
An Introduction to Formal
Modelling

DI/UM, 2002-07

J.N. Oliveira

UM/02-07 – p. 1/22

Cover Story

Excerpt of article in the CAMBRIDGE EVENING
NEWS:

Computer Scientist Gets to the
"Bottom" of Financial Scandal

A Cambridge computer professor, Simon
Peyton Jones, has made an interesting
discovery regarding the Enron collapse.
(...) Enron’s collapse was due to a nearly
impenetrable web of financial contracts that
disguised the true financial state of the
company (...)

UM/02-07 – p. 2/22

Cover Story (cont.)

(...) Accountants find that even when they
are scrupulously honest about the valuation
of such contracts there can still be sharp
disagreements in regard to the worth of
trading reserves, debts, and other
components.

Enter Professor Peyton Jones. As part of
his research at Microsoft in Cambridge, he
developed a computer language for
describing and valuing financial contracts.
(...)

UM/02-07 – p. 3/22

Cover Story (cont.)

(...) With colleagues Jean-Marc Eber and
Julian Seward, they developed a language
capable of accurately describing and
valuing even the most complex financial
instruments. (...)

"While accountants find financial
derivatives to be mysterious and
difficult, for us they are just ordinary
recursive equations,"

says Jones.

UM/02-07 – p. 4/22

Cover Story (cont.)

(...) "We have been dealing with
these for many years and have
developed a wide range of
techniques for handling them."

(...) According to Peyton Jones, his success
in the financial world comes from years of
research in Haskell (...)

"Without the tools developed by the
Haskell community I would never
have been able to do what I’ve done.
It’s a jolly wonderful way to program
computers"

he stated. (...)
UM/02-07 – p. 5/22

Cover Story (conclusion)

(...)

The Arthur Anderson accounting firm is
rumored to have made overtures to Peyton
Jones. (...) But Professor Peyton Jones
plans to remain where he is.

"I’m flattered that my research has
finally been of use to someone but
I’m quite happy working on Haskell.
Besides, I don’t want to have to wear
a suit to work every day."

UM/02-07 – p. 6/22

Cover Story (conclusion)

(...)

The Arthur Anderson accounting firm is
rumored to have made overtures to Peyton
Jones. (...) But Professor Peyton Jones
plans to remain where he is.

"I’m flattered that my research has
finally been of use to someone but
I’m quite happy working on Haskell.
Besides, I don’t want to have to wear
a suit to work every day."

(CAMBRIDGE EVENING NEWS,

UM/02-07 – p. 6/22

Cover Story (conclusion)

(...)

The Arthur Anderson accounting firm
rumored to have made overtures to P
Jones. (...) But Professor Peyton Jones
plans to remain where he is.

"I’m flattered that my research has
finally been of use to someone but
I’m quite happy working on Haskell

(CAMBRIDGE EVENING NEWS, 1st of April (!) 2002)

UM/02-07 – p. 6/22

Prof. Peyton Jones’ “magic words”

. . . language capable of accurately describing
and valuing . . .

. . . just ordinary recursive equations . . .

. . . tools developed by the Haskell community

In other words:

UM/02-07 – p. 7/22

Prof. Peyton Jones’ “magic words”

. . . language capable of accurately describing
and valuing . . .

. . . just ordinary recursive equations . . .

. . . tools developed by the Haskell community

In other words:

formal methods

UM/02-07 – p. 7/22

Prof. Peyton Jones’ “magic words”

. . . language capable of accurately describing
and valuing . . .

. . . just ordinary recursive equations . . .

. . . tools developed by the Haskell community

In other words:

formal methods

and

functional programming

UM/02-07 – p. 7/22

Notion of specification

problem!

Requirements

customer

UM/02-07 – p. 8/22

Notion of specification

problem!

Requirements are texts:

“I want my
patients
sorted by
age”

customer

UM/02-07 – p. 8/22

Notion of specification

problem!

Requirements are texts:

“I want my
patients
sorted by
age”

Implementations

customer

UM/02-07 – p. 8/22

Notion of specification

problem!

Requirements are texts:

“I want my
patients
sorted by
age”

Implementations are functional: qSort(....)

customer

UM/02-07 – p. 8/22

Notion of specification

problem!

Requirements are texts:

“I want my
patients
sorted by
age”

Implementations are functional: qSort(....)

customer

How do we accurately describe sorting without mentioning any

sorting algorithm?

UM/02-07 – p. 8/22

Notion of specification

problem!

Requirements are texts:

“I want my
patients
sorted by
age”

Implementations are functional: qSort(....)

customer

How do we accurately describe sorting without mentioning any

sorting algorithm? We need a specification language .

UM/02-07 – p. 8/22

Why accurate (formal) notations?

c© Cliff B. Jones 1980

UM/02-07 – p. 9/22

Trend for Notation Economy

Notation — always a concern throughout the history of
mathematics.

In the 16th century,

12x3 + 18x2 + 27x + 17

would be written

12.cu.p̃.18.ce.p̃.27.co.p̃.17

— cf. Libro de algebra (1567) by Coimbra
mathematician Pedro Nunes (1502-1578).

Such notation was at its time replacing a even more
obscure syntax.

UM/02-07 – p. 10/22

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)

the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

UM/02-07 – p. 11/22

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

UM/02-07 – p. 11/22

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);

UM/02-07 – p. 11/22

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);
function (= “verb”);

UM/02-07 – p. 11/22

Requirement analysis

From a mobile phone manufacturer:

(...) For each list of calls stored in the mobile phone
(eg. numbers dialed, SMS messages, lost calls), the
store operation should work in a way such that (a)
the more recently a call is made the more accessible
it is; (b) no number appears twice in a list; (c) only
the last 10 entries in each list are stored.

data-type (= “noun”);
function (= “verb”);
property (= “integrated sentence”);

UM/02-07 – p. 11/22

Formal model

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store
operation should work in a way such that (a) the more

recently a call is dialed the more accessible it is; (b) no
number appears twice in a list; (c) only the last 10 entries in
each list are stored.

UM/02-07 – p. 12/22

Formal model

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store
operation should work in a way such that (a) the more

recently a call is dialed the more accessible it is; (b) no
number appears twice in a list; (c) only the last 10 entries in
each list are stored.

UM/02-07 – p. 12/22

Formal model

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store
operation should work in a way such that (a) the more

recently a call is dialed the more accessible it is; (b) no
number appears twice in a list; (c) only the last 10 entries in
each list are stored.

In Haskell notation:

store :: Call -> [Call] -> [Call]
store c l = ...

UM/02-07 – p. 12/22

Formal model

(...) For each list of calls stored in the mobile phone (eg.
numbers dialed, SMS messages, lost calls), the store
operation should work in a way such that (a) the more

recently a call is dialed the more accessible it is; (b) no
number appears twice in a list; (c) only the last 10 entries in
each list are stored.

In VDM-SL notation:

store : Call -> seq of Call -> seq of Call

store (c)(l) = ...

UM/02-07 – p. 12/22

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

UM/02-07 – p. 13/22

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

In Haskell:

store :: Call -> [Call] -> [Call]

store c l = [c] ++ l

Notation : x ++ y means “x catenated with y ”, eg.

[c] ++ [a,b,c] = [c,a,b,c]

UM/02-07 – p. 13/22

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

store :: Call -> [Call] -> [Call]
store c l = [c] ++ filter (/= c) l

Notation : From the Haskell Prelude:

filter :: (a -> Bool) -> [a] -> [a]

filter p l = [a | a <- l, p a]

UM/02-07 – p. 13/22

Meeting the requirements

(...) such that (a) the more recently a call is made
the more accessible it is; (b) no number appears
twice in a list; (c) only the last 10 entries in each list
are stored.

store’ :: Call -> [Call] -> [Call]
store’ c l = take 10 (store c l)

Notation :

take 0 = [] take [] = []

take n (x:xs) | n>0 = x : take (n-1) xs

| otherwise = []

UM/02-07 – p. 13/22

Writing it in VDM-SL

store’: Call -> seq of Call -> seq of Call

store’ (c)(l) = take(10)(store(c)(l));

store : Call -> seq of Call -> seq of Call

store (c)(l) = [c] ˆ

[a | a <- l & a <> c];

Notation : xˆ y is the VDM-SL equivalent of x ++ y .

Notation [a | a <- l & a <> c] is not valid VDM-SL. One

has to write

[l(i) | i in set inds l & l(i) <> c].

UM/02-07 – p. 14/22

Common practice, in eg. C #

public void store10(string phoneNumber)

{

System.Collections.ArrayList auxList =

new System.Collections.ArrayList();

auxList.Add(phoneNumber);

auxList.AddRange(

this.filteratmost9(phoneNumber));

this.callList = auxList;

}

UM/02-07 – p. 15/22

C# version of store (cont.)

public System.Collections.ArrayList filteratmost9(str ing n)

{

System.Collections.ArrayList retList =

new System.Collections.ArrayList();

int i=0, m=0;

while((i < this.callList.Count) && (m < 9))

{

if ((string)this.callList[i] != n)

{

retList.Add(this.callList[i]);

m++;

}

i++;

}

return retList;

}

UM/02-07 – p. 16/22

Comments on C # code

Even tolerating code verbosity ...

How “good” is this implementation?

UM/02-07 – p. 17/22

Comments on C # code

Even tolerating code verbosity ...

How “good” is this implementation?

Does it meet the 3 properties stated by the
mobile phone manufacturer?

UM/02-07 – p. 17/22

Comments on C # code

Even tolerating code verbosity ...

How “good” is this implementation?

Does it meet the 3 properties stated by the
mobile phone manufacturer?

Obs.:

The same requirements in an FM exam paper
led to 5 kinds of answer, of which only one (!)
was correct!

UM/02-07 – p. 17/22

Comments on C # code

Even tolerating code verbosity ...

How “good” is this implementation?

Does it meet the 3 properties stated by the
mobile phone manufacturer?

Obs.:

The same requirements in an FM exam paper
led to 5 kinds of answer, of which only one (!)
was correct!

Alternatively, FMs provide for correct program
construction, eg. by calculation.

UM/02-07 – p. 17/22

Programming by calculation

store’(c)(l)

= take(10)(store(c)(l))

= take(10)([c]ˆ [l(i)|i in set inds l & l(i)<>c])

= [c]ˆ take(9)([c]ˆ [l(i)|i in set inds l&l(i)<>c])

= [c]ˆ filteratmost(9)(...l...)

= ...

Notation : calculation stems from formal properties, eg.

take(m)(xˆ y) = take(m)(x)ˆ take(m-len x)(y)

UM/02-07 – p. 18/22

FMs = true software engineering

How (implementation)

UM/02-07 – p. 19/22

FMs = true software engineering

What (specification)

How (implementation)

UM/02-07 – p. 19/22

FMs = true software engineering

What (specification)

How (implementation)

reverse

UM/02-07 – p. 19/22

FMs = true software engineering

What (specification)

How (implementation)

reverse forward

UM/02-07 – p. 19/22

FMs = true software engineering

What (specification)

Why? (justification)

How (implementation)

reverse forward

UM/02-07 – p. 19/22

Balzer’s FM Life-cycle

problem!

Requirements

customer

UM/02-07 – p. 20/22

Balzer’s FM Life-cycle

problem!

Requirements

Formal Model

customer

team

UM/02-07 – p. 20/22

Balzer’s FM Life-cycle

problem!

Requirements

Formal Model

Functional prototype

customer

team

UM/02-07 – p. 20/22

Balzer’s FM Life-cycle

problem!

Requirements

Formal Model

Functional prototype

customer

team

team

UM/02-07 – p. 20/22

Balzer’s FM Life-cycle

problem!

Requirements

Formal Model GUI

Functional prototype

customer

team

team

customer

UM/02-07 – p. 20/22

Balzer’s FM Life-cycle

problem!

Requirements

Formal Model GUI

Functional prototype

Implementation

customer

team

team

customer

calculation

UM/02-07 – p. 20/22

Balzer’s FM Life-cycle

problem!

Requirements

Formal Model GUI

Functional prototype

Implementation

customer

team

team

customer

calculation

upgrade

UM/02-07 – p. 20/22

Our background

By 2004:
20 years of FM teaching at the Univ. of
Minho

≃ 10 years ago:
Industrial application of FMs based on
FP tested at INESC-BRAGA

Spin-off of INESC-BRAGA (1996):
SIDEREUS S.A. - Rigorous Solutions for
Software Systems (Porto)

UM/02-07 – p. 21/22

FMs add to competitiveness

Increased productivity:

Code Validation















Debug

Verification

Calculation / automation

UM/02-07 – p. 22/22

FMs add to competitiveness

Increased productivity:

Code Validation















Debug

Verification

Calculation / automation

Technology-independent documentation:

the actual enterprise’s wealth

investment safeguard.

UM/02-07 – p. 22/22

FMs add to competitiveness

Increased productivity:

Code Validation















Debug

Verification

Calculation / automation

Technology-independent documentation:

the actual enterprise’s wealth

investment safeguard.

trains competitive software designers :-)

UM/02-07 – p. 22/22

	Cover Story
	Cover Story (cont.)
	Cover Story (cont.)
	Cover Story (cont.)
	Cover Story (conclusion)
	Cover Story (conclusion)
	Cover Story (conclusion)

	mbox {Prof. Peyton Jones' «magic words»}
	mbox {Prof. Peyton Jones' «magic words»}
	mbox {Prof. Peyton Jones' «magic words»}

	Notion of specification
	Notion of specification
	Notion of specification
	Notion of specification
	Notion of specification
	Notion of specification

	Why accurate (formal)
notations?
	Trend for Notation Economy
	Requirement analysis
	Requirement analysis
	Requirement analysis
	Requirement analysis
	Requirement analysis

	Formal model
	Formal model
	Formal model
	Formal model

	Meeting the requirements
	Meeting the requirements
	Meeting the requirements
	Meeting the requirements

	Writing it in VDM-SL
	Common practice, in eg. csharp
	csharp version of store (cont.)
	Comments on csharp code
	Comments on csharp code
	Comments on csharp code
	Comments on csharp code

	Programming by calculation
	FMs = true software engineering
	FMs = true software engineering
	FMs = true software engineering
	FMs = true software engineering
	FMs = true software engineering

	Balzer's FM Life-cycle
	Balzer's FM Life-cycle
	Balzer's FM Life-cycle
	Balzer's FM Life-cycle
	Balzer's FM Life-cycle
	Balzer's FM Life-cycle
	Balzer's FM Life-cycle

	Our background
	FMs add to competitiveness
	FMs add to competitiveness
	FMs add to competitiveness

