
Architecture-driven Modelling and Analysis*

David Garlan and Bradley Schmerl
School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213 USA
{garlan,schmerl}@cs.cmu.edu

* This paper accompanies the keynote talk “Software Architec-
ture for Highly Dependable Systems” by David Garlan.

Abstract
Over the past 15 years there has been increasing recogni-
tion that careful attention to the design of a system’s
software architecture is critical to satisfying its require-
ments for quality attributes such as performance, security,
and dependability. As a consequence, during this period
the field of software architecture has matured signifi-
cantly. However, current practices of software architec-
ture rely on relatively informal methods, limiting the po-
tential for fully exploiting architectural designs to gain
insight and improve the quality of the resulting system.
In this paper we draw from a variety of research results to
illustrate how formal approaches to software architecture
can lead to enhancements in software quality, including
improved clarity of design, support for analysis, and as-
surance that implementations conform to their intended
architecture.

Keywords: Software Architecture, Architecture Analysis

1 Introduction
Software architecture is concerned with the high-level
structures of a software system, the relationships among
them, and their properties of interest. These high-level
structures represent the loci of computation, communica-
tion, and implementation. Typical properties include
emergent behaviour, such as the performance, reliability,
security, maintainability, and so on (Shaw and Garlan
1996, Perry and Wolf, 1992).

Well designed architectures typically allow one to reason
about satisfaction of key requirements and to make prin-
cipled engineering tradeoffs. They can provide clear ra-
tionale of assignment of function to components, estab-
lish principles of conceptual integrity, and lead to consid-
erable reduction in rework over the lifespan of a system
(Brookes 1975, Boehm and Turner 1993). They can also
permit reuse of architectural design idioms and patterns,
reduction of development costs through product line ap-
proaches, and guidance to future maintainers of those
systems.

Given the potential benefits of software architecture, over
the past decade and a half the field has received increas-
ing attention and consequent progress. There are now
numerous textbooks (Garlan and Shaw 1996, Bass,

Clements, and Kazman 2003, Rosanski and Woods
2005), review methods (Clements, Kazman, and Klein
2001), conferences (e.g., the Working IEEE/IFIP Confer-
ences on Software Architecture (WICSA) and the Euro-
pean Workshops on Software Architecture (EWSA)),
documentation standards (Clements et al. 2002, IEEE
2000), handbooks (Buschmann et al. 1996), and courses
covering the topic. Success stories detailing the eco-
nomic benefits and practice of product lines abound
(Bosch 2000, Clements and Northrop 2001). Software
development practices typically now incorporate architec-
ture reviews, and software architects have formal titles
and well-defined roles in many organizations.

Coupled with heightened awareness, and increasing ma-
turity of practice, a number of standards bodies are now
promoting notations and standards for software architec-
ture. UML 2.0 from the Object Management Group, for
example, now has improved capabilities to represent gen-
eral component and connector architectures. The IEEE
prescribes a meta-framework for architectural views
(IEEE 2000). Some standards aim at more specific do-
mains, such as resource constrained systems (e.g., AADL
by SAE International, 2004, or SysML by the Object
Management Group, 2006). Other standards-based ap-
proaches, like “model driven architecture” (MDA) from
the Object Management Group (2003), attempt to provide
ways to move from architectural models to architectur-
ally-consistent implementations. Finally, the presence of
middleware and their corresponding architectural frame-
works have led to considerable standardization and reuse
within certain application domains, (e.g., J2EE, Eclipse,
ADO.NET).

However, despite notable progress and concern for ways
to represent and use software architecture, specification
of architectural designs remains relatively informal, rely-
ing on graphical notations with weak or non-existent se-
mantics that are often limited to expressing only the basic
of structural properties. As a consequence, it is almost
impossible using today’s common practices to (a) express
architectural descriptions precisely and unambiguously;
(b) provide soundness criteria and tools to check consis-
tency of architectural designs; (c) analyse those designs to
determine implied system properties; (d) exploit patterns
and styles, and check whether a given architecture con-
forms to a given pattern; and (e) guarantee that the im-
plementation of a system is consistent with its architec-
tural design. Copyright © 2006 Australian Computer Society, Inc. This

paper appeared in the 11th Australian Workshop on Safety
Related Programmable Systems (SCS’06), Melbourne. Con-
ferences in Research and Practice in Information Technology,
Vol. 69. Tony Cant, Ed. Reproduction for academic, not-for-
profit purposes permitted provided this text is included.

Luckily, however, research has developed techniques to
address many of these shortcomings by providing more-
formal approaches to architectural design. While these
techniques may not be completely ready for full-scale
adoption by industry, many of them are close to that level
of maturity.

In this paper we outline several such techniques and their
associated tools, drawing particularly from research car-
ried out at Carnegie Mellon University in the ABLE Pro-
ject. While not a comprehensive survey of existing work
on formal approaches to software architecture, this paper
will give a flavour for the kinds of techniques being in-
vestigated by the research community, and the kinds of
potential benefits that they can bring to the field.

The remainder of this paper is organized as follows: Sec-
tion 2 summarizes how to specify architectural structure;
in Section 3 we introduce architectural properties and
illustrate how a flexible property mechanism can facili-
tate architectural analysis; Section 4 shows how architec-
tural behaviour can be specified; Section 5 introduces the
concepts of architectural style, and shows how they can
be used to provide domain-specific architectural models
and the ability to check for conformance to a style; Sec-
tion 6 presents a summary of our approaches to address-
ing the problem of establishing implementation confor-
mance to an architecture; finally, Sections 7 and 8 present
related work and conclusions.

2 Modelling architectural structure
The starting point for any formal treatment of software
architecture is the representation of architectural struc-
ture. However, this raises the question: what kinds of
structure? Any complex software system may have many
structures of interest: modules, run-time entities, devel-
opment teams, physical devices and networks. Today we
understand that the preferred way of addressing this com-
plexity is to recognize that an architectural design must
be described in terms of a number of distinct (but related)
views. Each view represents an architectural perspective
on the system, exposing certain system structures and
their properties, to address a particular set of concerns.

Following the approach of Clements et. al. (2002), one
can categorize the kinds of structures into three general
categories. First, there are coding structures, such as
modules, packages, and classes, with relationships like
uses, depends-on, inherits, etc. Second, there are run-time
structures: databases, clients, servers, and connectors
indicating communication pathways. Third, there are al-
location structures, which map elements of the first two
views into non-software entities, such as the physical
setting (networks, CPUs, etc.) or development teams.
These mappings lead to allocation views, such as de-
ployment views or work breakdown structures.

In this paper we will focus on modelling and analysis of
run-time structures, or component and connector (C&C)
views. This is because such structures are the ones that
most directly convey critical properties related to depend-
ability, such as reliability, security, and performance.
These are also the class of views that are least well sup-
ported by existing notations and tools.

2.1 Components, connectors, and systems
We model a run-time C&C view of software architecture
as a graph of components and connectors. Specifically,
basic elements and relations of a C&C view are:
• Components model the principle computational

elements of a system’s run-time structure. They in-
clude things like databases, clients, servers, GUI’s,
etc. Each component has a set of ports, which model
the run-time interfaces of that component, through
which it interacts with other components (via con-
nectors). For example, a server might have a number
of service invocation ports, each port representing a
run-time interactions with an individual client.

• Connectors model the pathways of communication
between components. They include things like pipes
and client-server communication links. Connectors
may be binary, such as pipes and client-server inter-
actions, or N-ary, such as a publish-subscribe con-
nector, which allows publisher component to interact
with zero, one, or many subscribing components.
Each connector has a set of roles, which model the
specifications of behaviour required of the compo-
nents that use a given connector. For example, a pipe
might have a single reading and writing role, while a
publish-subscribe connector would have multiple
publish and subscribe roles.

• Systems model a graph of components and connec-
tors in which the ports of a component fill the roles
of a set of connectors to determine the interconnec-
tion topology.

Figure 1 illustrates these concepts. In addition, a compo-
nent or a connector may have substructure (not illustrated
here), called a representation that further elaborates its
internal structure.

Port

Role

System Component

Connector

Figure 1. Component and Connector View.

This vocabulary allows one to model the box-and-and-
line diagrams common to architectural descriptions, and
generally corresponds to the primitive conceptual build-
ing blocks in most architectural description languages
(ADLs). It is important to note, however, that unlike
many informal diagrammatic depictions of architecture,
the above model explicitly identifies component inter-
faces, and represents connectors as first-class model ele-
ments of the software architecture.

2.2 Acme
In order to support analysis of component and connector
architecture models it is necessary to have a machine-

System simple-cs = {
 Component client = { port call-rpc; };
 Component server = { port rpc-request; };
 Connector rpc = {
 role client-side;
 role server-side;
 };
 Attachments = {
 client.call-rpc to rpc.client-side;
 server.rpc-request to rpc.server-side;
 }
}

Figure 2. Acme description for a simple client-
server architecture.

System simple-cs = {
 …
 Component server = {
 port rpc-request = {
 Property sync-requests : boolean

 = true;
 };
 Property max-transactions-per-sec : int = 5;
 Property max-clients-supported : int = 100;
 };
 Connector rpc = { …
 Property protocol : string = “aix-rpc”;
 }; …
};

processable representation. In this paper we use the Acme
ADL for this representation (Garlan et al. 2000).

Figure 2 shows an Acme specification of a simple client-
server system consisting of a single client and a single
server, interacting through a remote procedure-based
connector. The system, named simple-cs, is declared in
the first line of the specification. Following this are decla-
rations of the two components, client and server, each
with a single port (call-rpc and rpc-request, respectively).
The connector, rpc, is declared to have two roles (client-
side and server-side). Finally, the system is created by

attaching the appropriate ports to the respective roles of
the connector.1

The textual representation of a graphical picture does
little more than provide an alternative depiction. But there
are, nonetheless, opportunities for analysis even with
such simple models. For example, after parsing, we might
check the model to determine whether any connectors
have unattached roles, whether every port of a component
is attached to some connector. or whether the architec-
tural substructure of a component provides interfaces to

1 Although we don’t illustrate it in this simple example, at this
structural level we could also provide representations of the

Figure 3. Properties in Acme. Analysis of
architectural structure.

Figure 4. Specifying schedulabiluty properties in AcmeStudio.

support its own external interfaces. We can also check
for naming conflicts (e.g., whether two ports of the same
name on the same component).

3 Modelling architectural properties
While some analyses of pure structure are possible, to
achieve significant analytic value from an architectural
model we need to represent more of the semantics of the
architecture. In Acme this is done by annotating the struc-
ture with properties.

3.1 Properties in Acme
Properties are simply typed name-value pairs that can be
associated with any architectural element.2 Types may be
primitive (integer, boolean, etc.) or composite (sets, se-
quences and records).

Figure 3 illustrates the use of properties, elaborating
Figure 2. This example illustrates properties associated
with a port (indicating whether the client request is syn-
chronous); a component (indicating the maximum num-
ber of transactions per second supported by the server),
and a connector (indicating the name of the protocol that
is expected to be used over it).

client and server, elaborating each component’s architectural
substructure. See Garlan et al. (2000) for details.
2 We use the term architectural element to refer generally to
components, connectors, ports, roles, representations, and sys-
tems.

3.2 Analysing architectural
properties

The meaning of properties is not
specified in Acme, which does
not provide native support for
their analysis. However, such
properties can be used by external
analysis tools to gain insight into
the architecture by calculating
global system properties from
local properties of components
and connectors. In many cases
calculations can take advantage
off-the-shelf theory and algo-
rithms. Such analyses can be a
powerful aid to architectural de-
sign, allowing architects to iden-
tify design errors early in the
process, helping the architect
document the expected run-time
properties of architectural ele-
ments, and facilitating tool sup-
port for providing feedback and
comparisons of analysis results.

We now illustrate these ideas with
three examples: rate-monotonic
analysis for automotive control

systems, queuing theory-based analysis for detecting
server overloads, and Monte Carlo-style security simula-
tion.

Figure 5. The results of the schedulability analysis.

Example 1: Analysis of real-time schedulability,
Figure 4 depicts a simple automotive system represented
in AcmeStudio (Schmerl and Garlan 2004), a framework
for creating architecture design environments. AcmeStu-
dio, written as a plug-in to the Eclipse framework, per-
mits one to define domain-specific architectural styles3
and link in analysis tools that may be invoked by the user
to analyse systems in those styles.

The architecture used in Figure 4 includes components
that run as periodic tasks on a set of CPUs. Tasks can
communicate directly with tasks on the same CPU, and
with tasks on other CPUs using an automotive standard
communication bus (here a CAN bus). An important
question in the design of such systems is whether certain
task scenarios (treated as paths through the architecture),
can be scheduled on the available processors.

To evaluate this system-wide property, the style associ-
ates with each component a set of properties relevant to
real-time schedulability. In the architectural style of this
example these properties are modelled as its deadline,
execution time, priority, and CPU. For example, in Figure
4 the selected component, plant-rx, has values of 200,
170, 100, and CPU1 as its respective property values.

3 We discuss architectural styles in detail in Section 5; for now,
consider a style as providing element types specifying the prop-
erties that must be defined for instances of the elements.

 Figure 6. Performance Analysis in AcmeStudio.

When all components have been annotated with these
properties (and the connectors with similar properties),
we can invoke a tool to evaluate the CPU utilization, and
the schedulability of specific pathways. In the figure three
pathways are specified. The resulting analysis prints out
the results of applying rate monotonic analysis (Sha and
Goodenough 1991), indicating which paths are schedul-
able (Figure 5).

It is important to note that the actual analysis of sched-
ulability is carried out using completely standard, off-the-
shelf algorithms for rate-monotonic real-time analysis.
Moreover, AcmeStudio makes it relatively easy to add
such an analysis using a “plug-in” framework, which as-
sists with creating specialized property editors (e.g., to
specify pathways for evaluation), invoking analysis tools
through menus, passing the relevant data to them for
analysis, and displaying the results back in the graphical
editing environment.

Example 2: Analysis of server-load.
Of course, not all systems in need of performance analy-
sis are real-time systems. To illustrate how the same gen-
eral ideas can be supported for different application do-
mains, consider Figure 6. Here we have an example of a
system defined as a tiered system in which clients queue
requests for database service from a set of servers that

contain business logic to access a set of databases. The
system model is shown in AcmeStudio.

To analyse performance of this system we take advantage
of queuing theory to evaluate performance characteristics
of such systems (Spitznagel and Garlan 1998, Di Marco
and Inverardi 2004). To perform the analysis, we must
first supply the values of a set of properties of the com-
ponents and connectors, such as arrival rates (expressed
as probability distributions), average service time for
handing requests at a server, and degree of server replica-
tion. These properties are specified through an editing
plug-in to AcmeStudio specific to performance analysis,
as illustrated at the bottom of Figure 6.

Once these properties have been defined, as before we
can pass the model to an analysis tool, which in this case
calculates for each server a set of derived properties, in-
cluding average server utilization, queue lengths, and
response times using standard queuing-theoretic tech-
niques. From these results the tool can further indicate
whether any servers are overloaded. In Figure 6, the
analysis has determined that the circled component in the
diagram is overloaded, and has highlighted this fact by
changing its colour to red.

Example 3: Analysis of security
It is also possible to analyse the security of a system
through Monte Carlo-based architectural simulation, a

form of analysis that abstractly exercises an architecture
using inputs and events drawn from probability distribu-
tions. The Security Simulator plug-in to AcmeStudio en-
ables an architect to perform security simulations based
on threat scenarios that are relevant to the system under
design. The main concepts in the security analysis are
threat types, assets, and countermeasures; the simulation
is based on the approach outlined in Butler (2002).

Threat types specify the possible threats that can affect
the system (e.g., a virus or denial of service attack).
Because different systems may be subject to different
types of threats, the architect must specify each of
the threat types that may be posed to the system.

Assets are components that may be damaged by par-
ticular threats. Assets are assigned a monetary value,
and the particular threat types that may affect the as-
set are specified. For example, a database component
may not be susceptible to password sniffing attacks,
but may be vulnerable to data corruption as the result
of a virus.

Countermeasures are of three types: Preventative
components affect the frequency at which threats oc-
cur; Monitoring components and recovery compo-
nents reduce the effect of a threat. The architect
specifies each of the countermeasure’s target threat
types, and the effectiveness or reduction that the
countermeasure has on the target threat.

Once the relevant properties are specified, the architect
must then define paths (consisting of components and
connectors) through the architecture that particular threats
may take. The threat type that affects that path and the
frequency (as a stochastic function) of the threat type are
specified. After the threat is specified, the assets associ-
ated with its path can be given outcome values. The out-
come can be in terms of dollars, loss of life, loss of pro-

ductivity, etc. A weight is assigned to each
outcome factor.

Threat scenarios are composed of one or
more transactions. A scenario is used as
basis for executing the simulation, and
specifies the amount of time that will be
used in performing the simulation. The
simulation takes into account the threat
entering the transaction path, the frequency
of the threat type and the countermeasures
in the path. Monte Carlo simulation is per-
formed to determine the most probable
damage value to each of the assets in the
threat transaction. The value obtained is
multiplied by the frequency of the threat
transaction and the simulation time. This
gives the total damage for the particular
threat outcome factor. The end result of the
simulation is a report that details the threat
scenario, threat transaction, and total dam-
age to the assets in the threat transaction
path.

Consider the simple architecture illustrated
in Figure 7, where we define the database
as an asset (giving an asset value of
$100K), run a security simulation on a path

originating at the client and going through the firewall
and server to the database for a simulated virus attack.
We define the scenario so that (1) the simulation time is
two virtual months; and (2) a virus attack happens on
average 5 times per day, with a maximum of 20 attacks
per day. If the firewall is 95% effective against virus
threats then running the scenario indicates that the dam-
age is calculated as $56, 677. If we were to run the same
simulation without the firewall, the simulation will indi-
cate that the loss of revenue increases to $1,112,409.

Figure 7. Security Simulation in AcmeStudio.

Such a simulation allows the architect to evaluate differ-
ent scenarios, and to evaluate the effectiveness of differ-
ent countermeasures against different attacks. Providing
different sets of properties for an architectural model fa-
cilitates different analyses of that model. It is therefore
possible to make trade-off based on different scenarios
and quality attributes for the same architectural model,
rather than have to use different environments and archi-
tectural models in potentially different architectural lan-
guages.

4 Modelling architectural behaviour
An important aspect of modelling software architectures
is the specification of abstract behaviour. By knowing the
behaviour of architectural elements we can significantly
improve the clarity of architectural designs. We can also
analyse these specifications, for example to spot protocol
mismatches in which interactions between components
can potentially lead to deadlock (Allen and Garlan 1994
and 1997, Allen, Garlan, and Ivers 1998).

To illustrate, consider the simple system consisting of a
pipe that connects two filters, F1 and F2, illustrated in
Figure 8. The intuition behind such a pipe-filter system is
that components communicate through buffered streams,

writing through their output ports and reading through
their input ports.

While the intuition may seem simple at first glance, un-
derstanding the real meaning of the figure (for example to
implement F1 and F2) depends on detailed understanding
of the interactions defined by the pipe. For example, from
the figure alone it is impossible to answer the following
questions:
• Which is the reading/writing end of the pipe?
• Is writing synchronous? That is, assuming F1 is the

writer, does it block after writing?
• What if F2 tries to read and the pipe is empty? Does

it block, or can it continue with other processing?
• Can F1 choose to stop writing?
• Can F2 choose to stop reading without consuming all

of the data on the pipe?
• If F1 closes the pipe, can it start writing again at

some future time?
• If F2 never reads, can F1 write indefinitely, or does

F1 eventually block?

Note that there is no correct answer to these questions,
since any set of answers could represent a possible pipe
design. Indeed, in actual systems pipe implementations
differ precisely along such dimensions of variability.

What is required is some way to specify the semantics of
a pipe at the architectural level so that such questions can
be answered easily. This would represent a marked im-
provement over existing practice in which decisions
about such behaviour require one to examine the code of
some implementation, existing examples of usage, or
consult a human expert.

There are many possible ways in which one might repre-
sent architectural behaviour (Shaw and Garlan, 1995).
Indeed, practically any behaviour specification will do,
including process algebras, state machines, relational
models, and timed automata. To illustrate the general
principles, we use the Wright specification language, one
of the first to use formal modelling to specify architec-
tural behaviour (Allen 1997, Allen and Garlan 1994).

Wright uses a subset CSP (Hoare 1985), a well-known
process algebra, which defines behaviour in terms of pat-
terns of events. Some of the constructs are listed in Figure
9. These include events (representing architecturally-
relevant actions), processes (representing patterns of
events), sequentiality (representing the ability to follow
one behaviour by another), choice (representing the abil-
ity to branch), and parallel composition (representing the
ability to compose partial descriptions). These CSP-based
specifications can be associated with various architectural
structures, including ports and roles.

Events: e, request, read?y, write!5
Processes: P, Reader, Writer, Client,
 § (successful termination)
Sequence: e → P, P ; Q
Choice: P⎟⎤ Q, P [] Q
Composition: P || Q

Figure 9. Behavior specifications in Wright.

Figure 10 illustrates the basic ideas of behaviour descrip-
tion in Wright through a partial description of a pipe con-
nector. Each role of the pipe (Reader and Writer) has an
associated protocol defined in the subset of CSP summa-
rized above. In addition, the connector has a “glue” speci-
fication (also a CSP process) that indicates how the roles
interact through the connector itself.

Connector Pipe
 Role Writer = (write!x → Writer) ⎟⎤ (close → §)
 Role Reader = Read ⎟⎤ Exit
 where Read = (read?x → Reader) [] (eof → Exit)
 Exit = close → §
 Glue = Writer.write?x → Glue []
 Reader.read!y → Glue []
 Writer.close → ReadOnly []
 Reader.close → WriteOnly
 where ...

Figure 10. Partial Wright specification of a
Pipe connector.

Such specifications, although compact, provide direct
answers to questions such as those posed above. For ex-
ample, the specification in Figure 10 immediately tells us
that a pipe writer can close at anytime, but cannot write
again once it has close. A pipe reader can also close at
any time, but if it chooses to read a value, it must be pre-
pared to recognize an “end-of-file” (eof) marker and then
immediately close.

Beyond clarification of design intent, specifications such
as these permit a variety of analyses, including:
• Consistency of connectors: that the glue-mediated

roles of a connector do not lead to a deadlocked state.
• Compatibility of component interface to connector

interaction protocol: that a port satisfies the require-
ments of a connector role that it fills.

• Consistency of a component’s behaviour with respect
to its interfaces: that a port’s specification represents
a correct projection of a component’s internal behav-
iour at that interface point.

Many of these checks can be performed semi-
automatically by model checkers. See Allen (1997) for
details.

Figure 8. A simple pipe-filter system.

Pipe
F1 F2 5 Modelling architectural styles

One notable feature of software architecture is the ability
to reuse styles and patterns. For example, many systems

are described in terms like “client-server system”, “N-
tiered system”, “pipe-filter system”, etc. Such terms refer
to families of systems that share a common architectural
design vocabulary (e.g., clients, servers, tiers, etc.) and a
set of constraints on how that vocabulary can be used
(e.g., that clients can’t talk directly to other clients, or that
connections don’t cross more than one tier).

Important questions for architectural modelling and
analysis are: How can we model an architectural style?
How can we check that a given system is consistent with
a given style? Can we combine several styles without
leading to logical inconsistencies?

5.1 Architectural styles in Acme
We can specify styles by augmenting our architectural
modelling notation with two things. First is the ability to
define component, connector, and property types. These
provide the basic vocabulary of design in that style. Sec-
ond is the ability to define constraints on how instances of
these types may be combined in a system description.4

For example, to define a pipe-filter style we would first
need to define one or more filter component types and a
pipe connector type. These would identify the kinds and
number of ports on filters and roles on the connector.
Additionally, we might define various property types, and
indicate which properties are associated with which ele-
ments in the style. Next we would need to define con-
straints that might, for example, specify that there should
be no dangling pipes or that a system should not have any
cycles.

4 From a tooling perspective style definition may also entail
specification of graphical conventions (shape, colour, layout)
for the style, style-specific shortcuts for improving graphical
editing (such as automatic creation of connectors based on nam-
ing conventions), and analysis tools to be included in an envi-
ronment that uses the style.

Figure 11 illustrates the basic ideas with a partial defini-
tion of a pipe-filter style, or family, as it is termed in
Acme. Here we have defined a Filter component type, and
specified that it must have at least an In and an Out port.
We have also defined a Pipe connector type, and speci-
fied that it must have a Reader and a Writer role, and that
each role must specify the datatype that is transmitted
through that role.

Family PipeFilterFam = {
 Component Type filterT = {
 Ports {In,Out} ;
…} ;
Connector Type pipeT = {
 Role Reader = {Property datatype = …} ;
 Role Writer = {Property datatype = …} ;
 Invariant self.Reader.datatype ==
 self.Writer.datatype;
 …
}
System my-PF-System : PipeFilterFam = {
 Component F1: filterT = {…} ;
 Connector P: pipeT = {…} ;
 …
}

Figure 11. Specification of a Pipe-Filter architec-
tural style in Acme.

The connector also includes a constraint, in this case an
invariant that says the type of data written to a pipe must
match the data read from it. Such specifications are writ-
ten in a first-order predicate language (similar to UML’s
OCL), augmented with some functions that make it easier
to refer to things like a component’s ports, or the roles
attached to a port.

With the pipe-filter family in hand, we can now use it to
define a specific system in that style. In Figure 11 we
illustrate the description of a system, my-PF-system.
Components and connectors may now be declared as in-
stances of the types defined in the family.

5.2 Example: Mission Data Systems
To illustrate the concepts of modelling and analysing
style-oriented architectural description in more depth, we
now describe a larger example: NASA’s Mission Data
System (MDS) (Rasmussen, 2001, Dvorak and Reinholtz
2004). MDS includes an experimental architectural style
for defining space systems. It consists of a set of compo-
nent types (e.g., sensors, actuators, state variables), and
connector types (e.g., sensor query). It also defines a
number of rules that define legal combinations of those
types. Figure 12 graphically illustrates the style, which
consists of 7 component types, 12 connector types.

Figure 13 shows a screenshot of a simple MDS system
displayed in AcmeStudio. The system represents a tem-
perature control system consisting of a temperature sen-
sor (TSEN), a temperature estimator (TEST), a heating
actuator (SACT), a temperature state variable (CTSV), a
heath state variable to indicate whether the sensor is be-
having correctly (SHSV), a temperature controller
(TCON) to issue commands to the actuator, and an execu-
tive that controls the value of the target temperature
(EXEC). Appropriate connectors (of which there are 12
types) are used to define the interconnection topology.

The rules in MDS were initially defined in English and
had to be hand translated into Acme constraints. A simple
example of such a rule is

“For any given Sensor, the number of Measurement
Notification ports must be equal to the number of
Measurement Query ports (rule R5A).”

This rule, which is a small part of a larger rule (see be-
low) indicates that for every query port that a sensor pro-
vides, it must also provide an announcement port (and
vice versa).

This rule was translated into the following constraint,
which is associated with the sensor component type:

numberOfPorts (self, MeasurementNotifReqrPortT) ==
 numberOfPorts (self, MeasurementQueryProvPortT)

Figure 12. Definition of the MDS Architectural Style.

State Update

Measurement Query

Constraint Execution

State Notification

State Query

Command Submit

Command Notif.

Rules such as this one are continuously evaluated in
AcmeStudio as the MDS architect creates an architectural
description of an MDS System. If a rule is violated, the
environment highlights the problem. Figure 14 illustrates
how this appears to an architect. when the TSEN sensor
component violates the property specified above.

Of course, checking rule satisfaction is relatively trivial
for small systems and for such simple rules. Indeed, vis-
ual inspection could easily locate such rule violations.
But in general MDS rules are much more complex, for
example:

“Every estimator requires 0 or more Measurement
Query ports. It can be 0 if estimator does not
need/use measurements to make estimates, as in the
case of estimation based solely on commands submit-

ted and/or other states. Every sensor provides
one or more Measurement Query ports. It can
be more than one if the sensor has separate
sub-sensors and there is a desire to manage the
measurement histories separately. For each
sensor provided port there can be zero or more
estimators connected to it. It can be zero if the
measurement is simply raw data to be trans-
ported such as a science image. It can be more
than one if the measurements are informative in
the estimation of more than one state vari-
able.”

Figure 13. A simple control system in the MDS style.

This is one of 12 such rules. Moreover, MDS
architectures typically have hundreds of com-
ponents. Complete checking of rule satisfaction
in those situations becomes a significant prob-
lem for which formal style specification pro-
vides an effective solution.

5.3 Other style-based analysis
In addition to checking whether a given system conforms
to a given style, it is often useful to investigate properties
of styles themselves. For example, it is possible to define
a style in which constraints lead to inconsistencies. For
such systems it is impossible to create any system in-
stances. Moreover, we may want to investigate whether
the constraints of a style imply properties not explicitly
modelled. For example, local constraints on attachments
can be used to imply global connectedness.

To evaluate such properties we can interpret an Acme
style description as a specification of a class of models,
and use a model generator to check for the existence of
such models.

Figure 14. Displaying problems to the architect.

Specifically, we can translate a style into an Alloy model
and use the Alloy Analyser (Jackson 2002) to investigate
properties of the resulting specification. Details of this
analysis are beyond the scope of this paper, but the inter-
ested reader is referred to Kim and Garlan (2006).

6 Mapping between architecture and imple-
mentation

One of the difficult problems for an architect is ensuring
that the implemented system is consistent with the in-
tended architecture. Formal modelling and analysis can
also help solve this problem

The problem for architectures is similar to the problem
for any model-based method of ensuring that an imple-
mentation meets its specification. In general, there are
two basic solutions. First, one can attempt to ensure satis-
faction by construction. This can be done through a proc-
ess of formal refinement in which a concrete model is
obtained by applying well-founded refinement rules to a
more-abstract model (or specification). Sometimes this
process can be completely automated, in which case it is
often termed generation. The second technique is to
demonstrate that a lower-level model is consistent with a

higher-level model by comparison. This is often done by
providing a mapping relation between the two models.

Both techniques can be used for software architectural
models.

6.1 Refinement and generation
Although using refinement in the most general case of
software architecture is as difficult as any other form of
model-based refinement, in many cases the problem is
greatly simplified by exploiting architectural styles. That
is to say, by limiting the problem to a specific class of
systems and a specific class of implementations, it is of-
ten possible to build automated assistance for mapping
architectures to implementations. The assistance can be in
the form of automated transformations, or in the extreme
case, code generation of all or part of the target system.

We now illustrate this concept with two examples:

Example 1: Model generation of automotive
 control systems

Some automotive companies have in place a component-
based approach to control systems. Starting with an ab-

(a) Abstract Architecture

(b) Concrete Architecture
Figure 15. Mapping abstract automotive architecture to concrete automotive architecture.

C
reateFilter

StartR
eader

StartW
riter

R
ecordC

onn

C
onstR

ead
C

onstW
rite

A
ttachFilters

Figure 16. A DiscoTect Coloured Petri Net for Discovering Pipe-Filter Systems.

stract architectural description, pre-specified components
drawn from libraries are substituted to produce a full sys-
tem definition. In many cases the concrete components
have formal models suitable for simulation, and in some
cases code generation.

In Steppe et al. (2004) we describe a two-tiered approach
that uses Acme architectural models of the architecture of
an automotive system in two levels. At the higher (ab-
stract) level, an architecture is described in terms of ge-
neric abstract components and simple virtual connectors
(Figure 15a). In the lower (concrete) level model, con-
crete components are chosen from a repository of auto-
motive components and substituted for the abstract ones,
and detailed connections are made between them (Figure
15b). This concrete composition can then be sent to for-
mal simulation tools for analysis.

While refinement of generic architectures to concrete
architectures using component selection is a major step
forward, one of the stumbling blocks is that refinement is
done manually. In particular, the hooking up of concrete
components, which may have dozens of ports is typically
a time consuming process. Moreover, there are often de-
pendencies between different components, so that choices
of one component may affect others. Making sure that
integrity rules of component composition are respected is
a difficult, and again time-consuming, task.

However, it turns out that in many cases there are
straightforward rules that can be applied to do most of the
interconnecting. Indeed, in the case of automotive control
systems when certain naming conventions are followed,
almost all of the interconnecting can be done automati-
cally. Further integrity rules can be specified as con-
straints in the style (as illustrated earlier). Indeed, the
concrete version of the automotive software in Figure 15b
was in fact generated directly using a plug-in to a version
of AcmeStudio that had been specialized to model archi-
tectures in the two (abstract and concrete) styles.

Example 2: Code generation for MDS space
 flight systems

With certain modifications to the nature of the connectors
in the MDS style we were able to provide a prototype

code generator for MDS systems (Garlan et al. 2005). A
key feature of that generator is the ability to target the
resulting implementation to different platforms. For ex-
ample, one platform might be the space environment,
which requires power- and space-efficient code, while
another platform might be the NASA testing environment
in which resources are plentiful and there is a premium on
support for debugging and monitoring.

The ability to generate retargetable implementations re-
lies on the following:
1. There is a substantial body of reusable infrastructure

code that supports inter-component communication,
concurrency, and shared data.

2. It is possible to create a library of component imple-
mentations whose processing is not dependent on the
implementation of the communication infrastructure.
This code treats most components as input-output
transformers, where the mechanisms for transporting
code between components is irrelevant to the algo-
rithms they implement.

3. There are a small set of attributes that determine the
characteristics of the target platform. These attributes
include the threading model, the amount and nature
of debugging code, the target implementation lan-
guage, and the task scheduler implementation.

Automatic generation of implementations in this domain
allows engineers to work at a relatively high level of ab-
straction, in which the architectural principles of MDS
are a primary focus at all times. The generator guarantees
that the resulting implementation is consistent with the
architectural model, and moreover does so in a way that
is appropriate for the targeted run-time platform on which
the system will be executed.

6.2 Direct comparison
The second technique for ensuring compatibility between
architecture and implementation is to find a way to com-
pare the two. Since an implementation necessarily has
considerably more detail than the architecture, the chief
problem to solve is to abstract away the details of the
implementation that are irrelevant to the architecture.

Two approaches are typically used. One is to perform
static analysis on the code to infer high-level structure.
The other is to use dynamic analysis on the running sys-
tem to capture actual run-time behaviour and relate it to
architectural models. Static analysis is particularly effec-
tive for recovering (or inferring) module-oriented struc-
tures, since, in general, determining dynamic behaviour
of a system (e.g., creating new components or connec-
tions) is undecidable. Dynamic analysis is particularly
effective for inferring run-time structures, such as C&C
views. For that reason we focus on dynamic analysis.

The basic model for dynamic analysis is a process involv-
ing a series of steps. First a system is monitored to extract
low-level behaviour, such as object and thread creation,
method invocation, and variable assignment. Next, low-
level, implementation-oriented events are processed to
produce high-level, architecturally-relevant events. An
architectural model is dynamically constructed by apply-
ing the abstract architectural events to an evolving model.
Finally, the as-observed architectural model is compared
to the as-designed architectural model (or style) to detect
inconsistencies.

The main challenge in this process is the abstraction from
low-level events to architectural events. This is difficult
to do because it may be necessary to observe many low-
level events before it is clear what architectural events
have occurred. Moreover, these implementation events
may be highly interleaved. For example, creating a pipe
might involve creating both ends of the pipe and then
joining them together. In this process it is possible that
many writing ends of a set of pipes are created before any
reading end is created.

To account for this complexity we need to define a formal
mapping engine. In our own work we have developed the
DiscoTect system to do this (Yan et al. 2004, Schmerl et
al. 2006). At its core, DiscoTect represents a mapping
engine that uses a formal mapping language to describe
the relationship between patterns of low-level and high-
level events. The output of a mapping description is a
coloured Petri net (Jensen, 1994). After some filtering,
low-level events enter the net as input tokens. Successive
events may cause those tokens to move through the net,
eventually emerging as output tokens representing archi-
tectural events.

Figure 16 shows the net that creates pipe-filter architec-
tures from Java implementations that use Java pipe librar-
ies, and represent filters as classes that adopt certain nam-
ing conventions. The tokens in the figure represent the
current state of architectural reconstruction. Specifically,
two filters have been constructed, one with a write port
and one with a read port, and the pipe connection be-
tween them is about to be formed.

7 Related work
As noted in the Introduction, over the past two decades
there has been considerable research devoted to model-
ling and analysis of software architectures (Shaw and
Garlan, 1995). This work falls into several categories.

7.1 Architecture description languages
A large number of ADLs and associated toolsets have
been proposed by researchers (e.g., Balasubramaniam et
al. 2004, Dashofy et al. 2002, Morconi and Riemen-
schneider 1997, Terry et al. 1995). Like the architectural
modelling based on Acme described in this paper, most of
these ADLs focus on component and connector structures
and their properties. Several of them are specialized to
specific architectural styles such as hierarchical publish-
subscribe (Taylor et al. 1996), real-time control (Vestal
1996 and SAE International, 2004), or dataflow (Gorlick
and Razouk 1991). Collectively they represent an impres-
sive body of evidence about the utility of architectural
modelling and analysis.

UML 2.0 by the Object Management Group (2005) pro-
vides an architectural modelling language for components
and connectors that adopts many of the principles of
Acme. However, these extensions are relatively new, and
few tools have been developed to exploit them fully.
Moreover, as a general-purpose modelling language
UML is ill-suited to the problem of supporting domain-
specific models that can take advantage of specialized
analyses (Garlan, Kompanek, and Cheng, 2002). How-
ever, several domain-specific profiles of UML have been
proposed or are in the process of being ratified by the
Object Management Group. Many of these have the bene-
fits and power of the modelling approaches sketched in
this paper.

7.2 Specification and analysis of architectural
behaviour

Wright, summarized in this paper, was one of the first
modelling notations that attempted to provide behavioural
modelling and analysis for software architecture (Garlan,
Allen, and Ockerbloom 1994). Since then numerous be-
havioural formalisms have been used to provide comple-
mentary capabilities, including Chemical Abstract Ma-
chine (Inverardi and Wolf 1995), PO-Sets (Luckham
1996), Category Theory (Wermelinger 1998), Pi Calculus
(Magee et al. 1995), Statecharts (Vieira, Dias, and
Richardson, 2001) and many others.

Most of these approaches share the goal of detecting
mismatches in component compositions. The primary
differences are the kinds of behaviour that can be mod-
elled, and hence the kinds of mismatches that can be de-
tected.

7.3 Refinement and generation
Moriconi and colleagues were among the first to recog-
nize the importance of formal mappings between archi-
tectures and implementations (Moriconi et al. 1995).
Their approach uses structural transformation patterns to
constructively create implementation-oriented models
from architectural models.

UniCon, developed by Shaw et al. (1995) supports code
generation from architectural models. Their approach
creates a set of specialized compilation techniques for the
various kinds of connectors that may go into an architec-
ture. The goal is to provide a set of tools where any

change to the implementation of a system must take place
through the architecture. Other ADLs also have a certain
amount of code generation capability (Luckham 1996,
Taylor et al. 1997).

A number of projects have looked at reconstruction of
architectures using static analysis. For example, Dali uses
a variety of analysis techniques to create a high-level
view of a system’s implementation structures (Kazman
and Carriere 1999). Since they focus on module-oriented
views, they are complementary to the C&C-oriented ap-
proaches described in this paper.

ArchJava (Alrdich, Chambers, and Notkin 2002) aug-
ments Java with constructs for components and connec-
tors, and uses typechecking to guarantee certain kinds of
conformance between the component and connector lev-
els of the system description and the lower-level imple-
mentation structures (classes, methods, etc.). In particu-
lar, the tools can guarantee that if two components are not
connected at the architectural level, they cannot directly
interact at the code level (e.g., through shared global vari-
ables).

A large number of people have become interested in
“Model-driven Architecture”, an approach that advocates
a staged and automated approach to refinement of archi-
tectural designs to implementations. This is a natural
complement to “Architecture-driven Models” – the theme
of this paper. Much of the current work in MDA has fo-
cused on a staging in which platform dependencies are
abstracted away in the high-level model, and bound dur-
ing refinement. This is a special case of the approaches to
refinement and generation outlined in this paper.

8 Discussion and conclusions
In this paper we have illustrated a number of ways in
which formal architectural modelling and analysis can
address important issues in software architecture, includ-
ing clarifying design intent, supporting rich forms of
analysis to enable detection of design flaws and make
principled tradeoffs between quality of service goals, and
allowing tools to help guarantee that implementations are
consistent with the intent of their architectures. While the
specific techniques described here draw heavily on re-
search carried out by the Able Group at CMU over the
past 15 years, many other research efforts have produced
similar results.

There are several broad lessons that can be learned from
this body of research.
1. A little formality goes a long way. The formalisms

outlined in this paper are relatively simple. Simple
structures with types, properties, relations, and be-
havioural descriptions can go a long way toward
providing more improved capabilities for architec-
tural design. Moreover, formal specification can be
incremental: not all aspects of interest need be for-
malized or analysed.

2. Reuse of existing methods. The formal modelling
and analysis techniques described in this paper rely
on a large body of existing formal methods and tools,
including model checkers, simulators, constraint

checkers, and model generators. This is good news
for software architects since it means that existing
theory and tools can be applied with only minor
modifications to the enterprise of software architec-
ture design.

3. One size does not fit all. Architecture reveals a clas-
sic tradeoff between power and generality: the more
general-purpose a model, the fewer opportunities for
deep analysis. In our work we rely heavily on archi-
tectural style, and our ability to easily create style-
specific tools, to exploit specific forms of analysis.

Although our ability to gain insight in software architec-
tures through modelling and analysis has improved tre-
mendously over the past decade, there remain a number
of areas for which our techniques need to be improved.
These include
• Dynamic Architectures: How can we reason about

architectures whose structure changes dynamically?
How can we determine when architecture changes
can be performed safely on a system without restart-
ing it? When can architectural changes be executed
in parallel?

• Software Architectures for Emerging Systems: As
technology advances so does our need to create sys-
tems that can take advantage of it. Today, for exam-
ple, we are on the verge of ubiquitous computing
systems that must work in the presence of hundreds
of cooperating computational units, from cell phones,
to sensors, to traditional computing platforms. What
architectures are needed to handle such systems?
Similarly, we are starting to see components whose
behaviour is determined by machine learning. How
can we specify what these components do and ensure
that they are compatible with other components?

• Managing Multiple Views: So far, much tool sup-
port for architectural modelling focuses on a particu-
lar view, such as C&C views. How do we manage
the relationships among multiple views of an archi-
tecture? To what extent can we ensure consistency
between these views? How can we separate a par-
ticular architectural view into multiple views high-
lighting different concerns, to manage scalability?

Acknowledgements
The research described in this paper reflects work over
the past 15 years funded by a variety of governmental
agencies and corporations, including DARPA, NSF,
ONR, ARO, Siemens, IBM, HP, and Microsoft. We
gratefully acknowledge their support, and note that the
opinions, conclusions or recommendations expressed in
this material are those of the authors and do not necessar-
ily reflect the views of these funding agencies or corpora-
tions.

Numerous students and staff have contributed to the body
of work summarized here, including Robert Allen, Eliza-
beth Bigelow, Shang-Wen Cheng, James Ivers, Jung Soo
Kim, Andrew Kompanek, Charles Krueger, Ralph Mel-
ton, Bob Monroe, John Ockerbloom, Nicholas Sherman,
and Bridget Spitznagel. Their hard work, insight, and

inventiveness are largely responsible for the advances
that we have made, and we thank them for their varied
but crucial support.

References
Aldrich, J., Chambers, C., and Notkin, D. (2002):

ArchJava: Connecting Software Architecture to Im-
plementation. Proc. ICSE 24, Orlando, Florida.

Allen, R. (1997): A Formal Approach to Software Archi-
tecture. Ph.D. Thesis, Carnegie Mellon University
School of Computer Science Technical Report CMU-
CS-97-144.

Allen, R., Garlan, D. (1994): Formalizing Architectural
Connection. Proc. the 1994 International Conference
on Software Engineering.

Allen, R. and Garlan, D. (1997): A Formal Basis for Ar-
chitectural Connection. ACM Transactions on Software
Engineering and Methodology, 6(3).

Allen, R., Garlan, D., and Ivers, J. (1998): Formal model-
ing and analysis of the HLA Component Integration
Standard. Proc. the 6th International Symposium on the
Foundations of Software Engineering (FSE-6), Lake
Beuna Vista, Florida.

Balasubramaniam, D., Morrison, R., Kirby, G.N.C,
Mickan, K., and Norcross, S. (2004): ArchWare ADL
Release 1 User Reference Manual. ArchWare Project
IST-2001-32360 Report D4.3.

Bass, L., Clements, P., and Kazman, R. (2003): Software
Architecture in Practice, 2nd Edition, Addison-Wesley.

Boehm, B., and Turner, R. (2003): Balancing Agility and
Discipline: A Guide for the Perplexed. Addison Wesley
Professional.

Bosch. J. (2000): Design and Use of Software Architec-
tures: Adopting and Evolving a Product Line Ap-
proach. Addison Wesley.

Brookes, F. (1975): The Mythical Man Month: Essays on
Software Engineering. Addison Wesley Professional.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
and Stal. M. (1996): Pattern-Oriented Software Archi-
tecture, Volume 1: A System of Patterns, Wiley.

Butler, S. (2002): Security Attribute Evaluation Method:
A Cost-Benefit Approach. Proc. 24th International
Conference on Software Engineering (ICSE2002). Or-
lando, Florida, pp. 232-240.

Clements, P., Kazman, R., and Klein, M. (2001): Evaluat-
ing Software Architectures. Addison Wesley Profes-
sional: The SEI Series in Software Engineering.

Clements, P. and Northrop, L. (2001): Software Product
Lines: Practices and Patterns. Addison Wesley SEI
Series in Software Engineering,

Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers,
J., Little, R., Nord, R., and Stafford, J. (2002): Docu-
menting Software Architectures: Views and Beyond,
Addison Wesley.

Dashofy, E., van der Hoek, A., and Taylor, R.N. (2002)
An Infrastructure for the Rapid Development of XML-
based Architecture Description Languages. Proc. 24th
International Conference on Software Engineering
(ICSE2002). Orlando, Florida.

Di Marco, A. and Inverardi, P. (2004): Compositional
Generation of Software Architecture Performance QN
Models. Proc. the 4th Working IEEE/IFIP Conference
on Software Architecture (WICSA’04). Oslo, Norway.

Dvorak, D., and Reinholtz, W.K. (2004): Separating Es-
sential from Incidentals, An Execution Architecture for
Real-Time Control Systems. Proc. 7th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Dis-
tributed Computing. Austria.

Garlan, D., Monroe, R., and Wile, D. (2000)“Acme: Ar-
chitectural Description of Component-Based Systems.”
In Foundations of Component-Based Systems, Cam-
bridge University Press.

Garlan, D., Allen, R.J., and Ockerbloom, J. (1994): Ex-
ploiting Style in Architectural Design, Proc. of ACM
SIGSOFT ’94 Symposium on the Foundations of Soft-
ware Engineering.

Garlan, D.; Kompanek, A. J.; & Cheng, S.-W. (2002):
Reconciling the Needs of Architectural Description
with Object Modeling Notations. Science of Computer
Programming 44, 1, pp. 23-49.

Garlan, D., Reinholtz, W.K., Schmerl, B., Sherman, N.,
and Tseng, T. (2005): Bridging the Gap between Sys-
tems Design and Space Systems Software. Proc. 29th
Annual IEEE/NASA Software Engineering Workshop
(SEW-29), Greenbelt, MD.

Gorlick, M.M. and Razouk, R.R. (1991): Using Weaves
for Software Construction and Analysis. Proc. 13th In-
ternational Conference on Software Engineering
(ICSE13). IEEE Computer Society Press.

Hoare, C.A.R. (1995): Communicating Sequential Proc-
esses. Prentice Hall.

IEEE. (2000): IEEE Recommended Practice for Architec-
tural Description of Software Intensive Systems (IEEE
Std 1471-2000).

Inverardi, P. and Wolf, A. (1995): Formal Specification
and Analysis of Software Architecture Using the
Chemical Abstract Machine Model. IEEE Transactions
on Software Engineering 21(4).

Jackson, D. (2002): Alloy: A Lightweight Object Model-
ing Notation. IEEE Transactions on Software Engi-
neering and Methodology 11(2).

Jensen, K. (1994): An Introduction to the Theoretical
Aspects of Coloured Petri Nets. In: J.W. de Bakker,
W.-P. de Roever, G. Rozenberg (eds.): A Decade of
Concurrency, Lecture Notes in Computer Science vol.
803, Springer-Verlag, pp. 230-272.

Kazman, R. and Carriere. S.J. (1999): Playing Detective:
Reconstructing Software Architecture from Available
Evidence, Journal of Automated Software Engineering
6(2), 1999.

Kim, J.S. and Garlan, D. (2006): Analyzing Architectural
Styles with Alloy. Proc. Workshop on the Role of Soft-
ware Architecture for Testing and Analysis 2006
(ROSATEA 2006), Portland, ME.

Luckham, D.C. (1996): Rapide: A Language and Toolset
for Simulation of Distributed Systems by Partial Order-
ings of Events, Proc. of DIMACS Partial Order Meth-
ods Workshop.

Magee, J., Dulay, N., Eisenbach, S., and Kramer, J.
(1995): Specifying Distributed Software Architectures.
Proc. 5th European Software Engineering Conference
(ESEC 95).

Moriconi, M., Quian, X., and Riemenschneider, R.
(1995): Correct Architecture Refinement. IEEE Trans.
Soft. Eng. 21(4).

Moriconi, M. and Reimenschneider, R. (1997): Introduc-
tion to SADL 1.0: A Language for Specifying Software
Architecture Hierarchies. Technical Report SRI-CSL-
97-01, SRI International.

Object Management Group. MDA (2003): The Architec-
ture of Choice for a Changing World.
http://www.omg.org/mda. Accessed November 29,
2006.

Object Management Group (2005). Unified Modeling
Language (UML), Version 2.0. http://www.omg.org/
technology/documents/formal/uml.htm. Accessed No-
vember 29, 2006.

Object Management Group (2006). OMG SysML Speci-
fication. http://www.sysml.org/docs/specs/OMGSys-
ML-FAS-06-05-04.pdf. Accessed November 29, 2006.

Perry, D. and Wolf, A. (1992): Foundations for the Study
of Software Architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40-52.

Rasmussen, R. (2001): Goal-Based Fault Tolerance for
Space Systems using the Mission Data Systems. Proc.
2001 IEEE Aerospace Conference, Big Sky, MT.

Rosanski, N. and Woods, E. (2005): Software Systems
Architecture: Working with Stakeholders Using View-
points and Perspectives. Addison Wesley.

SAE International. (2004): Architecture Analysis and
Design Language (AADL). Document Number
AS5506.

Schmerl, B. and Garlan, D. (2004): Supporting Style-
Centered Architecture Development. ICSE 26, Edin-
burgh, Scotland.

Schmerl, B., Aldrich, J., Garlan, D., Kazman, R., and
Yan. H. (2006): Discovering Architectures from Run-
ning Systems. IEEE Transactions on Software Engi-
neering 32(7).

Sha, K. and Goodenough, J. (1991): Rate Monotonic
Analysis for Real-Time Systems. Foundations of Real-
Time Computing: Scheduling and Resource Manage-
ment, pp. 129-155. Kluwer Academic Publishers.

Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young,
D.M., Zelesnik, G. (1995): Abstractions for Software
Architectures and Tools to Support Them. IEEE
Transactions on Software Engineering, 21(4):314-335.

Shaw, M. and Garlan, D. (1995): Formulations and For-
malisms in Software Architecture. In Jan Van Leeuwen
(Editor), Computer Science Today: Recent Trends and
Developments. LNCS 1000:307-323, Springer-Verlag.

Shaw, M. and Garlan, D. (1996): Software Architecture:
Perspectives on an Emerging Discipline, Prentice Hall.

Spitznagel, B. and Garlan, D. (1998): Architecture-Based
Performance Analysis. Proc. 1998 Conference on
Software Engineering and Knowledge Engineering,
San Francisco.

Steppe, K., Bylenok, G., Garlan, D., Schmerl, B., Abi-
rov, K., and Shevchenko, N. (2004): Two-tiered Ar-
chitectural Design for Automotive Control Systems:
An Experience Report. Proc. Automotive Software
Workshop on Future Generation Software Archtiecture
in the Automotive Domain, San Diego, CA.

Taylor, R.N., Medvidovic, N., Anderson, K.M., White-
head, E.J., Robbins, E.J., Nies, K.A., Oriezy, P., and
Dubrow, D. (1996): A Component- and Message-
Based Architectural Style for GUI Software. IEEE
Transactions on Software Engineering 22(6).

Terry, A., London, R., Papanogopoulos, G., Devito, M.
(1995): The ARDEC/Tecknowledge Architecture De-
scription Language (ArTek), Version 4. Technical Re-
port, Tecknowledge Federal Systems, and U.S. Army
Armament Research, Development, and Eng. Center.

Vestel, S. (1996): “MetaH Programmer’s Manual, Ver-
sion 1.09.” Technical Report, Honeywell Technology
Center.

Vieira, M., Dias, M., Richardson. D.J. (2001): Software
Architecture based on Statechart Semantics, Proc. of
the 10th International Workshop on Component Based
Software Engineering.

Wermelinger, M. and Fiadeiro, J.L. (1998): Towards and
algebra of architectural connectors: A case study on
synchronization for mobility. Proc. 9th Workshop on
Software Specification and Design.

Yan, H., Garlan, D., Schmerl, B., Aldrich, J., and
Kazman, R. (2004): DiscoTect: A System for Discov-
ering Architectures from Running Systems," Proc. of
26th International Conference on Software Engineer-
ing, Edinburgh, Scotland.

	1 Introduction
	2 Modelling architectural structure
	2.1 Components, connectors, and systems
	2.2 Acme

	3 Modelling architectural properties
	3.1 Properties in Acme
	3.2 Analysing architectural properties
	Example 1: Analysis of real-time schedulability,
	Example 2: Analysis of server-load.
	Example 3: Analysis of security

	4 Modelling architectural behaviour
	5 Modelling architectural styles
	5.1 Architectural styles in Acme
	5.2 Example: Mission Data Systems
	5.3 Other style-based analysis

	Mapping between architecture and implementation
	6.1 Refinement and generation
	Example 1: Model generation of automotive control systems
	Example 2: Code generation for MDS space flight systems

	6.2 Direct comparison

	7 Related work
	7.1 Architecture description languages
	7.2 Specification and analysis of architectural behaviour
	7.3 Refinement and generation

	8 Discussion and conclusions
	Acknowledgements
	References

