

FS DeleteFileDir Tar : PPath→ Tar → Tar

FS DeleteFileDir Tar s t △ tar \ s

pre 〈∀ p : p ∈ dom tar : dirName p ∈ s ⇒ p ∈ s〉;

where

dirName : Path→ Path

dirName p △ if p = Root ∨ len p = 1

then Root

else blast p

and so on. (NB: blast selects all but the last element of a list.)



Invariant structural synthesis (coreflexives)

• Real-size problems show where complexity is, namely the
intricate structure involving nested datatype invariants.

• Need to calculate the associated coreflexives.

• Denoting by Ap the fact that datatype A is constrained by
invariant p, we will write eAp

to denote the associated
coreflexive, calculated by induction on the structure of types:

eX = id (30)

eKp
= Φp (31)

e(A×B)p
= (eA × eB) · Φp (32)

e(A+B)[p ,q]
= eA ·Φp + eB ·Φq (33)

e(F A)p
= F(eA) · Φp (34)



Invariant structural synthesis (coreflexives)

Example:

eSystem

= { (32), for ri (=“referential integrity”) the top level inv. }

(eOpenFileDescriptorTable × eTar ) · Φri

= { OpenFileDescriptorTable has no invariant }

(id × eTar ) · Φri

= { (31) for pc (=“prefix closed”) denoting Tar ’s invariant }

(id × Φpc) · Φri (35)



Facing complexity

Need to “find structure” in the specification text:

• FS DeleteFileDir p has conditional “shape”

c → 〈f · Φp, k〉, 〈id , g〉 (36)

where
• c is the (main) if-then-else’s condition
• f abbreviates FS DeleteFileDir System p
• p is the precondition of f
• k abbreviates FFS StatusSuccess
• g abbreviates FS DeleteFileDir Exception p

What’s the advantage of pattern (36)?

See the “divide and conquer” rules which follow:



Breaking complexity of POs

Further to (5), (7), (9):

• Trivial:

id Φ
Roo ≡ Φ ⊥

Roo ≡ Ψ Φ
⊥oo ≡ True (37)

• Trading:

Υ Φ ·Ψ
Roo ≡ Υ Ψ

R·Φoo (38)

• Composition (Fusion):

Ψ Φ
R·Soo ⇐ Ψ Υ

Roo ∧ Υ Φ
Soo (39)



Breaking complexity of POs

• Split by conjunction:

Ψ1 ·Ψ2 Φ
Roo ≡ Ψ1 Φ

Roo ∧ Ψ2 Φ
Roo (40)

— generalizes (7)

• Weakening/strengthening:

Ψ Φ
Roo ⇐ Ψ ⊇ Θ ∧ Θ Υ

Roo ∧Υ ⊇ Φ (41)

• Separation:

Υ ·Θ Φ ·Ψ
Roo ⇐ Υ Φ

Roo ∧ Θ Ψ
Roo (42)

— outcome of (41), (40)



Breaking complexity of POs

• Splitting (functions):

Ψ×Υ Φ
〈f ,g〉

oo ≡ Ψ Φ
foo ∧ Υ Φ

g
oo (43)

• Splitting (in general):

Ψ×Υ Φ
〈R,S〉
oo ≡ Ψ Φ · δ S

Roo ∧ Υ Φ · δ R
Soo (44)

• Product:

Φ′ ×Ψ′ Φ×Ψ
R×S

oo ≡ Φ′ Φ
Roo ∧ Ψ′ Ψ

Soo (45)



Breaking complexity of POs

• Conditional:

Ψ Φ
c→R,S
oo ≡ Ψ Φ · Φc

Roo ∧ Ψ Φ · Φ¬c
Soo (46)

which generalizes (6).

NB:

• Close relationship with Hoare logic axioms

— but note many equivalences instead of implications

Exercise 7: Use the PF-calculus to prove the correctness of the rules
given above.

�



Verified File System Project

Checking FS DeleteFileDir :

eSystem×FFS Status eSystem
FS DeleteFileDir p

oo

≡ { (36) }

eSystem × id eSystem

c→〈f ·Φp,k〉,〈id,g〉
oo

≡ { conditional (46) }

eSystem × id eSystem · Φc

〈f ·Φp ,k〉
oo

∧

eSystem × id eSystem ·Φ¬c

〈id,g〉
oo



Verified File System Project

≡ { splitting (44,43) }

eSystem eSystem ·Φc

f ·Φp
oo

∧

id eSystem ·Φc · δ (f · Φp)
k

oo

∧

eSystem eSystem · Φ¬c
idoo

∧

id eSystem · Φ¬c
g

oo

≡ { (37), (5) }



Case study 3: Verified File System

eSystem eSystem ·Φc

f ·Φp
oo

≡ { trading (38), unfold eSystem (35) }

(id × Φpc) ·Φri (id × Φpc) · Φri

f ·Φp·Φc
oo

⇐ { separating (42) }

Φri Φri

f ·Φp ·Φc
oo ∧ id × Φpc id × Φpc

f ·Φp·Φc
oo

≡ { trading (38) and implication c ⇒ p }

Φri Φri ·Φc
foo ∧

id × Φpc (id × Φpc) ·Φc
foo



Case study 3: Verified File System

• So much for PO calculation “in-the-large”.

• Going “in-the-small” means spelling out invariants, functions
and pre-conditions and reason as in the previous case studies

• Let us pick the first PO, Φri Φri · Φc
foo , for example.

• As earlier on, we go pointwise and try to rewrite ri(f (M,N))
— M keeps open file descriptors, N the file contents — into
ri(M,N) + a weakest precondition; then we compare the
outcome with what the designer wrote (Φc).



Case study 3: Verified File System

Clearly, from slide 25 we infer

ri(M ,N) △ ρ (path ·M) ⊆ δN

cf. diagram

FileHandler
M / OpenFileDescriptor

path
uull

l
l
l
l
l
l
l
l
l
l
l
l

Path
N

/ File

which is a referential integrity constraint relating paths in open-file
descriptors and paths in the file store N . PF calculation will lead to

ri(M ,N) △ path ·M ⊆ N◦ · ⊤ (47)

thanks to (64) etc.



Case study 3: Verified File System

We calculate:

ri(f (M ,N))

= { (36) }

ri(FS DeleteFileDir System p (M ,N))

= { FS DeleteFileDir Tar s t △ tar \ s etc }

ri(M ,N · ¬ρ p)

We can generalize from single path p to a set S of paths:

ri(M ,N ·Φ¬S )

≡ { (47) }

path ·M ⊆ (N · Φ¬S)◦ · ⊤

≡ { converses (50,51, 54) }



Case study 3: Verified File System

path ·M ⊆ Φ¬S · N
◦ · ⊤

≡ { (66), coreflexives (55), (·⊤) distribution }

path ·M ⊆ Φ¬S · ⊤ ∩ N◦ · ⊤

≡ { ∩-universal (52) }

path ·M ⊆ Φ¬S · ⊤ ∧ path ·M ⊆ N◦ · ⊤

≡ { “al-djabr” ; (47) }

M ⊆ path◦ ·Φ¬S · ⊤
︸ ︷︷ ︸

wp

∧ ri(M ,N)

≡ { going pointwise }

〈∀ b : b ∈ rng M : path b 6∈ S〉 ∧ ri(M ,N)



Summary

• Thus we’ve checked (part) of the pre-condition of
FS DeleteFileDir System, recall slide 25

• The other checks are performed in a similar way.

• Two levels of PO calculation: in-the-large (PO level) and
in-the-small (where PF-notation describes data).

• PO-level useful in preparing POs for a theorem prover, recall
diagram of slide 3.



Background

“Napkin” rule:

b(f ◦ · R · g)a ≡ (f b)R(g a) (48)

Converses:

(R ∪ S)◦ = R◦ ∪ S◦ (49)

(R · S)◦ = S◦ · R◦ (50)

(R◦)◦ = R (51)



Background

Meet and join:

X ⊆ R ∩ S ≡ X ⊆ R ∧ X ⊆ S (52)

R ∪ S ⊆ X ≡ R ⊆ X ∧ S ⊆ X (53)

Coreflexives are symmetric and transitive:

Φ◦ = Φ = Φ · Φ (54)

Meet of two coreflexives is composition:

Φ ∩Ψ = Φ ·Ψ (55)



Background

Equality on relations B A
R,S

oo :

R = S ≡ R ⊆ S ∧ S ⊆ R (56)

Alternative to (56) — indirect equality rules:

R = S ≡ 〈∀ X : : (X ⊆ R ≡ X ⊆ S)〉 (57)

≡ 〈∀ X : : (R ⊆ X ≡ S ⊆ X )〉 (58)

Shunting rules:

f · R ⊆ S ≡ R ⊆ f ◦ · S (59)

R · f ◦ ⊆ S ≡ R ⊆ S · f (60)

Therefore

f · (R ∪ S) = f · R ∪ f · S (61)



Background

Kernel, image (the same for respectively δ, ρ):

ker (R◦) = img R (62)

img (R◦) = ker R (63)

Range:

ρR ⊆ Φ ≡ R ⊆ Φ · ⊤ (64)

Domain/range elimination:

⊤ · δ R = ⊤ · R (65)

ρR · ⊤ = R · ⊤ (66)



Background

Weakest (liberal) pre-condition is the upper adjoint of the following
“al-djabr” rule [1] which combines two already seen — range (64) and
left division (13):

ρ (R · Φ) ⊆ Ψ ≡ Φ ⊆ R \•Ψ (67)

The pointwise version wlp R ψ of R \•Ψ is:

wlp R ψ △ 〈
∨

φ :: 〈∀ b, a : b R a : φ a⇒ ψ b〉〉

In the slide which follows we show that, if equivalence (23) holds then

pre is the weakest precondition for inv to be maintained. The calculation

proceeds by indirect equality (57) over coreflexive Φ:



Weakest pre-conditions

Φ ⊆ Φpre · Φinv

≡ { rep. equal by equals (24) }

Φ ⊆ ⊤ · Φinv · f

≡ { “al-djabr” rule (59) ; converses }

f · Φ ⊆ Φinv · ⊤

≡ { range (64) }

ρ (f · Φ) ⊆ Φinv

≡ { weakest pre-condition (67) }

Φ ⊆ f \• Φinv

:: { indirection (57) }

Φpre · Φinv = f \• Φinv



R.C. Backhouse.
Fixed point calculus, 2000.
Summer School and Workshop on Algebraic and Coalgebraic
Methods in the Mathematics of Program Construction, Lincoln
College, Oxford, UK 10th to 14th April 2000.

Rajeev Joshi and Gerard J. Holzmann.
A mini challenge: build a verifiable filesystem.
Formal Asp. Comput., 19(2):269–272, 2007.


