
Analyzing Architectural Styles with Alloy

Jung Soo Kim
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

jungsoo@cmu.edu

David Garlan
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

garlan@cs.cmu.edu

ABSTRACT
The backbone of many architectures is an architectural style
that provides a domain-specific design vocabulary and set
of constraints on how that vocabulary can be used. Hence,
designing a sound and appropriate architectural style be-
comes an important and intellectually challenging activity.
Unfortunately, although there are numerous tools to help
in the analysis of individual architectures, relatively less
work has been done on tools to help the style designer. In
this paper we show how to map an architectural style, ex-
pressed formally in an architectural description language,
into a relational model that can be automatically checked
for properties such as whether a style is consistent, whether
a style satisfies some predicate over the architectural struc-
ture, whether two styles are compatible for composition, and
whether one style refines another.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture—
Languages

Keywords
software architecture, architectural style, style analysis

1. INTRODUCTION
The discipline of software architecture has matured substan-
tially over the past decade: today we find growing use of
standard notations [22, 25], architecture-based development
methods [7, 11], and handbooks for architectural modeling
and design [4, 6]. And, as a significant indicator of engineer-
ing maturity, we are also seeing a growing body of research
on ways to formally analyze properties of architectures, such
as component compatibility [2], performance [9], reliability
[30], style conformance [26], and many others.

One of the important pillars of modern software architec-
ture is the use of architectural styles [1, 4, 6, 27]. An archi-
tectural style defines a family of related systems, typically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ROSATEA ’06, July 17, 2006, Portland, Maine, USA.
Copyright 2006 ACM ISBN 1-59593-459-6/06/07...$5.00

by providing a domain-specific architectural design vocab-
ulary together with constraints on how the parts must fit
together. Examples of common styles range from the very
generic (such as client-server or pipe-filter [27]) to the very
specific (such as MDS [24], J2EE [21]).

The use of styles as a vehicle for characterizing a family of
software architectures is motivated by a number of benefits.
Styles provide a common vocabulary for architects, allowing
developers to more easily understand a routine architectural
design. They form the backbone of product-line frameworks,
allowing the reuse of architectures across many products. By
constraining the design space, they provide opportunities for
specialized analysis. In many cases they can be linked to
an implementation framework that provides a reusable code
base, and, in some situations, code generators for significant
parts of the system.

Consequently more and more architectural styles are being
defined every day. In many cases styles will be elaborations
of existing styles. For example, a company might constrain
J2EE-based architectures to support a particular set of busi-
ness services. In other situations new styles may be combi-
nations of other styles. For example, one might combine
a closed-loop control architecture with a publish-subscribe
style to satisfy emerging needs for automotive software.

Defining a new style, however, is not an easy task. One must
take care that the component building blocks fit together in
appropriate ways, that each instance of the style satisfies
certain key properties, and that constraints on the use of
the style are neither too strong, nor too weak. Thus defin-
ing styles becomes an intellectual challenge in its own right.
Indeed, in many ways the need for careful design of archi-
tectural styles far exceeds the needs for individual systems,
since flaws in an architectural style can potentially impact
every system that is built using it.

Unfortunately, despite significant progress in formal analysis
of the architectures for individual systems, there is relatively
little to guide the style designer. Answering questions like
whether a style specifies a non-empty set of systems, whether
it can be combined consistently with another, or whether it
will retain the essential properties of some parent style, is
today largely a matter of trial and error. In fact, today style
designers typically cannot detect fundamental errors in a
style until someone actually tries to implement a particular
system in that style, when the cost of change is very high.

In Proc. Workshop on the Role of Software Architecture for Testing and Analysis 2006 (ROSATEA06), Portland, Maine, July 17, 2006.

To address this gap, ideally what we would like to have is a
way to formally express and verify properties of architectural
styles. Even better would be a set of standard sanity checks
that every style designer should consider. Better still, we
would hope that many of these checks could be carried out
automatically.

In this paper we describe a technique that does exactly that
with respect to structural aspects of architectural styles.
Specifically, we show how to map an architectural style, ex-
pressed formally in an architectural description language,
into a relational model that can be checked for various prop-
erties relevant to a style designer. We illustrate the approach
by showing how to analyze four crucial kinds of proper-
ties: whether a style is consistent, whether a style satisfies
some predicate over the architectural structure, whether two
styles are compatible for composition, and whether one style
refines another.

In Section 2 we describe related work. Section 3 discusses
architectural styles: what they are, how they can be char-
acterized formally, and what kinds of properties we would
like them to have. Section 4 provides an overview of Alloy
and the Alloy Analyzer, the target modeling language and
tool that we will be using to check properties of styles. Sec-
tion 5 then presents the translation schema, showing how
to map formal descriptions of architectural styles into Alloy,
and highlighting places where that translation is non-trivial.
Section 6 shows by example how to to use the Alloy Ana-
lyzer to check properties of an architectural style. Section 7
discusses the strengths and limitations of the approach, and
considers future work.

2. RELATED WORK
There are two broad areas of closely related work. The first
is formal representation and analysis of software architec-
ture. Since the inception of software architecture over a
decade ago, there have been a large number of researchers
interested in formal description of architectures. These ef-
forts have largely focused on the definition and use of archi-
tecture description languages (ADLs) [20]. Many of these
languages were explicitly defined to support formal analysis,
often using existing (non-architectural) formalisms for mod-
eling behavior. For example, a number of ADLs have used
process algebras [2, 19] to specify abstract behavior of an
architecture, and to check for properties like deadlock free-
dom of connector specifications. Others have used rewriting
rules [15], sequence diagrams [14], and many others.

This existing body of work on analysis of software archi-
tectures has primarily focused on the problem of analyz-
ing the properties of individual systems. That is, given an
architectual description of a particular system, the goal is
to formally evaluate some set of properties of that system.
Properties include things like consistency of interfaces [24],
performance [9, 29], and reliability [25]. While many of these
analyses assume that a system is described in a particular
style (such as one amenable to rate monotonic analysis), un-
like our work, the issue of evaluating the style itself is not
directly addressed.

There has been some research on ways to formally model
architectural styles and their properties. Early work on this

was carried out by Abowd et al. [1], who modeled styles us-
ing Z. In that approach one can specify general properties
of architectural styles, but the work lacked explicit guid-
ance on what properties should be evaluated, and it did
not provide any tool-assisted support for analysis. Other
work has investigated formal properties of particular styles,
such as EJB [28] or Pub-Sub [10], but these have not pro-
vided any general style-oriented analyses. Finally, the Acme
ADL was developed with the specific intent of providing a
way to formally define architectural styles, in general, and
to check conformance between the architecture of a system
and its purported styles [12]. As we describe later, our work
builds directly on that formalism, extending the possibilities
of analysis to the styles themselves.

The second area of related research is model-based design.
Independently of software architecture, there has been a lot
of research on using models to develop and gain confidence
in systems. Most of this work has been targeted at standard
general-purpose modeling notations, such as UML, Z, or B,
as opposed to domain-specific modeling languages such as
architectural styles. In this work we build on these general
specification languages using Alloy [16], one such general-
purpose modeling language, as the assembly language for
our own analyses.

Most closely related to our research is work on model-based
software engineering, such as work by Karsai et al. [17] on
GMS, that adopts an approach to meta-modeling in which
new modeling languages and analyses can be defined for a
particular domain. That work shares the general goals of our
approach: that it should be possible to provide customized
modeling notations and analyses to take advantage of them.
However, unlike the work on GMS, ours is focused specif-
ically on software architectural styles and their properties.
This makes our work less general, but at the same time al-
lows us to tailor our approach specifically to the needs of
the architectural style designer.

3. ARCHITECTURAL STYLE
Software architecture is concerned with the high-level struc-
ture and properties of a system [23, 27]. Over time there
has emerged a general consensus that modeling of complex
architectures is best done through a set of complementary
views [6]. Among the most important types of views are
those that represent the run-time structures of a system.
This type of view consists of a description of the system’s
components – its principle computational elements and data
stores – and its connectors – the pathways of interaction
and communication between the components. In addition,
an architecture of a system typically includes a set of prop-
erties of interest, representing things like expected latencies
on connectors, transaction rates of databases, etc.

While it is possible to model the architecture of a system
using generic concepts of components and connectors, it is
often beneficial to use a more specialized architectural mod-
eling vocabulary that targets a family of architectures for a
particular domain. We refer to these specialized modeling
languages as architectural styles.1

1Styles are sometimes also referred to as “families,” “pat-
terns,” or “frameworks.”

Architectural styles have a number of significant benefits.
First, styles promote design reuse, since the same architec-
ture design is used across a set of related systems. Sec-
ond, styles can lead to significant code reuse. For exam-
ple many styles (like those associated with J2EE or .Net)
provide prepackaged middleware to support connector im-
plementations. Similarly, Unix-based systems adopting a
pipe-filter style can take advantage of operating system ser-
vices to implement task scheduling, synchronization, and
communication through pipes. Third, it is easier for others
to understand a system’s organization if standard architec-
tural structures are used. For example, even without spe-
cific details, knowing that a system’s architecture is based
on “client-server” immediately conveys an understanding of
the kinds of pieces and how they fit together. Fourth, styles
support interoperability. Examples include CORBA object-
oriented architecture [8] and event-based tool integration
[3]. Fifth, by constraining the design space, an architec-
tural style often permits specialized analyses. For example,
it is possible to analyze systems built in a pipe-filter style for
schedulability, throughput, latency, and deadlock-freedom.
Such analyses might not be meaningful for an arbitrary, ad
hoc architecture – or even one constructed in a different
style.

Consequently, there are hundreds, if not thousands, of ar-
chitectural styles that are in use today (even if they are not
formally named or defined as such). Indeed, the recent in-
dustrial interest in product lines and frameworks invariably
results in the definition of new styles. Many of these styles
are specializations or combinations of existing styles. For
example, a company specializing in inventory management
might provide a specialization of J2EE that captures the
common structures in that product domain. Other styles
may be defined from scratch.

3.1 Formal Modeling of Architectures
Building on the large body of existing formal modeling tech-
niques for component-and-connector architectures, we model
an architecture using the following core concepts that appear
in most modern ADLs [20], as well as UML 2.0 [22].

• Components: Components represent the principal
computational elements and data stores of a system.
A component has a set of run-time interfaces, called
ports, which define the points of interaction between
that component and its environment.

• Connectors: Connectors identify the pathways of in-
teraction between components. Connectors may rep-
resent simple interactions, such as a single service invo-
cation between a client and server. Or they may repre-
sent complex protocols, such as the control of a robot
on Mars by a ground control station. A connector
defines a set of roles that identify the participants in
the interaction. For example, a pipe connector might
have a reader and a writer role; a publish-subscribe
connector might have multiple announcer and listener
roles.

• Configurations: An architectural configuration (or
simply architecture or system) is a graph that defines
how a set of components are connected to each other
via connectors. The graph is defined by associating
component ports with the connector roles in which

they participate. For example, ports of filter compo-
nents are associated with roles of the pipe connectors
through which they read and write streams of data.

• Properties: In addition to defining high-level struc-
ture, most architectures also associate properties with
their constituent elements2 of an architectural model.
For example, for an architecture whose components are
associated with periodic tasks, properties might define
the period, priority, and CPU usage of each compo-
nent. Properties of connectors might include latency,
throughput, reliability, protocol of interaction, etc.

To make such definitions precise, we need a formal language.
In this work we use the Acme ADL [13], although many
other ADLs could have been used as well. (See also Section
7.) Figure 1 illustrates the basic constructs of Acme for
defining configurations.3 The figure specifies a very simple
repository architecture consisting of a single database and
single client connected by a database access connector. Both
components have a single port, and the connector through
which they interact has two roles. The client has a single
property, its average number of transactions per second.

System simple_repository_system: Repository = {
Component client = {

Port request;
Property avg_trans_per_sec: int;

}
Component db = {

Port provide;
}
Connector db_access = {

Role user;
Role requester;

}
Attachments = {

client.request as db_access.user;
db.provide as db_access.provider;

}
}

Figure 1: Simple repository system

3.2 Formal Modeling of Architectural Styles
To define a style we need to add the following concepts:

• Design vocabulary: This can be specified as a set of
component and connector types that are allowed to be
used in defining a specific architecture in that style.
For example, a pipe-filter style would include a pipe
connector type and a filter type, a client-server style
would include clients and servers, etc.

• Constraints: A style may also include constraints
that describe the allowable configurations of elements
from its design vocabulary. For example, a pipeline
architecture might constrain the configurations to be
linear sequences of pipes and filters. A J2EE style
might restrict clients from interacting directly with the
underlying database. Formally constraints are predi-
cates over the set of all possible topologies allowed by

2The term “elements” refers generically to any kind of ar-
chitectural structure: component, connector, port, or role.
3In this paper we use only those aspects of Acme that are
necessary to illustrate the main points of style analysis. For
a more thorough description of the language see [13].

the design vocabulary, defining which of those config-
urations are permitted by the style. In this respect, a
style can be viewed as the “type” of a configuration.

Styles can be related to each other in various ways. One
relationship is specialization. A style can be a substyle of
another by strengthening the constraints, or by providing
more-specialized versions of some of the element types. For
instance, a pipeline style might specialize the pipe-filter style
by prohibiting non-linear structures and by specializing a
filter element type to a pipeline “stage” that has a single in-
put and output port. An N-tiered client-server style might
specialize the more general client-server by restricting inter-
actions between non-adjacent tiers.

A second important relationship is conjunction. One can
combine two styles by taking the union of their design vo-
cabularies, and conjoining their constraints. For example,
one might add a database component to a pipe-filter sys-
tem by conjoining a pipe-filter style with a database style.
In such cases it may be necessary to also define new types
of components or connectors that pertain to more than one
style, such as a component type that has filter-like behavior,
but that can also access a database.

To specify styles formally, we again use Acme. In Acme a
style is defined as a set of architectural element types to-
gether with a set of constraints specified in first-order pred-
icate logic, augmented with some helper functions to ease
the definition of architecturally-relevant predicates. Types
may be subtypes of other types, with the interpretation that
a subtype satisfies all of the structural properties of its su-
pertype(s) and that it respects all of the constraints of those
types. For instance, a UnixFilter component type may be
declared to be a subtype of Filter. In Acme a new element
type can be a subtype of several types, meaning that in-
stances of the new type must satisfy the constraints of all
supertypes.

In addition, Acme allows one to define a substyle by spe-
cializing one or more existing styles. As with element types
the substyle must respect the invariants of the superstyle.
When more than one style is used as a supertype, the new
style must be a substyle of the conjunction of the parent
styles.

Figure 2 illustrates the definition of a very simple reposi-
tory style in Acme. The RepositoryStyle style includes
definitions of various types of interfaces: provide and use

port types for components, and provider and user roles
for connectors. The database component type and the
access connector provide the component and connector de-
sign vocabulary.

In the example the port and role types specify constraints
(termed “invariants”) that constrain attachments between
ports and roles. Specifically, constraints on ports specify
that a provide port must be attached to a provider role,
and that a use port must be attached to a user role.
The constraints on the roles specify that each role must be
attached to some port. The style also includes constraints
on configurations dictating that at least one database and
one access connector must exist in any system in this style.

Style RepositoryStyle = {
Port Type Provide = {

invariant Forall r:role in self.attachedRoles |
declaresType(r, Provider);

}
Port Type Use = {

invariant Forall r:role in self.attachedRoles |
declaresType(r, User);

}
Role Type Provider = {

invariant size(self.attachedPorts) == 1;
invariant Forall p: port in self.attachedPorts |

declaresType(p, Provide);
}
Role Type User = {

invariant size(self.attachedPorts) == 1;
invariant Forall p: port in self.attachedPorts |

declaresType(p, Use);
}
Component Type Database = {

Port provide: Provide = new Provide;
}
Connector Type Access = {

Role provider: Provider = new Provider;
Role user: User = new User;

}
invariant

Exists c: component in self.components |
declaresType(c, Database);

invariant
Exists n: connector in self.connectors |

declaresType(n, Access);
}

Figure 2: Repository style described in Acme

To simplify invariant specifications Acme also provides a
number of built-in functions. Here attachedPorts and
attachedRoles return the ports or roles (resp.) attached
to a role or port (resp.), while declaresType(e,T) returns
true if an element e is declared to have type T.

Although the example used in this paper are relatively sim-
ple, in practice styles may be quite complex. They may
define a rich vocabulary of elements, and the rules for con-
figuration may be complicated. For example, the Mission
Data System (MDS) defined by NASA JPL as a style for
space systems [24] includes eight component types (actua-
tors, sensors, etc.), eight connector types, and over sixty
rules constraining configurations. Figure 3 shows one such
rule: it specifies that it is possible to connect only one con-
troller to any of an actuator’s ports.

(forall compA: ActuatorT in sys.Components |
numberOfPorts(compA,CommandSubmitProvPortT) > 1

-> (exists unique compC: ControllerT
in sys.components |connected(compA, compC)))

Figure 3: Example constraint for the MDS style

Definition of architectural styles such as MDS is a chal-
lenging intellectual effort. The style designer must worry
about providing an expressive and appropriate vocabulary,
as well as making sure that the style contains appropriate
constraints. (If the constraints are too strong, it will rule
out systems that should be included; if too weak, it will
allow configurations that should not be permitted.)

4. ALLOY
Alloy is a modeling language based on first-order relational
logic [16]. An Alloy model consists of signature definitions
and constraint definitions. Signatures define the basic types
of elements and relations between them to be used in a
model, and constraints restrict the instance space of the
model. Consider the following example:

module publication
sig Person {}
sig Book {author: Person}
sig Autobiography extends Book {}
fact {
all disj b1,b2:Autobiography | b1.author!=b2.author
}

Three Alloy signatures are defined: Person, Book, and
Autobiography. The author relation is defined over Book

and Person. The Autobiography type is defined using
signature extension as a subtype of the Book type.

An Alloy fact is a boolean expression that any instance of a
model must satisfy. A fact might be local to a signature or
global to the whole model. The fact in the above example
prescribes that a person can’t be the author of two distinct
autobiographies.

The semantics of Alloy’s subtyping is that of subsets. Ad-
ditionally, subtypes partition the elements of the supertype:
no two immediate subtypes of a type can share any element.
There are two built-in types in Alloy: univ and none. The
univ type is the supertype of all types, while none is the
subtype of all types (and includes no elements).

Models written in Alloy can be analyzed by the Alloy Ana-
lyzer. Depending on the type of model, the Alloy Analyzer
can be used as either a prover that finds a solution which
satisfies the constraints in a given model, or a refuter that
finds a counterexample that violates the assertions in a given
model.

Since the Alloy Analyzer is a bounded checker, it guarantees
the correctness of the result only within a specified finite
bound of numbers of elements. To illustrate, the follow-
ing module contains a predicate and a command to analyze
whether the publication module (defined earlier) satisfies
that predicate:

module analysis
open publication
pred good_world() {

all p: Person | some b: Book | b.author = p
}
run good_world for 5

When executed, the Alloy Analyzer checks the predicate
that it is possible for everyone to write at least one book.
The command, run good world for 5, directs the analysis
to be performed within the bound of at most five instances
for each of the top-level types (Person and Book in this
example).

5. REPRESENTING STYLES IN ALLOY
We now describe how we can use Alloy to analyze proper-
ties of architectural styles. Our approach will be to provide
a set of translation rules from Acme style specifications to

Alloy models. After applying the rules we can then analyze
various style-related properties, finally mapping counterex-
amples back to the Acme source.

There are three important representational requirements for
any translation scheme from an architecture style specifica-
tion language (like Acme) into a more general modeling lan-
guage (like Alloy). First, one must be able to represent the
four basic architectural element types that a style defines:
component, connector, port, and role types.

Second, one must be able to represent relations between
types. These fall into two sub-categories. One is contain-
ment relationships: components contain their ports, con-
nectors contain their roles, and systems contain instances of
components, connectors and attachments. The other type
relationship is subtyping, which in Acme can involve multi-
ple supertypes.

Third, one must be able to represent constraints over el-
ements and configurations. These constraints include the
invariants declared by the style. In addition they include
implicit constraints, such as the facts that ports can can-
not be directly connected to other ports, and that ports and
roles cannot exist in isolation (i.e., independent of a parent
component or connector, resp.).

We now present our translation scheme for each of these,
illustrating the ideas with the repository style.4

We start by defining a mapping of the generic element types
as a common definition module cnc view. These definitions
are independent of any particular style, which will allow the
use of these definitions by inclusion as building blocks in
any specific style definition. This shared module will also
contain all of the implicit constraints on architectures that
every architectural model must satisfy.

module cnc_view
sig Element {Parent: lone Element,

Attached: set Element}
sig Component extends Element {ports: set Port}
sig Connector extends Element {roles: set Role}
sig Port extends Element {component: Component}
sig Role extends Element {connector: Connector,

attachment: lone Port}
fact {~ports = component && ~roles = connector}
fact {Parent = component + connector}
fact {Attached = attachment + roles.attachment.component}

In the Alloy model Element is the supertype of all basic
architectural types. It has a placeholder for a set of at-
tachments. It also keeps track of a unique parent element,
through the relation Parent. The other basic types pro-
vide the obvious extensions and relations. The Alloy “facts”
guarantee that ports/roles have unique components/connectors
as parents.

With these definitions in hand we then define the built-in
functions that are used to define Acme invariant expressions.

4In fact, there are many possible ways of encoding styles in
Alloy. Because of space limitations, we present only the final
version of our translation. For a discussion of alternatives,
the reasons for choosing this particular scheme, and a formal
definition of the translation as a set of rewrite rules, see [18].

These are also contained in the common cnc view definition
module.

fun parent(e: Element): Element { e.Parent }
pred attached(e1: Element, e2: Element)

{ e1 -> e2 in Attached }
pred declaresType(element: Element,type: set Element)
{ element in type }
...other built-in functions...

Subtype relationships for element types can be translated di-
rectly into subtypes in Alloy. However, since Alloy supports
only single inheritance, we are not able to use this scheme
to translate Acme element type definitions where multiple
inheritance is used.5

Using subtyping the translation of any style-specific port or
role type becomes be a subtype of the built-in type (Port

or Role respectively), either as an immediate subtype or a
subtype of another port or role type. Similarly component
and connector types become subclasses of the built-in type
Component or Connector, respectively. Finally, constraints
are translated as corresponding Alloy facts using the built-in
functions defined in cnc view, as illustrated earlier.

To see how this works consider RepositoryStyle, shown
above. After translation of the declared types, we get:

module repositorystyle
open cnc_view
// translation of type definitions
sig Use extends Port {}
sig Provide extends Port {}
sig User extends Role {}
sig Provider extends Role {}
sig Database extends Component{provide:Provide}
sig Access extends Connector

{provider:Provider, user:User}
// translation of constraints
...

The constraint definitions are relatively straightforward to
translate. For convenience of reference we separate these
into local constraints on individual element types and global
constraints that apply to the configuration as a whole.

pred database_constraints_local() {
all self:Use | all r: self.~attachment |

declaresType(r, User)
all self:Provide | all r: self.~attachment |

declaresType(r, Provider)
all self:User | all p: self.attachment |

declaresType(p, Use)
all self:Provider | all p: self.attachment |

declaresType(p, Provide)
}

pred database_constraints_global() {
all r:User | #attachedPorts(r) = 1
all r:Provider | #attachedPorts(r) = 1

some c:Component | declaresType(c, DataBase)
some n:Connector | declaresType(n, Access)

}

pred database_constraints_local() {
database_constraints_local()
database_constraints_global()

}

5As we will see, however, we are able to support style defi-
nitions where multiple inheritance of styles occurs.

Using this general strategy the translation scheme is rela-
tively straightforward. Our current implementation carries
out the translation automatically, using standard parsing
and unparsing tools.

There are however, certain features in Acme which cannot
be handled in Alloy using the translation scheme just out-
lined. These include: use of multiple inheritance for indi-
vidual type definitions (as noted earlier), certain arithmetic
expressions (including those that involve multiplication or
negative numbers), and higher-order expressions and signa-
tures (e.g., sequences of sets).

6. ANALYZING STYLES
We now show how translated architectural styles can be
effectively analyzed using the Alloy Analyzer. Supported
analyses include checking consistency of a style, checking
for satisfaction of properties of a style, checking equivalence
between global and local constraints, checking style compat-
ibility, and checking whether one style refines another.

The Alloy Analyzer works by looking for an instance of a
specified model within a scope that indicates the maximum
number of elements for each top-level signature. In the case
of architectural styles, the scope indicates the number of
architectural elements of each type.

The strategy for analyzing translated architectural styles is
to produce an analysis module that imports all the trans-
lated styles and that checks either a predicate or an as-
sertion, depending on the type of analysis to perform (see
below). The interpretation of the result will vary depending
on the kind of analysis performed.

module analysis
open styles_to_analyze
...
run predicate_to_check for N
// or
check assertion_to_check for N

6.1 Checking the Consistency of a Style
A style is consistent if there exists at least one architectural
configuration that conforms to the style (i.e., satisfies the
style’s structure and invariants). Consistency checking is
important to make sure that a style’s definition is internally
consistent.

Although consistency errors can arise in a single style defini-
tion, more typically they occur when combining other styles,
since the other styles may have been written by different
people with conflicting assumptions.

Style consistency can be checked by using the Alloy Analyzer
to generate a solution to the Alloy model of the style: if a
model is found, the style is consistent.

Consider the previous example of the repository style. Sup-
pose that the first two universal quantifications in the con-
straints had been mistakenly written as shown below (User
and Provider are erroneously interchanged).

pred database_constraints() {
all p:Use | all r:attachedRoles(p) |

declaresType(r, Provider)

all p:Provide | all r:attachedRoles(p) |
declaresType(r, User)

all r:User | all p:attachedPorts(r) |
declaresType(p, Use)

all r:Provider | all p:attachedPorts(r) |
declaresType(p, Provide)

all r:User | #attachedPorts(r) = 1
all r:Provider | #attachedPorts(r) = 1

some c:Component | declaresType(c, DataBase)
some n:Connector | declaresType(n, Access)

}

The following is the Alloy analysis module that we use to
check the consistency of the repository style.

module analysis
open repositorystyle
run database_constraints for 10

When the command is executed, the Alloy Analyzer reports
that no instance can be found within the specified scope
number. Therefore the repository style with the mistak-
enly written constraints above is inconsistent (for the size of
model specified).

At this point we may not be sure whether the failure to find
a model is the fact that bound for the analysis (here 10)
is too small, or whether there is indeed a consistency. In
practice, however, we find that if models can be found at
all, they can be found with relatively small models.

6.2 Checking Properties of a Style
Frequently it is useful to check whether the systems that
conform to a style also satisfy certain additional derived
properties. This allows us to investigate whether the con-
straints of a style imply other desired properties.

Such a property of a style can be checked using assertion
and implication. Specifically, if a property P of a style is
valid for the constraints Q, the logical expression Q => P
should be true of every instance of the style.

Consider the example of the repository style. Let us define
a property of the repository style that every instance of the
style must have a component that has a Use port. The
following is the analysis module to check this property of
the repository style.

module analysis open repositorystyle
assert database_property_check {

database_constraints() =>
some c: Component | some p: c.ports |

declaresType(p, Use)
}
check database_property_check for 10

When the command is executed, the Alloy Analyzer reports
there is no counterexample that violates the assertion within
the specified scope number. This follows from the fact there
must be a connector of Access type that has a role of type
User, and it must be attached to a port of type Use that
belongs to a certain component. Therefore, the property of
the repository style that there must be a component that
has a Use port is valid.

6.3 Global and Local Constraint Equivalence
There are often several ways in which one can add con-
straints to a style. One is to do it at a global level. For
example, Figure 3 illustrated a global constraint (or univer-
sally quantified predicate) for the MDS style that expresses a
property about attachments to ports of actuators. Another
alternative would have beeen to include local constraints
associated directly with the ports and roles to achieve an
equivalent effect.

In general, a global constraint is easier to understand and
specify. However, local constraints are more efficient to eval-
uate incrementally by tools, and may provide better error
reporting when they are violated. As a consequence, it is
often useful to specify constraints locally, and then check
that they collectively imply some global constraint.

The equivalence of local and global constraints can be checked
using bi-implication and assertion. If a conjunction of local
constraints L of a style is equivalent to a global constraint
G, the boolean expression L <=> G must be true for every
instance of the style.

Again, consider the example of the repository style. The
first four universal quantifications in the constraints are local
constraints associated with types of ports and roles. Let
us assume there are alternative global constraint as shown
below. The following is the analysis module to check the
equivalence between them.

module analysis
open repositorystyle
pred database_constraints_global() {

all p: Port | all r: Role | attached(r,p) =>
(declaresType(p, Use) <=>

declaresType(r, User)) &&
(declaresType(p, Provide) <=>

declaresType(r, Provider))

some DataBase
some Access

}
assert equivalence_check {

database_constraints() <=>
database_constraints_global()

}
check equivalence_check for 10

When the command is executed, the Alloy Analyzer reports
that there is a counterexample that violates the assertion.
This means that the local and the global constraints of
the repository style are not equivalent. Closer inspection
of the counterexample (not shown here) reveals that the
global constraints permit a system to have unattached roles
of User type or Provider, while this is prohibited in case of
the local constraints. After adding the boolean expressions
below to the body of the global constraints and executing
the command again, the Alloy Analyzer reports that there
is no counterexample within the specified scope, indicating
that the local and the new global constraints of the reposi-
tory style are equivalent.

all p: Port | all r: Role |
(declaresType(r, User) =>

#attachedPorts(r) > 0) &&
(declaresType(r, Provider) =>

#attachedPorts(r) > 0)

6.4 Compatibility of Styles
Often real world systems employ multiple styles to describe
a single system. Different styles can be used in various ways.
One is to use different styles at different levels of architec-
tural hierarchy, so that the “internal architecture” of a com-
ponent is defined in a different style than its surroundings.
In that case the encapsulation boundary of a component can
insulate one style from another. However, in other cases, it
is desirable to mix several styles at the same level of abstrac-
tion. In that case we might like to check that the styles can
be consistently mixed together – i.e., that their constraints
do not conflict.

Compatibility of a set of styles can be checked by evaluating
the consistency of a new style that merges those styles. That
is, a new merged style is written by importing all the styles
and then checking consistency as before. The constraints
of the merged style are the conjunction of the constraints
of included styles. If the merged style is consistent, the
imported styles are compatible.

Consider the previous example of the repository style and
a new pipe-and-filter style shown below. We will check
whether these two styles are compatible.

module pipe_and_filter
open cnc_view
sig Input extends Port {}
sig Output extends Port {}
sig Source extends Role {}
sig Sink extends Role {}

sig DataSource extends Component{output: Output}
sig DataSink extends Component{input: Input}
sig Filter extends Component{input: Input,

output: Output}
sig Pipe extends Connector

{source: Source, sink: Sink}

fact {
(Filter<:input + Filter<:output +
DataSource<:output + DataSink<:input) in ports
(Pipe<:source + Pipe<:sink) in roles

}

pred pipe_and_filter_constraints() {
all p:Input | all r:attachedRoles(p) |

declaresType(r, Sink)
all p:Output | all r:attachedRoles(p) |

declaresType(r, Source)

all r:Source | one p:Output | attached(r, p)
all r:Sink | one p:Input | attached(r, p)

some Filter
some Pipe

all c:Filter | all p:c.ports |
declaresType(p, Input) || declaresType(p, Output)

all n:Pipe | all r:n.roles |
declaresType(r, Source) || declaresType(r, Sink)

}

The following is the analysis module to check if the reposi-
tory style and the pipe-and-filter style are compatible.

module analysis
open respositorystyle
open pipe_and_filter
pred compatibility_check() {

database_constraints() &&
pipe_and_filter_constraints()

}
run compatibility_check for 10

When executed the Alloy Analyzer reports that there is a
solution, indicating that the repository style and the pipe-
and-filter style are compatible, and that it is safe to use both
of them when defining a system.

6.5 Checking Overlapping Styles
A more interesting and practical use of multiple styles in a
system is to create architectural elements that have multiple
types, each type taken from a different style. Such architec-
tural elements form an overlapping zone of styles, and they
must satisfy the constraints from multiple styles. It is de-
sirable to know in advance if such an overlapping zone of
multiple styles can exist.

To check if styles can overlap in this way, in addition to
what was done to check if styles are compatible, it is nec-
essary to define new types for the architectural elements in
the overlapping zone and include a boolean expression that
states the existence of instances of the new types and all
the constraints from the imported styles. Then checking
the consistency of the modified merged style is sufficient to
check if the styles can overlap.

Building on the previous example of checking the compat-
ibility of the repository style and the pipe-and-filter style,
let us assume we want to have a new element that can act
both as a filter and also can access the database. We need to
check if such a filter can exist. The following is the analysis
module to check this.

module analysis
open cnc_view open repositorystyle open
pipe_and_filter

sig UserFilter extends Filter {use: Use}
fact{ UserFilter<:use in ports }

pred overlapping_check() {
some UserFilter
database_constraints() &&

pipe_and_filter_constraints()
}
run overlapping_check for 10

Note that the new filter type UserFilter has an extra port
of Use type. Since Alloy does not allow multiple inheritance,
we use the technique of adding new interfaces to exiting
types, similar to the way the Java programming language
deals with multiple inheritance. That is why we do not
have a user component type in the repository style. Here
new interfaces are represented by new ports.

When the command is executed, the Alloy Analyzer reports
that there is no solution within the specified scope, indicat-
ing that it is not possible to instantiate the new UserFilter

type. Closer inspection of the constraints of the pipe-and-
filter style reveals that a filter can only have ports of Input

type or Output type, which prevents a filter from having
an extra port of Use type. Since the filter port constraint
is stronger than is needed, we decide to remove that con-
straint from the pipe-and-filter style. Executing the com-

mand again, Alloy Analyzer reports there is a solution, in-
dicating that we can use the repository style and the pipe-
and-filter style with the revised UserFilter type.

6.6 Checking Style Refinement
A style Sr is a refinement of a style Sa if all instances of Sr

also satisfy the constraints of the Sa. When a style is directly
declared to be a substyle of another style, it is sufficient
to check the consistency of the substyle to guarantee the
refinement relation because all the constraints of superstyle
also apply to the substyle automatically.

However in some situations there may be no explicitly de-
clared substyle relation. Consider the previous pipe-and-
filter style and a new Unix-pipe style. We will check whether
these two styles are compatible.

module unix_pipe
open cnc_view

sig StdIn extends Port {}
sig StdOut extends Port {}
sig StdErr extends Port {}
sig ErrIn extends Port {}

sig Source extends Role {}
sig Sink extends Role {}

sig Filter extends Component {si: StdIn,
so: StdOut, se: StdErr}

sig CharInput extends Component {so: StdOut}
sig CharOutput extends Component {si: StdIn}
sig ErrOutput extends Component {ei: ErrIn}

sig Pipe extends Connector {source: Source,
sink: Sink}

fact {
(Filter<:si + Filter<:so + Filter<:se +
CharInput<:so + CharOutput<:si + ErrOutput<:ei)

in ports
(Pipe<:source + Pipe<:sink) in roles

}

pred unix_pipe_constraints() {
all p:StdIn | some n:Pipe | attached(n.sink, p)
all p:StdOut | some n:Pipe | attached(n.source,p)
all p:StdErr | all r:attachedRoles(p) |

declaresType(r, Source)
all p:ErrIn | all r:attachedRoles(p) |

declaresType(r, Sink)

all r:Source | some p:attachedPorts(r) |
declaresType(p, StdOut) || declaresType(p,StdErr)

all r:Sink | some p:attachedPorts(r) |
declaresType(p, StdIn) || declaresType(p,ErrIn)

some Filter && some Pipe && lone ErrOutput

all n:Pipe | declaresType(
attachedPorts(n.source), StdErr)

=>
(some c:CharOutput | attached_nc(n,c)) ||
(some c:ErrOutput | attached_nc(n,c))

}

The following is the analysis module to check if the Unix-
pipe style is a refinement of the pipe-and-filter style.

module analysis
open pipe_and_filter

open unix_pipe
pred modified_constraints() {

all p:(StdIn+ErrIn) | all r:attachedRoles(p) |
declaresType(r, Sink)

all p:(StdOut+StdErr) | all r:attachedRoles(p) |
declaresType(r, Source)

all r:Source | one p:(StdOut+StdErr) |attached(r,p)
all r:Sink | one p:(StdIn+ErrIn) |attached(r,p)

some Filter
some Pipe

}
assert refinement_check {

unix_pipe_constraints() => modified_constraints()
}
check refinement_check for 10

The result is that it is indeed valid refinement for models
within the specified scope.

7. CONCLUSION AND FUTURE WORK
As we have tried to illustrate, the use of a model gener-
ator, such as the Alloy Analyzer, can provide substantial
benefits to the architectural style designer by providing a
way to check critical properties of styles. These proper-
ties include style consistency, implied properties, refinement,
equivalence of global and local constraints, and checking for
compatibility between styles.

Since specification languages such as Acme have the expres-
sive power of first-order predicate logic, such properties are
in general undecidable and typically require mathematical
proof. This makes it unlikely that in practice style design-
ers will actually be able to check these properties by hand.
Hence, having a semi-automated tool to assist in this effort
represents a major advance.

However the approach has some limitations. First, since the
model generator can only work over finite models, for many
systems one can only approximate a solution. That is, if the
tool says there is no problem within a given model size, it
may be that this holds for all models, or only for those of
that finite size. Experience has shown, however, that if a
specification has a flaw, it can usually be demonstrated by
relatively small counterexample.

A second potential limitation is the degree of automation.
In general, a tool like the Alloy Analyzer requires the specifi-
cation of both a model and a property to check against it. In
our approach the model comes for free: once you have spec-
ified an architectural style, our tool automatically generates
the Alloy model. However, our current implementation re-
quires one to specify the properties that Alloy must check.
In some cases this is trivial, such as checking for style consis-
tency, but in others (such as checking whether a style implies
some property or whether global and local constraints are
equivalent) the style designer must specify the property to
check in Alloy. In future work we hope to provide a set of
automated properties specified in the Acme source language,
and have the tool also automate their translation.

A third issue is the need to relate counterexamples back
to the source specification. At present this requires some
detailed knowledge of the details of the Alloy Analyzer and

some knowledge of the conventions used by our translator.
We believe that automating the reverse translation should
not be difficult, and plan to do that in future work. A more
tricky issue is understanding what flaw in the design caused
the counterexample to be generated in the first place. This
problem is common to any model checking approach, and is
an area of active research [5].

A fourth area is that of performance. While today’s SAT
solver-based model checkers (like Alloy) can handle a large
number of variables, they are still limited in the size of the
model that can be checked. Our own experience with Alloy
is that when the model bound approaches 20 top-level archi-
tectural elements, or when the model contains a large num-
ber of component and connector types, it may take some
time to check a property, if it is indeed tractable at all.
Thankfully, most of the flaws we find in practice require
relatively simple models to generate.

A final limitation of our current tool is the fact that it only
deals with structural properties of architectural styles. It
does not handle, for example, architectural behavior, dy-
namic changes to architectural models, and expressions over
Acme properties and other quality attributes. However,
those extensions are not intrinsic limitations, and we believe
the current structural analysis techniques can be naturally
extended to include other kinds of analyses. This remains an
active area for future work by us and other research groups.

Acknowledgements
This research was sponsored by the US Army Research Of-
fice (ARO) under grants DAAD19-01-1-0485 and DAAD19-
02-1-0389, and by the National Science Foundation under
Grant No. CCR-0113810. The views and conclusions con-
tained in this document are those of the author and should
not be interpreted as representing the official policies, either
expressed or implied, of the ARO, the U.S. government or
any other entity. We would like to thank the members of
the ABLE research group at CMU for their comments on
this work.

8. REFERENCES
[1] G. Abowd, R. Allen, and D. Garlan. Formalizing style

to understand descriptions of software architecture.
ACM Transactions on Software Engineering and
Methodology, October 1995.

[2] R. Allen and D. Garlan. A formal basis for
architectural connection. ACM Transactions on
Software Engineering and Methodology, July 1997.

[3] D. J. Barrett, L. A. Clarke, P. L. Tarr, and A. E.
Wise. A framework for event-based software
integration. ACM Trans. on Software Engineering and
Methodology, 5(4):378–421, October 1996.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern Oriented Software
Architecture: A System of Patterns. John Wiley &
Sons, 1996.

[5] S. Chaki, A. Groce, and O. Strichman. Explaining
abstract counterexamples. In Foundations of Software
Engineering (SIGSOFT FSE), pages 73–82. ACM
SIGSOFT, October 2004.

[6] P. Clements, F. Bachmann, L. Bass, D. GArlan,
J. Ivers, R. Little, R. Nord, and J. Stafford.
Documenting Software Architectures: Views and
Beyond. Addison Wesley, 2002.

[7] P. Clements, R. Kazman, and M. Klein. Evaluating
Software Architectures: Methods and Case Studies.
Addison Wesley Longman, 2001.

[8] The Common Object Request Broker: Architecture
and specification. OMG Document Number 91.12.1,
December 1991. Revision 1.1 (Draft 10).

[9] A. DiMarco and P. Inverardi. Compositional
generation of software architecture performance qn
models. In 4th Working IEEE/IFIP Conf. on Software
Architecture (WICSA04), Oslo, Norway, June 2004.

[10] J. Dingel, D. Garlan, S. Jha, and D. Notkin. Towards
a formal treatment of implicit invocation. Formal
Aspects of Computing, 10:193–213, 1998.

[11] D. Dvorak and K. Reinholtz. Separating essential from
incidentals, an execution architecture for real-time
control systems. In Proc. 7th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, Austria, 2004.

[12] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
style in architectural design environments. In Proc. of
SIGSOFT’94: The 2nd ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages
179–185. ACM Press, December 1994.

[13] D. Garlan, R. T. Monroe, and D. Wile. Acme: An
architecture description interchange language. In
Proceedings of CASCON’97, pages 169–183, Ontario,
Canada, November 1997.

[14] P. Inverardi and M. Tivoli. Deadlock-free software
architectures for com/dcom applications. Elsevier
Journal of Systems and Software, 65(3):173–183, 2003.

[15] P. Inverardi and A. Wolf. Formal specification and
analysis of software architectures using the chemical,
abstract machine model. IEEE Transactions on
Software Engineering, Special Issue on Software
Architecture, 21(4):373–386, April 1995.

[16] D. Jackson. Alloy: A lightweight object modelling
notation. ACM Transactions on Software Engineerng
and Methodology, 2002.

[17] G. Karsai and J. Sztipanovits. A model-based
approach to self-adaptive software. IEEE Intelligent
Systems, 14(3):46–53, May 1999.

[18] J. S. Kim and D. Garlan. Automating the analysis of
architectural styles. Technical Report
CMU-ISRI-06-106, Carnegie Mellon University, 2006.

[19] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. John Wiley and Sons, 1999.

[20] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture
description languages. IEEE Transactions on Software
Engineering, 26(1):70–93, January 2000.

[21] S. Microsystems. J2ee information site. URL:
http://java.sun.com/javaee/.

[22] OMG. Unified modeling language. URL:
http://www.uml.info/.

[23] D. E. Perry and A. L. Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4):40–52, October 1992.

[24] R. Roshandel, B. Schmerl, N. Medvidovic, D. Garlan,
and D. Zhang. Understanding tradeoffs among
different architectural modelling approaches. In Proc.
of the 4th Working IEEE/IFIP Conf. on Software
Architectures, Oslo, Norway, June 2004.

[25] SAE. Sae aadl information site. URL:
http://www.aadl.info/.

[26] B. Schmerl and D. Garlan. Acmestudio: Supporting
style-centered architecture development. In Proc. of
the 26th International Conference on Software
Engineering (ICSE), 2004.

[27] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[28] J. P. Sousa and D. Garlan. Formal modeling of the
Enterprise JavaBeans component integration
framework. In Proc. of FM’99 – Formal Methods:
World Congress on Formal Methods in the
Development of Computing Systems, number 1709,
pages 1281–1300, Toulouse, France, November 1999.
Springer Verlag, LNCS.

[29] B. Spitznagel and D. Garlan. Architecture-based
performance analysis. In 10th International Conf. on
Software Engineering and Knowledge Engineering
(SEKE’98), San Francisco, CA, June 1998.

[30] B. Tekinerdogan and H. Szer. Software architecture
reliability analysis using failure scenarios. In 5th
Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), pages 203–204, 2005.

