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Abstract 
Over the past 15 years there has been increasing recogni-
tion that careful attention to the design of a system’s 
software architecture is critical to satisfying its require-
ments for quality attributes such as performance, security, 
and dependability. As a consequence, during this period 
the field of software architecture has matured signifi-
cantly. However, current practices of software architec-
ture rely on relatively informal methods, limiting the po-
tential for fully exploiting architectural designs to gain 
insight and improve the quality of the resulting system.  
In this paper we draw from a variety of research results to 
illustrate how formal approaches to software architecture 
can lead to enhancements in software quality, including 
improved clarity of design, support for analysis, and as-
surance that implementations conform to their intended 
architecture. 
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1 Introduction 
Software architecture is concerned with the high-level 
structures of a software system, the relationships among 
them, and their properties of interest. These high-level 
structures represent the loci of computation, communica-
tion, and implementation. Typical properties include 
emergent behaviour, such as the performance, reliability, 
security, maintainability, and so on (Shaw and Garlan 
1996, Perry and Wolf, 1992). 

Well designed architectures typically allow one to reason 
about satisfaction of key requirements and to make prin-
cipled engineering tradeoffs.  They can provide clear ra-
tionale of assignment of function to components, estab-
lish principles of conceptual integrity, and lead to consid-
erable reduction in rework over the lifespan of a system 
(Brookes 1975, Boehm and Turner 1993). They can also 
permit reuse of architectural design idioms and patterns, 
reduction of development costs through product line ap-
proaches, and guidance to future maintainers of those 
systems. 

Given the potential benefits of software architecture, over 
the past decade and a half the field has received increas-
ing attention and consequent progress. There are now 
numerous textbooks (Garlan and Shaw 1996, Bass, 

Clements, and Kazman 2003, Rosanski and Woods 
2005), review methods (Clements, Kazman, and Klein 
2001), conferences (e.g., the Working IEEE/IFIP Confer-
ences on Software Architecture (WICSA) and the Euro-
pean Workshops on Software Architecture (EWSA)), 
documentation standards (Clements et al. 2002, IEEE 
2000), handbooks (Buschmann et al. 1996), and courses 
covering the topic.  Success stories detailing the eco-
nomic benefits and practice of product lines abound 
(Bosch 2000, Clements and Northrop 2001). Software 
development practices typically now incorporate architec-
ture reviews, and software architects have formal titles 
and well-defined roles in many organizations.  

Coupled with heightened awareness, and increasing ma-
turity of practice, a number of standards bodies are now 
promoting notations and standards for software architec-
ture. UML 2.0 from the Object Management Group, for 
example, now has improved capabilities to represent gen-
eral component and connector architectures. The IEEE 
prescribes a meta-framework for architectural views 
(IEEE 2000). Some standards aim at more specific do-
mains, such as resource constrained systems (e.g., AADL 
by SAE International, 2004, or SysML by the Object 
Management Group, 2006). Other standards-based ap-
proaches, like “model driven architecture” (MDA) from 
the Object Management Group (2003), attempt to provide 
ways to move from architectural models to architectur-
ally-consistent implementations. Finally, the presence of 
middleware and their corresponding architectural frame-
works have led to considerable standardization and reuse 
within certain application domains, (e.g., J2EE, Eclipse, 
ADO.NET). 

However, despite notable progress and concern for ways 
to represent and use software architecture, specification 
of architectural designs remains relatively informal, rely-
ing on graphical notations with weak or non-existent se-
mantics that are often limited to expressing only the basic 
of structural properties. As a consequence, it is almost 
impossible using today’s common practices to (a) express 
architectural descriptions precisely and unambiguously; 
(b) provide soundness criteria and tools to check consis-
tency of architectural designs; (c) analyse those designs to 
determine implied system properties; (d) exploit patterns 
and styles, and check whether a given architecture con-
forms to a given pattern; and (e) guarantee that the im-
plementation of a system is consistent with its architec-
tural design. Copyright © 2006 Australian Computer Society, Inc. This 
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Related Programmable Systems (SCS’06), Melbourne. Con-
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Luckily, however, research has developed techniques to 
address many of these shortcomings by providing more-
formal approaches to architectural design. While these 
techniques may not be completely ready for full-scale 
adoption by industry, many of them are close to that level 
of maturity.  

In this paper we outline several such techniques and their 
associated tools, drawing particularly from research car-
ried out at Carnegie Mellon University in the ABLE Pro-
ject. While not a comprehensive survey of existing work 
on formal approaches to software architecture, this paper 
will give a flavour for the kinds of techniques being in-
vestigated by the research community, and the kinds of 
potential benefits that they can bring to the field. 

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes how to specify architectural structure; 
in Section 3 we introduce architectural properties and 
illustrate how a flexible property mechanism can facili-
tate architectural analysis; Section 4 shows how architec-
tural behaviour can be specified; Section 5 introduces the 
concepts of architectural style, and shows how they can 
be used to provide domain-specific architectural models 
and the ability to check for conformance to a style; Sec-
tion 6 presents a summary of our approaches to address-
ing the problem of establishing implementation confor-
mance to an architecture; finally, Sections 7 and 8 present 
related work and conclusions. 

2 Modelling architectural structure 
The starting point for any formal treatment of software 
architecture is the representation of architectural struc-
ture. However, this raises the question: what kinds of 
structure? Any complex software system may have many 
structures of interest: modules, run-time entities, devel-
opment teams, physical devices and networks. Today we 
understand that the preferred way of addressing this com-
plexity is to recognize that an architectural design must 
be described in terms of a number of distinct (but related) 
views. Each view represents an architectural perspective 
on the system, exposing certain system structures and 
their properties, to address a particular set of concerns. 

Following the approach of Clements et. al. (2002), one 
can categorize the kinds of structures into three general 
categories. First, there are coding structures, such as 
modules, packages, and classes, with relationships like 
uses, depends-on, inherits, etc. Second, there are run-time 
structures: databases, clients, servers, and connectors 
indicating communication pathways. Third, there are al-
location structures, which map elements of the first two 
views into non-software entities, such as the physical 
setting (networks, CPUs, etc.) or development teams. 
These mappings lead to allocation views, such as de-
ployment views or work breakdown structures. 

In this paper we will focus on modelling and analysis of 
run-time structures, or component and connector (C&C) 
views. This is because such structures are the ones that 
most directly convey critical properties related to depend-
ability, such as reliability, security, and performance. 
These are also the class of views that are least well sup-
ported by existing notations and tools. 

2.1 Components, connectors, and systems 
We model a run-time C&C view of software architecture 
as a graph of components and connectors. Specifically, 
basic elements and relations of a C&C view are: 
• Components model the principle computational 

elements of a system’s run-time structure. They in-
clude things like databases, clients, servers, GUI’s, 
etc. Each component has a set of ports, which model 
the run-time interfaces of that component, through 
which it interacts with other components (via con-
nectors). For example, a server might have a number 
of service invocation ports, each port representing a 
run-time interactions with an individual client. 

• Connectors model the pathways of communication 
between components. They include things like pipes 
and client-server communication links. Connectors 
may be binary, such as pipes and client-server inter-
actions, or N-ary, such as a publish-subscribe con-
nector, which allows publisher component to interact 
with zero, one, or many subscribing components. 
Each connector has a set of roles, which model the 
specifications of behaviour required of the compo-
nents that use a given connector. For example, a pipe 
might have a single reading and writing role, while a 
publish-subscribe connector would have multiple 
publish and subscribe roles. 

• Systems model a graph of components and connec-
tors in which the ports of a component fill the roles 
of a set of connectors to determine the interconnec-
tion topology. 

Figure 1 illustrates these concepts. In addition, a compo-
nent or a connector may have substructure (not illustrated 
here), called a representation that further elaborates its 
internal structure.  
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Figure 1. Component and Connector View. 

This vocabulary allows one to model the box-and-and-
line diagrams common to architectural descriptions, and 
generally corresponds to the primitive conceptual build-
ing blocks in most architectural description languages 
(ADLs). It is important to note, however, that unlike 
many informal diagrammatic depictions of architecture, 
the above model explicitly identifies component inter-
faces, and represents connectors as first-class model ele-
ments of the software architecture. 

2.2 Acme 
In order to support analysis of component and connector 
architecture models it is necessary to have a machine-



System simple-cs = { 
  Component client = { port call-rpc; }; 
  Component server = { port rpc-request; }; 
  Connector rpc = {  
     role client-side;  
     role server-side;  
  }; 
  Attachments = { 
     client.call-rpc to rpc.client-side; 
     server.rpc-request to rpc.server-side; 
  } 
} 

Figure 2. Acme description for a simple client-
server architecture. 

System simple-cs = { 
  …  
  Component server = {  
   port rpc-request = {  
     Property sync-requests : boolean  

                                           = true;  
    }; 
    Property max-transactions-per-sec : int = 5; 
    Property max-clients-supported : int = 100; 
  }; 
  Connector rpc = { …  
    Property protocol : string = “aix-rpc”; 
  }; … 
}; 

processable representation. In this paper we use the Acme 
ADL for this representation (Garlan et al. 2000). 

Figure 2 shows an Acme specification of a simple client-
server system consisting of a single client and a single 
server, interacting through a remote procedure-based 
connector.  The system, named simple-cs, is declared in 
the first line of the specification. Following this are decla-
rations of the two components, client and server, each 
with a single port (call-rpc and rpc-request, respectively). 
The connector, rpc, is declared to have two roles (client-
side and server-side). Finally, the system is created by 

attaching the appropriate ports to the respective roles of 
the connector.1

The textual representation of a graphical picture does 
little more than provide an alternative depiction. But there 
are, nonetheless, opportunities for analysis even with 
such simple models. For example, after parsing, we might 
check the model to determine whether any connectors 
have unattached roles, whether every port of a component 
is attached to some connector. or whether the architec-
tural substructure of a component provides interfaces to 

                                                           
1 Although we don’t illustrate it in this simple example, at this 
structural level we could also provide representations of the 

Figure 3. Properties in Acme. Analysis of  
architectural structure. 

 

Figure 4. Specifying schedulabiluty properties in AcmeStudio. 



support its own external  interfaces. We can also check 
for naming conflicts (e.g., whether two ports of the same 
name on the same component). 

3 Modelling architectural properties 
While some analyses of pure structure are possible, to 
achieve significant analytic value from an architectural 
model we need to represent more of the semantics of the 
architecture. In Acme this is done by annotating the struc-
ture with properties.  

3.1 Properties in Acme 
Properties are simply typed name-value pairs that can be 
associated with any architectural element.2 Types may be 
primitive (integer, boolean, etc.) or composite (sets, se-
quences and records).  

Figure 3 illustrates the use of properties, elaborating 
Figure 2. This example illustrates properties associated 
with a port (indicating whether the client request is syn-
chronous); a component (indicating the maximum num-
ber of transactions per second supported by the server), 
and a connector (indicating the name of the protocol that 
is expected to be used over it). 

                                                                                              

                                                          
client and server, elaborating each component’s architectural 
substructure. See Garlan et al. (2000) for details. 
2 We use the term architectural element to refer generally to 
components, connectors, ports, roles, representations, and sys-
tems. 

3.2 Analysing architectural 
properties 

The meaning of properties is not 
specified in Acme, which does 
not provide native support for 
their analysis. However, such 
properties can be used by external 
analysis tools to gain insight into 
the architecture by calculating 
global system properties from 
local properties of components 
and connectors. In many cases 
calculations can take advantage 
off-the-shelf theory and algo-
rithms. Such analyses can be a 
powerful aid to architectural de-
sign, allowing architects to iden-
tify design errors early in the 
process, helping the architect 
document the expected run-time 
properties of architectural ele-
ments, and facilitating tool sup-
port for providing feedback and 
comparisons of analysis results. 

We now illustrate these ideas with 
three examples: rate-monotonic 
analysis for automotive control 

systems, queuing theory-based analysis for detecting 
server overloads, and Monte Carlo-style security simula-
tion. 

Figure 5. The results of the schedulability analysis. 

Example 1: Analysis of real-time schedulability, 
Figure 4 depicts a simple automotive system represented 
in AcmeStudio (Schmerl and Garlan 2004), a framework 
for creating architecture design environments. AcmeStu-
dio, written as a plug-in to the Eclipse framework, per-
mits one to define domain-specific architectural styles3 
and link in analysis tools that may be invoked by the user 
to analyse systems in those styles. 

The architecture used in Figure 4 includes components 
that run as periodic tasks on a set of CPUs. Tasks can 
communicate directly with tasks on the same CPU, and 
with tasks on other CPUs using an automotive standard 
communication bus (here a CAN bus). An important 
question in the design of such systems is whether certain 
task scenarios (treated as paths through the architecture), 
can be scheduled on the available processors.  

To evaluate this system-wide property, the style associ-
ates with each component a set of properties relevant to 
real-time schedulability. In the architectural style of this 
example these properties are modelled as its deadline, 
execution time, priority, and CPU. For example, in Figure 
4 the selected component, plant-rx, has values of 200, 
170, 100, and CPU1 as its respective property values.  

 
3 We discuss architectural styles in detail in Section 5; for now, 
consider a style as providing element types specifying the prop-
erties that must be defined for instances of the elements. 



 Figure 6. Performance Analysis in AcmeStudio. 

When all components have been annotated with these 
properties (and the connectors with similar properties), 
we can invoke a tool to evaluate the CPU utilization, and 
the schedulability of specific pathways. In the figure three 
pathways are specified. The resulting analysis prints out 
the results of applying rate monotonic analysis (Sha and 
Goodenough 1991), indicating which paths are schedul-
able (Figure 5).  

It is important to note that the actual analysis of sched-
ulability is carried out using completely standard, off-the-
shelf algorithms for rate-monotonic real-time analysis. 
Moreover, AcmeStudio makes it relatively easy to add 
such an analysis using a “plug-in” framework, which as-
sists with creating specialized property editors (e.g., to 
specify pathways for evaluation), invoking analysis tools 
through menus, passing the relevant data to them for 
analysis, and displaying the results back in the graphical 
editing environment. 

Example 2: Analysis of server-load. 
Of course, not all systems in need of performance analy-
sis are real-time systems. To illustrate how the same gen-
eral ideas can be supported for different application do-
mains, consider Figure 6. Here we have an example of a 
system defined as a tiered system in which clients queue 
requests for database service from a set of servers that 

contain business logic to access a set of databases. The 
system model is shown in AcmeStudio. 

To analyse performance of this system we take advantage 
of queuing theory to evaluate performance characteristics 
of such systems (Spitznagel and Garlan 1998, Di Marco 
and Inverardi 2004). To perform the analysis, we must 
first supply the values of a set of properties of the com-
ponents and connectors, such as arrival rates (expressed 
as probability distributions), average service time for 
handing requests at a server, and degree of server replica-
tion. These properties are specified through an editing 
plug-in to AcmeStudio specific to performance analysis, 
as illustrated at the bottom of Figure 6. 

Once these properties have been defined, as before we 
can pass the model to an analysis tool, which in this case 
calculates for each server a set of derived properties, in-
cluding average server utilization, queue lengths, and 
response times using standard queuing-theoretic tech-
niques. From these results the tool can further indicate 
whether any servers are overloaded. In Figure 6, the 
analysis has determined that the circled component in the 
diagram is overloaded, and has highlighted this fact by 
changing its colour to red.  

Example 3: Analysis of security 
It is also possible to analyse the security of a system 
through Monte Carlo-based architectural simulation, a 



form of analysis that abstractly exercises an architecture 
using inputs and events drawn from probability distribu-
tions. The Security Simulator plug-in to AcmeStudio en-
ables an architect to perform security simulations based 
on threat scenarios that are relevant to the system under 
design. The main concepts in the security analysis are 
threat types, assets, and countermeasures; the simulation 
is based on the approach outlined in Butler (2002). 

Threat types specify the possible threats that can affect 
the system (e.g., a virus or denial of service attack). 
Because different systems may be subject to different 
types of threats, the architect must specify each of 
the threat types that may be posed to the system. 

Assets are components that may be damaged by par-
ticular threats. Assets are assigned a monetary value, 
and the particular threat types that may affect the as-
set are specified. For example, a database component 
may not be susceptible to password sniffing attacks, 
but may be vulnerable to data corruption as the result 
of a virus. 

Countermeasures are of three types: Preventative 
components affect the frequency at which threats oc-
cur; Monitoring components and recovery compo-
nents reduce the effect of a threat. The architect 
specifies each of the countermeasure’s target threat 
types, and the effectiveness or reduction that the 
countermeasure has on the target threat. 

Once the relevant properties are specified, the architect 
must then define paths (consisting of components and 
connectors) through the architecture that particular threats 
may take. The threat type that affects that path and the 
frequency (as a stochastic function) of the threat type are 
specified. After the threat is specified, the assets associ-
ated with its path can be given outcome values. The out-
come can be in terms of dollars, loss of life, loss of pro-

ductivity, etc. A weight is assigned to each 
outcome factor. 

Threat scenarios are composed of one or 
more transactions. A scenario is used as 
basis for executing the simulation, and 
specifies the amount of time that will be 
used in performing the simulation. The 
simulation takes into account the threat 
entering the transaction path, the frequency 
of the threat type and the countermeasures 
in the path. Monte Carlo simulation is per-
formed to determine the most probable 
damage value to each of the assets in the 
threat transaction. The value obtained is 
multiplied by the frequency of the threat 
transaction and the simulation time. This 
gives the total damage for the particular 
threat outcome factor. The end result of the 
simulation is a report that details the threat 
scenario, threat transaction, and total dam-
age to the assets in the threat transaction 
path.  

Consider the simple architecture illustrated 
in Figure 7, where we define the database 
as an asset (giving an asset value of 
$100K), run a security simulation on a path 

originating at the client and going through the firewall 
and server to the database for a simulated virus attack. 
We define the scenario so that (1) the simulation time is 
two virtual months; and (2) a virus attack happens on 
average 5 times per day, with a maximum of 20 attacks 
per day. If the firewall is 95% effective against virus 
threats then running the scenario indicates that the dam-
age is calculated as $56, 677. If we were to run the same 
simulation without the firewall, the simulation will indi-
cate that the loss of revenue increases to $1,112,409. 

 

Figure 7. Security Simulation in AcmeStudio.

Such a simulation allows the architect to evaluate differ-
ent scenarios, and to evaluate the effectiveness of differ-
ent countermeasures against different attacks. Providing 
different sets of properties for an architectural model fa-
cilitates different analyses of that model. It is therefore 
possible to make trade-off based on different scenarios 
and quality attributes for the same architectural model, 
rather than have to use different environments and archi-
tectural models in potentially different architectural lan-
guages. 

4 Modelling architectural behaviour 
An important aspect of modelling software architectures 
is the specification of abstract behaviour. By knowing the 
behaviour of architectural elements we can significantly 
improve the clarity of architectural designs. We can also 
analyse these specifications, for example to spot protocol 
mismatches in which interactions between components 
can potentially lead to deadlock (Allen and Garlan 1994 
and 1997, Allen, Garlan, and Ivers 1998). 

To illustrate, consider the simple system consisting of a 
pipe that connects two filters, F1 and F2, illustrated in 
Figure 8. The intuition behind such a pipe-filter system is 
that components communicate through buffered streams, 



writing through their output ports and reading through 
their input ports. 

While the intuition may seem simple at first glance, un-
derstanding the real meaning of the figure (for example to 
implement F1 and F2) depends on detailed understanding 
of the interactions defined by the pipe. For example, from 
the figure alone it is impossible to answer the following 
questions:  
• Which is the reading/writing end of the pipe? 
• Is writing synchronous? That is, assuming F1 is the 

writer, does it block after writing? 
• What if F2 tries to read and the pipe is empty? Does 

it block, or can it continue with other processing? 
• Can F1 choose to stop writing? 
• Can F2 choose to stop reading without consuming all 

of the data on the pipe? 
• If F1 closes the pipe, can it start writing again at 

some future time? 
• If F2 never reads, can F1 write indefinitely, or does 

F1 eventually block? 

Note that there is no correct answer to these questions, 
since any set of answers could represent a possible pipe 
design. Indeed, in actual systems pipe implementations 
differ precisely along such dimensions of variability. 

What is required is some way to specify the semantics of 
a pipe at the architectural level so that such questions can 
be answered easily. This would represent a marked im-
provement over existing practice in which decisions 
about such behaviour require one to examine the code of 
some implementation, existing examples of usage, or 
consult a human expert. 

There are many possible ways in which one might repre-
sent architectural behaviour (Shaw and Garlan, 1995). 
Indeed, practically any behaviour specification will do, 
including process algebras, state machines, relational 
models, and timed automata. To illustrate the general 
principles, we use the Wright specification language, one 
of the first to use formal modelling to specify architec-
tural behaviour (Allen 1997, Allen and Garlan 1994). 

Wright uses a subset CSP (Hoare 1985), a well-known 
process algebra, which defines behaviour in terms of pat-
terns of events. Some of the constructs are listed in Figure 
9. These include events (representing architecturally-
relevant actions), processes (representing patterns of 
events), sequentiality (representing the ability to follow 
one behaviour by another), choice (representing the abil-
ity to branch), and parallel composition (representing the 
ability to compose partial descriptions). These CSP-based 
specifications can be associated with various architectural 
structures, including ports and roles. 

  

Events:   e, request, read?y, write!5 
Processes:  P, Reader, Writer, Client,  
                             § (successful termination) 
Sequence:  e → P,    P ; Q 
Choice:  P⎟⎤ Q,     P [] Q  
Composition:  P || Q 

Figure 9. Behavior specifications in Wright. 
 

Figure 10 illustrates the basic ideas of behaviour descrip-
tion in Wright through a partial description of a pipe con-
nector. Each role of the pipe (Reader and Writer) has an 
associated protocol defined in the subset of CSP summa-
rized above. In addition, the connector has a “glue” speci-
fication (also a CSP process) that indicates how the roles 
interact through the connector itself. 

Connector Pipe  
  Role Writer = (write!x → Writer) ⎟⎤  (close → §) 
  Role Reader = Read ⎟⎤  Exit 
  where  Read = (read?x → Reader) [] (eof → Exit) 
  Exit = close → § 
  Glue =  Writer.write?x → Glue [] 
               Reader.read!y → Glue [] 
               Writer.close → ReadOnly [] 
               Reader.close → WriteOnly   
  where ... 

Figure 10. Partial Wright specification of a  
Pipe connector.  

 

Such specifications, although compact, provide direct 
answers to questions such as those posed above. For ex-
ample, the specification in Figure 10 immediately tells us 
that a pipe writer can close at anytime, but cannot write 
again once it has close. A pipe reader can also close at 
any time, but if it chooses to read a value, it must be pre-
pared to recognize an “end-of-file” (eof) marker and then 
immediately close.  

Beyond clarification of design intent, specifications such 
as these permit a variety of analyses, including: 
• Consistency of connectors: that the glue-mediated 

roles of a connector do not lead to a deadlocked state. 
• Compatibility of component interface to connector 

interaction protocol: that a port satisfies the require-
ments of a connector role that it fills. 

• Consistency of a component’s behaviour with respect 
to its interfaces: that a port’s specification represents 
a correct projection of a component’s internal behav-
iour at that interface point. 

Many of these checks can be performed semi-
automatically by model checkers. See Allen (1997) for 
details. 

  

Figure 8. A simple pipe-filter system. 

Pipe 
F1 F2 5 Modelling architectural styles 

One notable feature of software architecture is the ability 
to reuse styles and patterns. For example, many systems 



are described in terms like “client-server system”, “N-
tiered system”, “pipe-filter system”, etc. Such terms refer 
to families of systems that share a common architectural 
design vocabulary (e.g., clients, servers, tiers, etc.) and a 
set of constraints on how that vocabulary can be used 
(e.g., that clients can’t talk directly to other clients, or that 
connections don’t cross more than one tier). 

Important questions for architectural modelling and 
analysis are: How can we model an architectural style? 
How can we check that a given system is consistent with 
a given style? Can we combine several styles without 
leading to logical inconsistencies?  

5.1 Architectural styles in Acme 
We can specify styles by augmenting our architectural 
modelling notation with two things. First is the ability to 
define component, connector, and property types. These 
provide the basic vocabulary of design in that style. Sec-
ond is the ability to define constraints on how instances of 
these types may be combined in a system description.4

For example, to define a pipe-filter style we would first 
need to define one or more filter component types and a 
pipe connector type. These would identify the kinds and 
number of ports on filters and roles on the connector. 
Additionally, we might define various property types, and 
indicate which properties are associated with which ele-
ments in the style. Next we would need to define con-
straints that might, for example, specify that there should 
be no dangling pipes or that a system should not have any 
cycles. 

                                                           
4 From a tooling perspective style definition may also entail 
specification of graphical conventions (shape, colour, layout) 
for the style, style-specific shortcuts for improving graphical 
editing (such as automatic creation of connectors based on nam-
ing conventions), and analysis tools to be included in an envi-
ronment that uses the style. 

Figure 11 illustrates the basic ideas with a partial defini-
tion of a pipe-filter style, or family, as it is termed in 
Acme. Here we have defined a Filter component type, and 
specified that it must have at least an In and an Out port. 
We have also defined a Pipe connector type, and speci-
fied that it must have a Reader and a Writer role, and that 
each role must specify the datatype that is transmitted 
through that role.  

Family PipeFilterFam = { 
  Component Type filterT = { 
  Ports {In,Out} ;  
…} ; 
Connector Type pipeT = { 
  Role Reader = {Property datatype = …} ; 
  Role Writer = {Property datatype = …} ; 
  Invariant self.Reader.datatype == 
                self.Writer.datatype; 
  … 
} 
System my-PF-System : PipeFilterFam = { 
  Component F1: filterT = {…} ; 
  Connector P:  pipeT = {…} ; 
  … 
} 

Figure 11. Specification of a Pipe-Filter architec-
tural style in Acme. 

The connector also includes a constraint, in this case an 
invariant that says the type of data written to a pipe must 
match the data read from it. Such specifications are writ-
ten in a first-order predicate language (similar to UML’s 
OCL), augmented with some functions that make it easier 
to refer to things like a component’s ports, or the roles 
attached to a port. 

With the pipe-filter family in hand, we can now use it to 
define a specific system in that style. In  Figure 11 we 
illustrate the description of a system, my-PF-system. 
Components and connectors may now be declared as in-
stances of the types defined in the family. 

5.2 Example: Mission Data Systems 
To illustrate the concepts of modelling and analysing 
style-oriented architectural description in more depth, we 
now describe a larger example: NASA’s Mission Data 
System (MDS) (Rasmussen, 2001, Dvorak and Reinholtz 
2004). MDS includes an experimental architectural style 
for defining space systems. It consists of a set of compo-
nent types (e.g., sensors, actuators, state variables), and 
connector types (e.g., sensor query). It also defines a 
number of rules that define legal combinations of those 
types. Figure 12 graphically illustrates the style, which 
consists of 7 component types, 12 connector types. 

Figure 13 shows a screenshot of a simple MDS system 
displayed in AcmeStudio. The system represents a tem-
perature control system consisting of a temperature sen-
sor (TSEN), a temperature estimator (TEST), a heating 
actuator (SACT), a temperature state variable (CTSV), a 
heath state variable to indicate whether the sensor is be-
having correctly (SHSV), a temperature controller 
(TCON) to issue commands to the actuator, and an execu-
tive that controls the value of the target temperature 
(EXEC). Appropriate connectors (of which there are 12 
types) are used to define the interconnection topology.  

The rules in MDS were initially defined in English and 
had to be hand translated into Acme constraints. A simple 
example of such a rule is  

“For any given Sensor, the number of Measurement 
Notification ports must be equal to the number of 
Measurement Query ports (rule R5A).” 

This rule, which is a small part of a larger rule (see be-
low) indicates that for every query port that a sensor pro-
vides, it must also provide an announcement port (and 
vice versa). 

This rule was translated into the following constraint, 
which is associated with the sensor component type: 

numberOfPorts (self, MeasurementNotifReqrPortT)  == 
      numberOfPorts (self,  MeasurementQueryProvPortT) 



 

Figure 12. Definition of the MDS Architectural Style.
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Rules such as this one are continuously evaluated in 
AcmeStudio as the MDS architect creates an architectural 
description of an MDS System. If a rule is violated, the 
environment highlights the problem. Figure 14 illustrates 
how this appears to an architect. when the TSEN sensor 
component violates the property specified above. 

Of course, checking rule satisfaction is relatively trivial 
for small systems and for such simple rules. Indeed, vis-
ual inspection could easily locate such rule violations. 
But in general MDS rules are much more complex, for 
example:  

“Every estimator requires 0 or more Measurement 
Query ports. It can be 0 if estimator does not 
need/use measurements to make estimates, as in the 
case of estimation based solely on commands submit-

ted and/or other states. Every sensor provides 
one or more Measurement Query ports. It can 
be more than one if the sensor has separate 
sub-sensors and there is a desire to manage the 
measurement histories separately. For each 
sensor provided port there can be zero or more 
estimators connected to it. It can be zero if the 
measurement is simply raw data to be trans-
ported such as a science image. It can be more 
than one if the measurements are informative in 
the estimation of more than one state vari-
able.” 

Figure 13. A simple control system in the MDS style. 

This is one of 12 such rules. Moreover, MDS 
architectures typically have hundreds of com-
ponents. Complete checking of rule satisfaction 
in those situations becomes a significant prob-
lem for which formal style specification pro-
vides an effective solution.  

5.3 Other style-based analysis 
In addition to checking whether a given system conforms 
to a given style, it is often useful to investigate properties 
of styles themselves. For example, it is possible to define 
a style in which constraints lead to inconsistencies. For 
such systems it is impossible to create any system in-
stances. Moreover, we may want to investigate whether 
the constraints of a style imply properties not explicitly 
modelled. For example, local constraints on attachments 
can be used to imply global connectedness. 

To evaluate such properties we can interpret an Acme 
style description as a specification of a class of models, 
and use a model generator to check for the existence of 
such models. 



Figure 14. Displaying problems to the architect. 
 

Specifically, we can translate a style into an Alloy model 
and use the Alloy Analyser (Jackson 2002) to investigate 
properties of the resulting specification. Details of this 
analysis are beyond the scope of this paper, but the inter-
ested reader is referred to Kim and Garlan (2006). 

6 Mapping between architecture and imple-
mentation 

One of the difficult problems for an architect is ensuring 
that the implemented system is consistent with the in-
tended architecture. Formal modelling and analysis can 
also help solve this problem 

The problem for architectures is similar to the problem 
for any model-based method of ensuring that an imple-
mentation meets its specification. In general, there are 
two basic solutions. First, one can attempt to ensure satis-
faction by construction. This can be done through a proc-
ess of formal refinement in which a concrete model is 
obtained by applying well-founded refinement rules to a 
more-abstract model (or specification). Sometimes this 
process can be completely automated, in which case it is 
often termed generation. The second technique is to 
demonstrate that a lower-level model is consistent with a 

higher-level model by comparison. This is often done by 
providing a mapping relation between the two models. 

Both techniques can be used for software architectural 
models.  

6.1 Refinement and generation 
Although using refinement in the most general case of 
software architecture is as difficult as any other form of 
model-based refinement, in many cases the problem is 
greatly simplified by exploiting architectural styles. That 
is to say, by limiting the problem to a specific class of 
systems and a specific class of implementations, it is of-
ten possible to build automated assistance for mapping 
architectures to implementations. The assistance can be in 
the form of automated transformations, or in the extreme 
case, code generation of all or part of the target system. 

We now illustrate this concept with two examples: 

Example 1: Model generation of automotive             
           control systems 

Some automotive companies have in place a component-
based approach to control systems. Starting with an ab-

(a) Abstract Architecture 

(b) Concrete Architecture 
Figure 15. Mapping abstract automotive architecture to concrete automotive architecture. 
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Figure 16. A DiscoTect Coloured Petri Net for Discovering Pipe-Filter Systems. 

stract architectural description, pre-specified components 
drawn from libraries are substituted to produce a full sys-
tem definition. In many cases the concrete components 
have formal models suitable for simulation, and in some 
cases code generation. 

In Steppe et al. (2004) we describe a two-tiered approach 
that uses Acme architectural models of the architecture of 
an automotive system in two levels. At the higher (ab-
stract) level, an architecture is described in terms of ge-
neric abstract components and simple virtual connectors 
(Figure 15a). In the lower (concrete) level model, con-
crete components are chosen from a repository of auto-
motive components and substituted for the abstract ones, 
and detailed connections are made between them (Figure 
15b). This concrete composition can then be sent to for-
mal simulation tools for analysis. 

While refinement of generic architectures to concrete 
architectures using component selection is a major step 
forward, one of the stumbling blocks is that refinement is 
done manually. In particular, the hooking up of concrete 
components, which may have dozens of ports is typically 
a time consuming process. Moreover, there are often de-
pendencies between different components, so that choices 
of one component may affect others. Making sure that 
integrity rules of component composition are respected is 
a difficult, and again time-consuming, task. 

However, it turns out that in many cases there are 
straightforward rules that can be applied to do most of the 
interconnecting. Indeed, in the case of automotive control 
systems when certain naming conventions are followed, 
almost all of the interconnecting can be done automati-
cally. Further integrity rules can be specified as con-
straints in the style (as illustrated earlier). Indeed, the 
concrete version of the automotive software in Figure 15b 
was in fact generated directly using a plug-in to a version 
of AcmeStudio that had been specialized to model archi-
tectures in the two (abstract and concrete) styles. 

Example 2: Code generation for MDS space  
           flight systems 

With certain modifications to the nature of the connectors 
in the MDS style we were able to provide a prototype 

code generator for MDS systems (Garlan et al. 2005). A 
key feature of that generator is the ability to target the 
resulting implementation to different platforms. For ex-
ample, one platform might be the space environment, 
which requires power- and space-efficient code, while 
another platform might be the NASA testing environment 
in which resources are plentiful and there is a premium on 
support for debugging and monitoring. 

The ability to generate retargetable implementations re-
lies on the following: 
1. There is a substantial body of reusable infrastructure 

code that supports inter-component communication, 
concurrency, and shared data. 

2. It is possible to create a library of component imple-
mentations whose processing is not dependent on the 
implementation of the communication infrastructure. 
This code treats most components as input-output 
transformers, where the mechanisms for transporting 
code between components is irrelevant to the algo-
rithms they implement. 

3. There are a small set of attributes that determine the 
characteristics of the target platform. These attributes 
include the threading model, the amount and nature 
of debugging code, the target implementation lan-
guage, and the task scheduler implementation. 

Automatic generation of implementations in this domain 
allows engineers to work at a relatively high level of ab-
straction, in which the architectural principles of MDS 
are a primary focus at all times. The generator guarantees 
that the resulting implementation is consistent with the 
architectural model, and moreover does so in a way that 
is appropriate for the targeted run-time platform on which 
the system will be executed. 

6.2 Direct comparison  
The second technique for ensuring compatibility between 
architecture and implementation is to find a way to com-
pare the two. Since an implementation necessarily has 
considerably more detail than the architecture, the chief 
problem to solve is to abstract away the details of the 
implementation that are irrelevant to the architecture.  



Two approaches are typically used. One is to perform 
static analysis on the code to infer high-level structure. 
The other is to use dynamic analysis on the running sys-
tem to capture actual run-time behaviour and relate it to 
architectural models. Static analysis is particularly effec-
tive for recovering (or inferring) module-oriented struc-
tures, since, in general, determining dynamic behaviour 
of a system (e.g., creating new components or connec-
tions) is undecidable. Dynamic analysis is particularly 
effective for inferring run-time structures, such as C&C 
views. For that reason we focus on dynamic analysis. 

The basic model for dynamic analysis is a process involv-
ing a series of steps. First a system is monitored to extract 
low-level behaviour, such as object and thread creation, 
method invocation, and variable assignment. Next, low-
level, implementation-oriented events are processed to 
produce high-level, architecturally-relevant events. An 
architectural model is dynamically constructed by apply-
ing the abstract architectural events to an evolving model. 
Finally, the as-observed architectural model is compared 
to the as-designed architectural model (or style) to detect 
inconsistencies. 

The main challenge in this process is the abstraction from 
low-level events to architectural events. This is difficult 
to do because it may be necessary to observe many low-
level events before it is clear what architectural events 
have occurred. Moreover, these implementation events 
may be highly interleaved. For example, creating a pipe 
might involve creating both ends of the pipe and then 
joining them together. In this process it is possible that 
many writing ends of a set of pipes are created before any 
reading end is created. 

To account for this complexity we need to define a formal 
mapping engine. In our own work we have developed the 
DiscoTect system to do this (Yan et al. 2004, Schmerl et 
al. 2006). At its core, DiscoTect represents a mapping 
engine that uses a formal mapping language to describe 
the relationship between patterns of low-level and high-
level events. The output of a mapping description is a 
coloured Petri net (Jensen, 1994). After some filtering, 
low-level events enter the net as input tokens. Successive 
events may cause those tokens to move through the net, 
eventually emerging as output tokens representing archi-
tectural events.  

Figure 16 shows the net that creates pipe-filter architec-
tures from Java implementations that use Java pipe librar-
ies, and represent filters as classes that adopt certain nam-
ing conventions. The tokens in the figure represent the 
current state of architectural reconstruction. Specifically, 
two filters have been constructed, one with a write port 
and one with a read port, and the pipe connection be-
tween them is about to be formed.  

7 Related work 
As noted in the Introduction, over the past two decades 
there has been considerable research devoted to model-
ling and analysis of software architectures (Shaw and 
Garlan, 1995). This work falls into several categories. 

7.1 Architecture description languages 
A large number of ADLs and associated toolsets have 
been proposed by researchers (e.g., Balasubramaniam et 
al. 2004, Dashofy et al. 2002, Morconi and Riemen-
schneider 1997, Terry et al. 1995). Like the architectural 
modelling based on Acme described in this paper, most of 
these ADLs focus on component and connector structures 
and their properties. Several of them are specialized to 
specific architectural styles such as hierarchical publish-
subscribe (Taylor et al. 1996), real-time control (Vestal 
1996 and SAE International, 2004), or dataflow (Gorlick 
and Razouk 1991). Collectively they represent an impres-
sive body of evidence about the utility of architectural 
modelling and analysis. 

UML 2.0 by the Object Management Group (2005) pro-
vides an architectural modelling language for components 
and connectors that adopts many of the principles of 
Acme. However, these extensions are relatively new, and 
few tools have been developed to exploit them fully. 
Moreover, as a general-purpose modelling language 
UML is ill-suited to the problem of supporting domain-
specific models that can take advantage of specialized 
analyses (Garlan, Kompanek, and Cheng, 2002). How-
ever, several domain-specific profiles of UML have been 
proposed or are in the process of being ratified by the 
Object Management Group. Many of these have the bene-
fits and power of the modelling approaches sketched in 
this paper. 

7.2 Specification and analysis of architectural 
behaviour 

Wright, summarized in this paper, was one of the first 
modelling notations that attempted to provide behavioural 
modelling and analysis for software architecture (Garlan, 
Allen, and Ockerbloom 1994). Since then numerous be-
havioural formalisms have been used to provide comple-
mentary capabilities, including Chemical Abstract Ma-
chine (Inverardi and Wolf 1995), PO-Sets (Luckham 
1996), Category Theory (Wermelinger 1998), Pi Calculus 
(Magee et al. 1995), Statecharts (Vieira, Dias, and 
Richardson, 2001) and many others. 

Most of these approaches share the goal of detecting 
mismatches in component compositions. The primary 
differences are the kinds of behaviour that can be mod-
elled, and hence the kinds of mismatches that can be de-
tected. 

7.3 Refinement and generation 
Moriconi and colleagues were among the first to recog-
nize the importance of formal mappings between archi-
tectures and implementations (Moriconi et al. 1995). 
Their approach uses structural transformation patterns to 
constructively create implementation-oriented models 
from architectural models. 

UniCon, developed by Shaw et al. (1995) supports code 
generation from architectural models. Their approach 
creates a set of specialized compilation techniques for the 
various kinds of connectors that may go into an architec-
ture. The goal is to provide a set of tools where any 



change to the implementation of a system must take place 
through the architecture. Other ADLs also have a certain 
amount of code generation capability (Luckham 1996, 
Taylor et al. 1997). 

A number of projects have looked at reconstruction of 
architectures using static analysis. For example, Dali uses 
a variety of analysis techniques to create a high-level 
view of a system’s implementation structures (Kazman 
and Carriere 1999).  Since they focus on module-oriented 
views, they are complementary to the C&C-oriented ap-
proaches described in this paper. 

ArchJava (Alrdich, Chambers, and Notkin 2002) aug-
ments Java with constructs for components and connec-
tors, and uses typechecking to guarantee certain kinds of 
conformance between the component and connector lev-
els of the system description and the lower-level imple-
mentation structures (classes, methods, etc.). In particu-
lar, the tools can guarantee that if two components are not 
connected at the architectural level, they cannot directly 
interact at the code level (e.g., through shared global vari-
ables). 

A large number of people have become interested in 
“Model-driven Architecture”, an approach that advocates 
a staged and automated approach to refinement of archi-
tectural designs to implementations. This is a natural 
complement to “Architecture-driven Models” – the theme 
of this paper. Much of the current work in MDA has fo-
cused on a staging in which platform dependencies are 
abstracted away in the high-level model, and bound dur-
ing refinement. This is a special case of the approaches to 
refinement and generation outlined in this paper.  

8 Discussion and conclusions 
In this paper we have illustrated a number of ways in 
which formal architectural modelling and analysis can 
address important issues in software architecture, includ-
ing clarifying design intent, supporting rich forms of 
analysis to enable detection of design flaws and make 
principled tradeoffs between quality of service goals, and 
allowing tools to help guarantee that implementations are 
consistent with the intent of their architectures. While the 
specific techniques described here draw heavily on re-
search carried out by the Able Group at CMU over the 
past 15 years, many other research efforts have produced 
similar results. 

There are several broad lessons that can be learned from 
this body of research. 
1. A little formality goes a long way. The formalisms 

outlined in this paper are relatively simple. Simple 
structures with types, properties, relations, and be-
havioural descriptions can go a long way toward 
providing more improved capabilities for architec-
tural design. Moreover, formal specification can be 
incremental: not all aspects of interest need be for-
malized or analysed. 

2. Reuse of existing methods. The formal modelling 
and analysis techniques described in this paper rely 
on a large body of existing formal methods and tools, 
including model checkers, simulators, constraint 

checkers, and model generators. This is good news 
for software architects since it means that existing 
theory and tools can be applied with only minor 
modifications to the enterprise of software architec-
ture design. 

3. One size does not fit all. Architecture reveals a clas-
sic tradeoff between power and generality: the more 
general-purpose a model, the fewer opportunities for 
deep analysis. In our work we rely heavily on archi-
tectural style, and our ability to easily create style-
specific tools, to exploit specific forms of analysis.  

Although our ability to gain insight in software architec-
tures through modelling and analysis has improved tre-
mendously over the past decade, there remain a number 
of areas for which our techniques need to be improved. 
These include 
• Dynamic Architectures: How can we reason about 

architectures whose structure changes dynamically? 
How can we determine when architecture changes 
can be performed safely on a system without restart-
ing it? When can architectural changes be executed 
in parallel? 

• Software Architectures for Emerging Systems: As 
technology advances so does our need to create sys-
tems that can take advantage of it. Today, for exam-
ple, we are on the verge of ubiquitous computing 
systems that must work in the presence of hundreds 
of cooperating computational units, from cell phones, 
to sensors, to traditional computing platforms. What 
architectures are needed to handle such systems? 
Similarly, we are starting to see components whose 
behaviour is determined by machine learning. How 
can we specify what these components do and ensure 
that they are compatible with other components?  

• Managing Multiple Views: So far, much tool sup-
port for architectural modelling focuses on a particu-
lar view, such as C&C views. How do we manage 
the relationships among multiple views of an archi-
tecture? To what extent can we ensure consistency 
between these views? How can we separate a par-
ticular architectural view into multiple views high-
lighting different concerns, to manage scalability? 

Acknowledgements 
The research described in this paper reflects work over 
the past 15 years funded by a variety of governmental 
agencies and corporations, including DARPA, NSF, 
ONR, ARO, Siemens, IBM, HP, and Microsoft.  We 
gratefully acknowledge their support, and note that the 
opinions, conclusions or recommendations expressed in 
this material are those of the authors and do not necessar-
ily reflect the views of these funding agencies or corpora-
tions. 

Numerous students and staff have contributed to the body 
of work summarized here, including Robert Allen, Eliza-
beth Bigelow, Shang-Wen Cheng, James Ivers, Jung Soo 
Kim, Andrew Kompanek, Charles Krueger, Ralph Mel-
ton, Bob Monroe, John Ockerbloom, Nicholas Sherman, 
and Bridget Spitznagel. Their hard work, insight, and 



inventiveness are largely responsible for the advances 
that we have made, and we thank them for their varied 
but crucial support. 

References 
Aldrich, J., Chambers, C., and Notkin, D. (2002): 

ArchJava: Connecting Software Architecture to Im-
plementation. Proc. ICSE 24, Orlando, Florida. 

Allen, R. (1997): A Formal Approach to Software Archi-
tecture. Ph.D. Thesis, Carnegie Mellon University 
School of Computer Science Technical Report CMU-
CS-97-144. 

Allen, R., Garlan, D. (1994): Formalizing Architectural 
Connection. Proc. the 1994 International Conference 
on Software Engineering. 

Allen, R. and Garlan, D. (1997): A Formal Basis for Ar-
chitectural Connection. ACM Transactions on Software 
Engineering and Methodology, 6(3). 

Allen, R., Garlan, D., and Ivers, J. (1998): Formal model-
ing and analysis of the HLA Component Integration 
Standard. Proc. the 6th International Symposium on the 
Foundations of Software Engineering (FSE-6), Lake 
Beuna Vista, Florida. 

Balasubramaniam, D., Morrison, R., Kirby, G.N.C, 
Mickan, K., and Norcross, S. (2004): ArchWare ADL 
Release 1 User Reference Manual. ArchWare Project 
IST-2001-32360 Report D4.3. 

Bass, L., Clements, P., and Kazman, R. (2003): Software 
Architecture in Practice, 2nd Edition, Addison-Wesley. 

Boehm, B., and Turner, R. (2003): Balancing Agility and 
Discipline: A Guide for the Perplexed. Addison Wesley 
Professional. 

Bosch. J. (2000): Design and Use of Software Architec-
tures: Adopting and Evolving a Product Line Ap-
proach. Addison Wesley. 

Brookes, F. (1975): The Mythical Man Month: Essays on 
Software Engineering. Addison Wesley Professional. 

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. 
and Stal. M. (1996): Pattern-Oriented Software Archi-
tecture, Volume 1: A System of Patterns, Wiley. 

Butler, S. (2002): Security Attribute Evaluation Method: 
A Cost-Benefit Approach. Proc. 24th International 
Conference on Software Engineering (ICSE2002). Or-
lando, Florida, pp. 232-240. 

Clements, P., Kazman, R., and Klein, M. (2001): Evaluat-
ing Software Architectures. Addison Wesley Profes-
sional: The SEI Series in Software Engineering. 

Clements, P. and Northrop, L. (2001): Software Product 
Lines: Practices and Patterns. Addison Wesley SEI 
Series in Software Engineering, 

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, 
J., Little, R., Nord, R., and Stafford, J. (2002): Docu-
menting Software Architectures: Views and Beyond, 
Addison Wesley. 

Dashofy, E., van der Hoek, A., and Taylor, R.N. (2002) 
An Infrastructure for the Rapid Development of XML-
based Architecture Description Languages. Proc. 24th 
International Conference on Software Engineering 
(ICSE2002). Orlando, Florida. 

Di Marco, A. and Inverardi, P. (2004): Compositional 
Generation of Software Architecture Performance QN 
Models. Proc. the 4th Working IEEE/IFIP Conference 
on Software Architecture (WICSA’04). Oslo, Norway. 

Dvorak, D., and Reinholtz, W.K. (2004): Separating Es-
sential from Incidentals, An Execution Architecture for 
Real-Time Control Systems. Proc. 7th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Dis-
tributed Computing. Austria. 

Garlan, D., Monroe, R., and Wile, D. (2000)“Acme: Ar-
chitectural Description of Component-Based Systems.” 
In Foundations of Component-Based Systems, Cam-
bridge University Press. 

Garlan, D., Allen, R.J., and Ockerbloom, J. (1994): Ex-
ploiting Style in Architectural Design, Proc. of ACM 
SIGSOFT ’94 Symposium on the Foundations of Soft-
ware Engineering. 

Garlan, D.; Kompanek, A. J.; & Cheng, S.-W. (2002):  
Reconciling the Needs of Architectural Description 
with Object Modeling Notations. Science of Computer 
Programming 44, 1, pp. 23-49. 

Garlan, D., Reinholtz, W.K., Schmerl, B., Sherman, N., 
and Tseng, T. (2005): Bridging the Gap between Sys-
tems Design and Space Systems Software. Proc. 29th 
Annual IEEE/NASA Software Engineering Workshop 
(SEW-29), Greenbelt, MD. 

Gorlick, M.M. and Razouk, R.R. (1991): Using Weaves 
for Software Construction and Analysis. Proc. 13th In-
ternational Conference on Software Engineering 
(ICSE13). IEEE Computer Society Press. 

Hoare, C.A.R. (1995): Communicating Sequential Proc-
esses. Prentice Hall. 

IEEE. (2000): IEEE Recommended Practice for Architec-
tural Description of Software Intensive Systems (IEEE 
Std 1471-2000). 

Inverardi, P. and Wolf, A. (1995): Formal Specification 
and Analysis of Software Architecture Using the 
Chemical Abstract Machine Model. IEEE Transactions 
on Software Engineering 21(4). 

Jackson, D. (2002): Alloy: A Lightweight Object Model-
ing Notation. IEEE Transactions on Software Engi-
neering and Methodology 11(2). 

Jensen, K. (1994): An Introduction to the Theoretical 
Aspects of Coloured Petri Nets. In: J.W. de Bakker, 
W.-P. de Roever, G. Rozenberg (eds.): A Decade of 
Concurrency, Lecture Notes in Computer Science vol. 
803, Springer-Verlag, pp. 230-272. 

Kazman, R. and Carriere. S.J. (1999): Playing Detective: 
Reconstructing Software Architecture from Available 
Evidence, Journal of Automated Software Engineering 
6(2), 1999. 



Kim, J.S. and Garlan, D. (2006): Analyzing Architectural 
Styles with Alloy. Proc. Workshop on the Role of Soft-
ware Architecture for Testing and Analysis 2006 
(ROSATEA 2006), Portland, ME. 

Luckham, D.C. (1996): Rapide: A Language and Toolset 
for Simulation of Distributed Systems by Partial Order-
ings of Events, Proc. of DIMACS Partial Order Meth-
ods Workshop. 

Magee, J.,  Dulay, N., Eisenbach, S., and Kramer, J. 
(1995): Specifying Distributed Software Architectures. 
Proc. 5th European Software Engineering Conference 
(ESEC 95). 

Moriconi, M., Quian, X., and Riemenschneider, R. 
(1995): Correct Architecture Refinement. IEEE Trans. 
Soft. Eng. 21(4). 

Moriconi, M. and Reimenschneider, R. (1997): Introduc-
tion to SADL 1.0: A Language for Specifying Software 
Architecture Hierarchies. Technical Report SRI-CSL-
97-01, SRI International. 

Object Management Group. MDA (2003): The Architec-
ture of Choice for a Changing World. 
http://www.omg.org/mda. Accessed November 29, 
2006. 

Object Management Group (2005). Unified Modeling 
Language (UML), Version 2.0. http://www.omg.org/ 
technology/documents/formal/uml.htm. Accessed No-
vember 29, 2006. 

Object Management Group (2006). OMG SysML Speci-
fication. http://www.sysml.org/docs/specs/OMGSys-
ML-FAS-06-05-04.pdf. Accessed November 29, 2006. 

Perry, D. and Wolf, A. (1992): Foundations for the Study 
of Software Architecture. ACM SIGSOFT Software 
Engineering Notes, 17(4):40-52. 

Rasmussen, R. (2001): Goal-Based Fault Tolerance for 
Space Systems using the Mission Data Systems. Proc. 
2001 IEEE Aerospace Conference, Big Sky, MT. 

Rosanski, N. and Woods, E. (2005): Software Systems 
Architecture: Working with Stakeholders Using View-
points and Perspectives. Addison Wesley. 

SAE International. (2004): Architecture Analysis and 
Design Language (AADL). Document Number 
AS5506. 

Schmerl, B. and Garlan, D. (2004): Supporting Style-
Centered Architecture Development. ICSE 26, Edin-
burgh, Scotland. 

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., and 
Yan. H. (2006): Discovering Architectures from Run-
ning Systems. IEEE Transactions on Software Engi-
neering 32(7). 

Sha, K. and Goodenough, J. (1991): Rate Monotonic 
Analysis for Real-Time Systems. Foundations of Real-
Time Computing: Scheduling and Resource Manage-
ment, pp. 129-155. Kluwer Academic Publishers. 

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, 
D.M., Zelesnik, G. (1995): Abstractions for Software 
Architectures and Tools to Support Them. IEEE 
Transactions on Software Engineering, 21(4):314-335. 

Shaw, M. and Garlan, D. (1995): Formulations and For-
malisms in Software Architecture. In Jan Van Leeuwen 
(Editor), Computer Science Today: Recent Trends and 
Developments. LNCS 1000:307-323, Springer-Verlag. 

Shaw, M. and Garlan, D. (1996): Software Architecture: 
Perspectives on an Emerging Discipline, Prentice Hall. 

Spitznagel, B. and Garlan, D. (1998): Architecture-Based 
Performance Analysis. Proc. 1998 Conference on 
Software Engineering and Knowledge Engineering, 
San Francisco. 

Steppe, K., Bylenok, G.,  Garlan, D., Schmerl, B., Abi-
rov, K., and Shevchenko, N. (2004):  Two-tiered Ar-
chitectural Design for Automotive Control Systems: 
An Experience Report. Proc. Automotive Software 
Workshop on Future Generation Software Archtiecture 
in the Automotive Domain, San Diego, CA. 

Taylor, R.N., Medvidovic, N., Anderson, K.M., White-
head, E.J., Robbins, E.J., Nies, K.A., Oriezy, P., and 
Dubrow, D. (1996): A Component- and Message-
Based Architectural Style for GUI Software. IEEE 
Transactions on Software Engineering 22(6). 

Terry, A., London, R., Papanogopoulos, G., Devito, M. 
(1995): The ARDEC/Tecknowledge Architecture De-
scription Language (ArTek), Version 4. Technical Re-
port, Tecknowledge Federal Systems, and U.S. Army 
Armament Research, Development, and Eng. Center. 

Vestel, S. (1996): “MetaH Programmer’s Manual, Ver-
sion 1.09.” Technical Report, Honeywell Technology 
Center. 

Vieira, M., Dias, M., Richardson. D.J. (2001): Software 
Architecture based on Statechart Semantics, Proc. of  
the 10th International Workshop on Component Based 
Software Engineering. 

Wermelinger, M. and Fiadeiro, J.L. (1998): Towards and 
algebra of architectural connectors: A case study on 
synchronization for mobility. Proc. 9th Workshop on 
Software Specification and Design. 

Yan, H., Garlan, D., Schmerl, B., Aldrich, J., and 
Kazman, R. (2004): DiscoTect: A System for Discov-
ering Architectures from Running Systems," Proc. of 
26th International Conference on Software Engineer-
ing, Edinburgh, Scotland. 

 

 


	1 Introduction
	2 Modelling architectural structure
	2.1 Components, connectors, and systems
	2.2 Acme

	3 Modelling architectural properties
	3.1 Properties in Acme
	3.2 Analysing architectural properties
	Example 1: Analysis of real-time schedulability,
	Example 2: Analysis of server-load.
	Example 3: Analysis of security


	4 Modelling architectural behaviour
	5 Modelling architectural styles
	5.1 Architectural styles in Acme
	5.2 Example: Mission Data Systems
	5.3 Other style-based analysis

	Mapping between architecture and implementation
	6.1 Refinement and generation
	Example 1: Model generation of automotive                        control systems
	Example 2: Code generation for MDS space             flight systems

	6.2 Direct comparison 

	7 Related work
	7.1 Architecture description languages
	7.2 Specification and analysis of architectural behaviour
	7.3 Refinement and generation

	8 Discussion and conclusions
	Acknowledgements
	References

