Software Analysis and Testing

Métodos Formais em Engenharia de Software

November 2007 Arent Janszoon Ernststraat 595-H
Joost Visser NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

< L J
Structure of the lectures -d

Last week 471150

* Introduction SIG
» General overview of software analysis and testing
 Testing

e Patterns

Today
 Quality & metrics

» Reverse engineering

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Structure of the lectures

Analysis

Static
Analysis

metrics [patterns @ models

A
=)

481150

Dynamic
Analysis

testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

METRICS & QUALITY

$ia

491150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software analysis < :
What? -

501150

uality

performance
defects
adaptabilit
prabiilty , reliability
complexity
Size usability
correctness
security

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

The bermuda triangle of software quality < :
-
COBIT Security 511150
s SAST0 5y
BS7799

Process TickIT

(organizational)

1ISO9001:2000

ISO 20000
T Prince2
Six Sigma DSDM
People Project
J(?B%)E (individraal) (indiv{dual) PMI
Thap Siebel T
ISTQB (I,\\,,/i!:g;ﬁ) (Oracle) (IBM)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Quality (:
Process -

Capability Maturity Model® Integration (CMMI®) 521150

« “... Is a process improvement approach that provides organizations with the
essential elements of effective processes..” (SEIl)

» CMMI for Development (CMMI-DEV), Version 1.2, August 2006.
* consists of 22 process areas with capability or maturity levels.

e CMMI was created and is maintained by a team consisting of members from
industry, government, and the Software Engineering Institute (SEI)

e http://www.sei.cmu.edu/cmmi

The Standard CMMI Appraisal Method
for Process Improvement (SCAMPI)

/ .
« “... is the official SEI method to provide CMM’F

benchmark-quality ratings relative to CMMI models.”

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software Quality c :
Process -

r H

%%— Software Engineering Institute ‘ Carnegie Mellon

o

- Organization Name: Accenture

: Appraisal Sponsor Name: Jack Ramsay, Marco Spaziani Testa, Maria Angeles Ramirez

'c Lead Appraiser Name: John Voss

- SEl Partner Name: Accenture LLP

=

(7]

m — Model Scope and Appraisal Ratings

.m Level 2 Level 3 Level 4 Level 5
g [Satisfied | REQM [Satisfied | RD Outof Scope | OPP Outof Scope | OID
— [Satisfied | PP [Satisfied TS Outof Scope | QPM Outof Scope | CAR
h [Satisfied | PMC [satisfied Pl

3 Not Applicable | SAM | Satisfied | VER

c | Satisfied MA [Satisfied | VAL

. | Gatisfied | PPQA [Satisfied | OPF

® [SaRed T cM ESHEEI OFD

g— " Setsfed OT

~ | Satisfied IPM
© [Satisfied | RSKM

2 [Satisfied | DAR

(7L

=~ Organizational Unit Maturity Level Rating: 3

Additional Information for Appraisals Resulting in Capability or Maturity Level 4 or 5 Ratings:

Software Quality
Process

Levels
e L1: Initial
L2: Managed
L3: Defined
L4: Quantitatively Managed
L5: Optimizing

http://www.cmmi.de
(browser)

Process Areas

JIr

541150
Causal Analysis and Resolution
Configuration Management
Decision Analysis and Resolution
Integrated Project Management
Measurement and Analysis
Organizational Innovation and Deployment
Organizational Process Definition
Organizational Process Focus
Organizational Process Performance
Organizational Training
Product Integration
Project Monitoring and Control
CMMI Project Planning
Process and Product Quality Assurance
Quantitative Project Management
. g »
Requirements Development
Requirements Management MM’
Risk Management i)
Supplier Agreement Management
Technical Solution
Validation
Verification

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

The bermuda triangle of software quality

$ia

COBIT Security 55 1 150
CMMI
(Scampi) SAS7 :28;%8?
BS7799
Process :
(organizational) TICkIT
1ISO9001:2000
ISO 20000
. ITIL Prince2
Six Sigma ISO 9126 DSDM
ISO 14598 .
JoEg| People Project
(IBM) (individual) (individual) PMI
Map .
Siebel RUP
STEB (Il\\A/i!:gscl,:f:) (Oracle) (IBM)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

But ... S :

56 1150

What is software quality?
What are the technical and functional aspects of quality?

How can technical and functional quality be measured?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Software product quality standards <
|

=l

ISO/IEC 9126 57 1150

Software engineering -- Product quality
1. Quality model

2. External metrics gl International
3. Internal metrics ISO Organization for
4. Quality in use metrics Dol Standardization

ISO/IEC 14598

Information technology -- Software product evaluation
1. General overview

Planning and management

Process for developers

Process for acquirers

Process for evaluators

Documentation of evaluation modules

L

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

ISO/IEC 9126, Part 1 Q
Quality perspectives =

=l

58 1 150
phase metrics

internal quality build 9126, Part 3
software
product

external quality test 9126, Part 2

’fa—__\ ~-_”———~~
effect of

software quality in use deploy 9126, Part 4
product

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

ISO/IEC 9126, Part 1
Product quality model: internal and external

$ia

591150
Internal/External Quality
functionalit - . ortabilit
y reliability . T, efficiency P y
| usability maintainability |
suitability : _t' | | p— 'h : adaptability
maturi ime behavior i 0
acouracy _ ! understandability analysability mstall.ablllty
interoperability| | fault-tolerance | bili h bili co-existence
security recoverability earnability changeability resource replaceability
operability stability utilisation
attractiveness testability

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

ISO 9126, Part 1 Q "J'
Maintainability (= evolvability) -

Maintainability = 601150
* Analyzability: easy to understand where and how to modify?
» Changeability: easy to perform modification?
« Stability: easy to keep coherent when modifying?
* Testability: easy to test after modification?

Maintain >\
Analyze Change Stabilize Test

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

1ISO 9126, Part 1 C :
Reliability -
Reliability = 611150

» Maturity: how much has been done to prevent failures?
 Fault tolerance: when failure occurs, is it fatal?
» Recoverability: when fatal failure occurs, how much effort to restart?

Degree of failure >

Prevent Tolerate Recover

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

ISO/IEC 9126, Part 1 Q ;
Product quality model: quality-in-use -

621150
ISO/IEC 9126
Quality in Use
effectiveness - satisfaction
productivity safety

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

1SO 9126 < :
Part 2,3: metrics -

External metrics, e.g.: 631150

» Changeability: “change implementation elapse time”,
time between diagnosis and correction

* Testability: “re-test efficiency”, time between correction and conclusion of test

Internal metrics, e.qg.:

 Analysability: “activity recording”,
ratio between actual and required number of logged data items

» Changeability: “change impact”,
number of modifications and problems introduced by them

Critique
* Not pure product measures, rather product in its environment
» Measure after the fact

* No clear distinction between functional and technical quality

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

. =
The issue S I
B I

641150

» Companies innovate and change
» Software systems need to adapt in the same pace as the business changes

» Software systems that do not adapt lose their value

» The technical quality of software systems is a key element

Clients
Business

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Functional vs technical quality <
L

=l

651150

low cost & risk

Technical
quality

high cost

Functional quality —

Software with high technical quality can evolve with low cost and
risk to keep meeting functional and non-functional requirements.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

ISO/IEC 9126, Part 1

Product quality model: technical quality

JIr

66 1 150
Software Product Quality
functionalit - . ortabilit
y reliability L efficiency P y
[maintainability [
. | | - l - adaptability
maturity = time behavior installability
interoperability| | fault-tolerance aga:}ysabtl)llllt}t/ co-existence
security recoverability changeability resource replaceability
stability utilisation
testability
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.
So
-l

671150

What is software quality?
What are the functional and technical aspects of quality/

How can technical quality be measured? ?

<

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

A Challenge ‘ o
-l

Use source code metrics to measure technical quality? 681150

Plenty of metrics defined in literature

» LOC, cyclomatic complexity, fan in/out, coupling,
cohesion, ...

» Halstead, Chidamber-Kemener, Shepperd, ...

Plenty of tools available
 Variations on Lint, PMD, FindBugs, ...
» Coverity, FxCop, Fortify, QA-C, Understand, ...
* Integrated into IDEs

Software Metrics

A Rigorous & Practical Approach

Norman E. Fenton
Shari Lawrence Pfleeger

—

But:

* Do they measure technical quality of a system?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software |

Source code metrics c :
Lines of code (LOC) -

691150

e Easy! Or ...

e SLOC = Source Lines of Code

* Physical (= newlines)

 Logical (= statements)
* Blank lines, comment lines, lines with only “}”
» Generated versus manually written

» Measure effort / productivity: specific to programming language

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Source code metrics < :
Function Point Analysis (FPA) -

701150

» A.J. Albrecht - IBM - 1979

. . . Table 2. Sample Function Point Calculations
» Objective measure of functional size

Raw Data Weights Function Points
» Counted manually 1 Input Xé& = 4
e [FPUG, Nesma, Cocomo 1 Output X5 = 5
e Large error margins 1 Inquiry X4 = 4
1 Data File X110 = 10
« Backfiring 1 Interface X7 = 7
 Per language correlated with LOC Ciaditaisd To 0
‘ SPR’ QSM Compexity Adjustment None
Adjusted Function Points 30

» Problematic, but popular for estimation

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Source code metrics < -
. . -l
Cyclomatic complexity

» T. McCabe, IEEE Trans. on Sw Engineering, 1976 711150
» Accepted in the software community

* Number of independent, non-circular paths per method

* Intuitive: number of decisions made in a method

* 1 + the number of if statements (and while, for, ...)

s

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Code duplication < :
Definition =

Code duplication measurement 721150
0: abc 34 XXXXX
1 def 35: def Number of
2: ghi 36: ghi duplicated lines:
3: jkl 37: jkl 14
4: mno 38: mno
S: par 39: par
6: stu 40: stu
7. VWX 41: vwx
8:yz 42: XXXXXX

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Code duplication < -
-l

Code duplication 731150

450000 -

78%

400000 -

350000 -

300000 -

250000 - || Lines

—i— Percentage
200000 - T

150000 -

100000 -

50000 -

0

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Source code metrics <
-

|
Coupling ~

» Efferent Coupling (Ce) Figure 1. Coupling graph
* How many classes do | depend on? Class A

« Afferent Coupling (Ca)
* How many classes depend on me?
* Instability = Ce/(Ca+Ce) € [0,1]

. . Class B

* Ratio of efferent versus total coupling

* 0 = very stable = hard to change

* 1 = very instable = easy to change

Class C ClassD fe—>» ClassC

Table 1. Results of compiling a single class
Class o Compile Other Classes Compiled Afferent Couplings Efferent Couplings Instability Factor
A BCODE 0 4 1
B CDE 1 3 0.75
c - 2 0 0
D E 3 1 025
E D 3 1 0.25

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

A Challenge C :
Do metrics measure technical quality? -

751150

==

500.000 LOC Java code source code analyzer

= 7

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

 Quality information

* Business risks

* Decisions

at system level.

Source code metrics < :
Cyclomatic complexity -

781150
e T. McCabe, IEEE Trans. on Sw Engineering, 1976

» Accepted in the software community

e Academic: number of independent paths per method

e Intuitive: number of decisions made in a method

» Really, the number of if statements (and while, for, ...)

» Software Engineering Institute:

Table 4: Cyclomatic Complexity

|Cyclomatic Complexity||[Risk Evaluation]
[1-10 |{a simple program, without much risk|
[11-20 |[more complex, maderate risk |
[21-50 |{complex, high risk program |
[greater than 50 |[untestable program (very high risk) |

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Complexity per unit < :
Quality profiles -

Aggregation by averaging is fundamentally flawed 791150
high Verzozigh very high
7% 11%

moderate
13%

high
16%

low
59%

moderate
14%

low
78%

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Quality profiles, in general |
-l

Input 80 1150
* type Input metric = Map x (metric,LOC)

Risk groups

» type Risk = Low | Moderate | High | Very High

e risk :: metric — Risk very high

11%

Output ‘

« type ProfileAbs = Map Risk LOC Too

» type Profile = Map Risk Percentage

low

Aggregation S

« profile :: Input metric — Profile e

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Combining metrics < :
The SIG approach -

811150

ISO 9126 quality sub-characteristics
e.g. changeability

influences

can be caused by :
source code properties

e.g. complexity

indicates

can be measured by

source code measures
e.g. cyclomatic complexity

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Mapping source code properties onto quality c :
sub-characteristics -

821150

Analysability X X X
Changeability X X
Stability X
Testability X X X

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Source code properties and metrics <
|

=l

Volume 831150
e LOC, within the context of a single language
» Man years via backfiring function points

Complexity per unit
* McCabe’s cyclomatic complexity, SEI risk categories, %LOC for each category

Duplication
* Duplicated blocks, threshold 6 lines, %LOC

Unit size
» LOC, risk categories, %LOC for each category

Unit testing

¢ Unit test coverage
* Number of assert statements (as validation)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Duplication < -
-l

841150
Analysability X X X
Changeability X X
Stability X
Testability X X X
Rank duplication
Fotokokok 0-3%
Duplicate blocks B e 3-5%
e Over 6 lines 5-10%
« String comparison —=————p 10-20%
e Remove leading spaces dodeocls ’
K 20-100%

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

. (=}
Complexity <
-l
2. \ %
16, o,o/ 2% \ % % 851150
Q@ Q"’/’ \S‘, 966 @(/‘
) (12 e ” %
Yok
Analysability X X X
Changeability X X
Stability X
Testability X X X
Maximum relative LOC
Soft Engi ing Institut
OTwAre Fromeenng nere Rank moderate high very high
complexity risk
Yolddok 25% 0% 0%
10 ow ook 30% 5% 0%
11-20 MEdiuM = JAtete 40% 10% 0%
21-50 high kil 50% 15% 5%
>50 very high L 2XeAek oA - - -

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

": -y
Rating example -

861150
o) 29 <
° ¢ %, %
LO/ %0/ /)/ér //C‘ %,
(’/)) % S Q’/é ‘96,‘)
® (12 e % o
Yokokok | droons | dokvonor | ok | dokokuor
Analysability X X X Yolok/ole
Changeability X X D 0, PAQAOAS
Stability X Fodokrve
Testability X X X D 0, PAokoke
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.
": —
-l
That’s all?
Practical 871150

* Fast, repeatable, technology independent
« Sufficiently accurate for our purposes

» Explainable

Beyond core model ...
» Only one instrument in Software Risk Assessments and Software Monitor
» Weighting schemes
* Dynamic analysis

 Quality of process, people, project

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Further reading < :
=

881150

See

I. Heitlager, T. Kuipers, J. Visser.

A pragmatic model for measuring maintainability.
QUATIC 2007.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

$ia

891150

What is software quality?

What are the technical aspects of quality? \/

How can technical quality be measured?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

.y
Projects
: Cia

901150
Quality
Static Dynamic
Analysis Analysis
metrics testing
“interpretation of “evaluation of QuickCheck
source code clusters” solutions for Java”
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.
i [
Interpretation of Source Code Clusters c
-l
Clustering 911150

+ Data mining technique
* Input: N measurement values for each item
* Groups together “similar” items based on measurement values

Problem
* Apply to source code metrics of large software system
e BUT: clusters have no “meaning”

Solution
o ISO/IEC 9126: standard for software product quality
* Give clusters meaning by scoring against ISO 9126 using SIG method

Fun
* Apply your tool to REAL BIG systems from our clients!

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Further reading < :
-

921150

See

Yiannis Kanellopoulos, I. Heitlager, J. Visser.

Interpretation of source code clusters in terms of ISO 9126 quality characteristics.
Draft.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case 1 c :
Curbing Erosion -

System 931150
» About 15 years old
* Automates primary business process
» Maintenance has passed through various organizations
* New feature requests at regular intervals

Questions
» Improve management’s control over quality and associated costs

Metrics in this example

* Volume
* Duplication

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case 1 < :
Curbing Erosion -

Lines of code 941150

90000

80000

70000

60000

50000

40000

30000

20000

10000

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case 1 < :
Curbing erosion -

Duplication [%] 951150

60

* All growth is caused by

1 duplication
. * There is no “real”
productivity
30 A
20 |
10 j :
Oi ‘ ‘ mj I I l
X x+1 X+2 x+3

Software Analysis and Testing, MFES Universidade do Minho by Joost \

Case 2 c :
Systems accounting from code churn -

B | DN |

System 96 1 150
* 1.5 MLOC divided over 7000 files
» Estimated 240 people divided over 25 subcontractors

Questions
* Is staffing justified?

Metrics in this example
¢ Code churn = number of added, changed, deleted LOC

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case 2
Systems accounting from code churn

A
=)

8000
7000
6000
5000
% deleted
4000 M added
““ changed
3000 " unchanged
W total
2000
1000
0

-1000

Case 2 C
Systems accounting from code churn -

=)

Volume over time

98 1150

950000

900000 -
[}
3
§ 850000
s —#—|oC
[
g 800000 v |
=

750000

700000

1 2 3 4 5 6 7 8 9 10 11 12
months
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case 2

A

ol

System accounting from code churn

Volume over time

950000 .
. -
900000 1 P —
0 | -
©
8 850000 gy N S
5 \' - —s—|oc
@ 800000 N | fre
c [] -
5 e ~v" I
750000 -
-
700000 ; s

months

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

991150

Case 3 c :
Learn from failure =

System 100 | 150
* Electronic commerce
» Replacement for functionally identical system which failed in rollout
e QOutsourced development

Questions
» Monitor productivity and quality delivered by the developer

Metrics in this example

e Volume
o Complexity

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case 3 < :
Learn from failure -

Total lines sources

1% 1011150

high
‘ moderate Ve'g;igh very high
o

5% 12%

50,000
40,000 low
57%
30|000 moderate
13%
52%
20,000

1 0‘000) _

0

n n w w0 w o

=] =] =] =] b= =]

p=] p=] p=1 f=] f=1 b= o
& o) & & &

— — — - = -

= =] = L | -

[=] I i} o
= o 3 e = <

o 100000 200000 300000 400000 500000 600000

Software Analysis and Testing, MFES Universidade do M

What should you remember (so far) ‘ -
. -l
from this lecture?

Testing 1021150

» Automated unit testing!

Patterns
e Run tools!

Quality and metrics
 Technical quality matters in the long run
A few simple metrics are sufficient
* If aggregated in well-chosen, meaningful ways

» The simultaneous use of distinct metrics allows zooming in on root
causes

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

$ia

Structure of the lectures

Analysis

1031150

Static Dynamic
Analysis Analysis

metrics @ patterns il models testing

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

JIr

104 1150

REVERSE ENGINEERING

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Terminology < :
L

1051150

Models / Specifications

UML, ER, VDM, ...
Re-engineering
abstract
concrete
Reverse il
engineering Programs

Java, SQL, Perl, ...

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

. . ==
Reverse engineering < 1
-

Dependencies and graphs 106 1150
» Extraction, manipulation, presentation
e Graph metrics
* Slicing

Advanced
» Type reconstruction
e Concept analysis
* Programmatic join extraction

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Reverse engineering trinity < -
- o
107 1150
Extraction

From program sources, extract basic information into an initial
source model.

Manipulation

Combine, condense, aggregate, or otherwise process the basic
information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

": -y
Example -

108 1150

Green oval = module
Blue oval = table

K .
‘=P Purple arrow = select operation

“
>
o
2
o
o
2
[

insert/update operation
Brown arrow = delete operation

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

(=}
Example <
-l
1091150

Tables used by multiple modules. Tables used by a single module.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Relations and graphs C -
- ol

1101150
Relation
type Rel a b = Set (a,b) set of pairs
Graph
type Gph a = Rel a a endo-relation

Labeled relation

type LRel a b 1 = Map (a,b) 1 map from pairs

Note

Rel a b = Set(a,b)= Map(a,b) ()= LRel a b ()

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Slicing (forward) < :

1111150

N
0/ o ’

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Slicing (backward) [o :
-

1121150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Chop < :
= Forward N Backward -

1131150

—~_ _—

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Generic slicing < :
-

114 1150
Graph slice
(controfl flow, (interactive)
data flow,
structure, ...)
abstract A4
concrete
extract
Java new program
program . transform / spreadsheet

spreadsheet System [architecture

architecture

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Further reading < -
- ol
1151150
See

Arun Lakhotia.

Graph theoretic foundations of program slicing and integration.

The Center for Advanced Computer Studies, University of Southwestern Louisiana.
Technical Report CACS TR-91-5-5, 1991.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Questions about graphs < -
-

7 116 1150

How big?

How complex?

Recursive? To what degree?
Modular? To what degree?
Degree of internal reuse?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Graph metrics < -
-l

1171150

&

% size metrics

= feature counts
tree impurity
abstract fan, stability
concrete modularity
recursiveness

Source
Code

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

JIr

transformed grapks i 150

@
CORS

ey

size metrics tree impurity coupling, stability
feature counts fan, stability coherence

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Inm%mabm@fze

source files extracted graph

Example < :
source = XML Schema -

1191150

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="Emp" type="EmployeeType"/>
<xs:complexType name="EmployeeType'">
<xs:sequence>
<xs:element name="Emp" type="EmployeeType"/>
</xs:sequence>
<xs:attribute name="EmployeelID" type="xs:ID"/>
<xs:attribute name="FirstName" type="xs:string"/>
<xs:attribute name="LastName" type="xs:string"/>
</xs:complexType>

</xs:schema>

Adapted from the online .NET Framework Developer's Guide at http://msdn.microsoft.com/library/.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Example

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"> 1201150
<xs:element name="Emp" type="EmployeeType"/>

(A
=)

<xs:complexType name="EmployeeType">
<xs:sequence>
<xs:element name="Emp" type="EmployeeType"/>
</xs:sequence>
<xs:attribute name="EmployeeID" type="xs:ID"/>

<xs:attribute name="FirstName" type="xs:string"/>

<xs:attribute name="LastName" type="xs:string"/> Emp
</xs:complexType>
</xs:schema>
Y
Successor graph]
g p EmployeeType {EmployeeType}Emp
—
Y
{EmployeeType}EmployeelD {EmployeeType}FirstName {EmployeeType}LastName

Software Analysis and | esting, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 200/.

.y
Example
g Cia

1211150

‘ EmployeeType {EmployeeType}Emp |

’ {EmployeeType}EmployeeID ‘ ’ {EmployeeType}FirstName

| {EmployeeType}LastName

A A

m .

Successor graph

Internal reuse — Tree impurity = % = 4.76%
Fan-in =2

Spot extremes max N
Fan-out,_ fanout =4

Ease of change —Instabilit = — =45.8%
9 Yavg fanout + fanin
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Example -
g Cia

R NN

)
‘ EmployeeType l:] {EmployeeType}Emp ’ /w A
EmployeeType
/ l \ {EmployeeType}Emp

{EmployeeType}EmployeelD
| {EmployeeType}LastName {EISplgye'g‘;)pe}Fifstgame

{EmployeeType}LastName
A y_
xs:string

xs:ID xs:strin
Successor graph o

‘ {EmployeeType }EmployeelD ‘ ’ {EmployeeType}FirstName

Globals graph

Emp
4
s t t . Enllploy;e'[‘ygcé
rong componen mployeeType}Emp

{EmployeeType}EmployeelD {EmployeeType}FirstName {EmployeeType}LastName

A »

xs:ID xs:string

Software Analysis

Example: transformed graphs

ol

- I
[| ‘EmployeeType
{EmployeeType}Emp

[:l EmployeeType
e P
E o] | el L] I o] | e | = ok L e
Successors Strong components Globals

Tree impurity =4.76% =6.67% = 0%
Fan-in =2 =2 =
Fan-out,, =4 =3 =

Fan instability,,, = 45.8% =46.4% =41.7%

Afferent coupling,.x, =2 =
Efferent coupling,,, =3 =
Coupling instability,,, =46.43% =43.75%
Coherence,,, =90.5% = 88.9%
Tree impurity,, =85.7% =75.0%

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Example: transformed graphs

=l

Emp

EmployeeType

| o] [smrmrene] [ipamoes] | ="
Successors Strong components Globals

Tree impurity =4.76% =6.67% = 0%

Fan instability,,, = 45.8% = 46.4% =41.7%
Coupling instability,,, =46.43% =43.75%
Coherence,,, =90.5% = 88.9%
Tree impurity,, =85.7% =75.0%

Node count, . =2 =5
Normalized group count = 8/5.7% = 50.0%
Recursion Encapsulation

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

$ia

Schemas sampled

cH I
GOUS[Q AMBER | D{_@z (cooewame
ALER!

eV EA
OASIS 3

DSML l— W3C
ebXML GPX @C}}l MathML
SAML J XML Schema

SPML
UBL
UDDI v2, v3
XACML v1,v3

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

amazon.com.

Streomlined Sales Tax Governing Board, Inc.

How big? C
|

= 5 I B |

avg max
Bytes 199.749 2.170.773 126 1 150
XML nodes 5.857 53.493
Graph nodes 497 2.916
8
© | 3500
o
c
.g_ ‘ ',®
& | 3000 d) / >
(O]
2500 -
2000 -
1500 A
*
1000 - ¢
’ +«—— OASIS QusL
X 3
(] s00 "
\f ° .
| ok . | | |
1 0 \ 10000 \20000 30000 40000 50000 60000

\

AT
x. Rough outline showing scale of size of Zyran ® By W.D.M. 'rl-'-JJJLJlQ & XML nodes
R ‘W3C ALER|

SRt il ey probably incorrec

Software Analysis and |eSfing, MFES Universidaae ao MInno by Joost Visser, Software Improvement Group © 2007.

. (=}
How much recursion? c
-l
61.5% contain recursion min max 50
Normalized group count 97.2% 75.8% 100%
Non-singleton groups 1.35 o 5

OASIS ‘9 ebxmL
Wae 4 eV’

5 i
Z(\/IL Schema

1 MathML \ ¢
b * * *

°
4
° s
° ¢ o @
75 80 85 90 95 100

and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

How much encapsulation

JIr

min

avg max

Normalized group count

9.71% 53.4% 100%

Non-singleton groups

454

500

450 -
400 -
350
300 {
250
200
150 -

| 100 | .

Google

RER; A\

}‘1” uZI*i
ALERI

0 10 20 30

40 50 60 70 80 90

1ho by Joost Visser, Software Improvement Group © 2007.

Further reading

See
Joost Visser.

Structure Metrics for XML Schema.
XATA 2006.

$ia

1291150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Type reconstruction C :
(from type-less legacy code) =

1301 150
See

. Arie van Deursen and Leon Moonen. An empirical Study Into Cobol Type
Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)

- assign: ex.a := Db
- expression: ex.a <= Db
- arraylndex: ex. A1]

2. Compute derived relations
- typeEquiv: variables belong to the same type
- subtypeOf: variables belong to super/subtype
- extensional notion of type: set of variables

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Type reconstruction C :
(from type-less legacy code) -

1311150

Pseudo code from paper

arraylndexEquiv := arraylndex ™"

o arraylndex
typeEquiv := arraylndexEquiv U expression
subtypeOf := assign
repeat
subtypeEquiv := equiv(subtypeOf + N (subtypeOf+)~!)
typeEquiv := equiv(typeEquiv U subtypeEquiv)
subtypeOf := subtypeOf \ typeEquiv
subtypeOf := subtypeOf U subtypeOf o typeEquiv U typeEquiv o subtypeOf
until fixpoint of (typeEquiv, subtypeOf)

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Type reconstruction C :
(from type-less legacy code) =

1321150
Data
type VariableGraph v array

= (Rel v v, Rel v array, Rel v v)
type TypeGraph x

= (Rel x x, Rel x x) -- subtypes and type equiv
Operation
typeInference

(Ord v, Ord array) =>
VariableGraph v array -> TypeGraph v

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Formal concept analysis c
&=

=l

1331150

See
Christian Lindig. Fast Concept Analysis. In Gerhard Stumme, editors, Working
with Conceptual Structures - Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
- matrix of objects vs. properties

2. Compute concept lattice
- a concept = (extent,intent)
- ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

. |
Formal concept analysis < 1
pseudo-code (1/2) -

NEIGHBORS ((G, M), (G, M,I)) 1341150
2 neighbors « ()
3 foreach g G\ G do
4 M; — (GU{g})
5 Gy — Mj
6 if ((minn(G1\ G\ {g})) = 0) then
7 neighbors <« neighors U {(G1, M)}
8 else
9 min < min \ {g}
0

10 return neighbors

Note that _" operation denotes computation of intent from extent, or
vice versa, implicitly given a context.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

. y
Formal concept analysis c 7
pseudo-code (2/2) -

LATTICE (G, M,T) 1991150
(Y (@",0’)

2 insert (e, L)

3 loop

4 foreach x in NEIGHBORS (¢, (G, M,T))
5 try = — lookup (z, L)

6 with NotFound — insert (x, L)

T Ty — T4 U {c}

8 ¢ — c*U{z}

9 try ¢ — next (¢, L)

0 with NotFound — exit

1 return L

i
1

Transposition to Haskell?

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Formal concept analysis (-
-

. 1361150
Representation

type Context gm = Rel gm
type Concept g m = (Set g, Set m)
type ConceptlLattice g m

= Rel (Concept g m) (Concept g m)

Algorithm
neighbors :: (Ord g, Ord m)
=> Set g -- extent of concept
-> Context g m -- formal context
-> [Concept g m] -- list of neighbors
lattice :: (Ord g, Ord m)
=> Context g m -- formal context
-> ConceptLattice g m -- concept lattice

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case: Test data stripping €=

Productie

Data
DBD/ 0
PSB ‘
e v
SIG Compuware
Cobol Datamodel Data Model —>{ File Aid
Extractie RDX
R

Goal: extract DB2 en IMS relations through program source analysis.

Especially programmatic relations:
* not defined explicitly in DB definitions,
* rather: encoded in application programs,

* can occur across modules, programs, systems.
Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Kinds of DB relationships < -
- ol

Explicitly modeled relationship 1381150
- Referential Integrity relationships (foreign keys in SQL)

Relationships in queries
- Implicit join in SQL, Explicit JOIN in SQL
- Joins between sub-queries, Joins in views

Programmatic relationships

- Programmatic join within 1 program via dataflow en compares
(SQL: where clause; IMS: segment search argument)

- Programmatic join across programs via calls

- Programmatic join across systems

Cod. standard: between systems no Rl relationships can be defined.

Note: Relationships between IMS en DB2 occur as well.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

A simple programmatic join <
L

=l

1391150

EXEC SQL
SELECT NUMBER INTO FIELD1
FROM TABLEL.

END-EXEC.

TABLE1

MOVE FIELD1 TO FIELD2. TABLE1.NUMBER

[] TABLE2.NUMBER

EXEC SQL
SELECT *
FROM TABLE2

WHERE
NUMBER = FIELDz. | TABLE2 I

END-EXEC.

A simple programmatic join I
with dataflow

1401150

(A

EXEC SOL
SELECT NUMBER INTO FIELD1 TABLE1 .NUMBER
FROM TABLEL.

END-EXEC.

—

&

GET

-

[---]

MOVE FIELD1 TO FIELD2. DATA FLOW

Exssl

A4

EXEC SQL

SELECT * COMPARE TO

FROM TABLE2

WHERE
NUMBER = FIELD2. ITABLE2°NUMBER|
END-EXEC.

'007.
A simple programmatic join c 7
L

dCross programs

Issues 1411150
| - long move chains
TABLE1 .NUMBER |
7 - record moves
(GET) - polution due to helper fields
PROGH1

- control flow
—>‘ PROG2 - indirection via views
_L‘—L PROG3
—
I |
-
- utility calls COMPARE TO

- calls across systems
- asynchronous calls (IMS triggers, MQ) | TaBLE2 . NUMBER |

Issues
- long call chains
- dynamic calls

007.

IMS S r

Hierarchical database system

General 1421150

- IMS = Information Management System.
- Developed by IBM in the late 60s.

Databases

- Data is organized in tree structures.

- Nodes of trees are segments, which are sequences of fields.

- Logical databases define a selective view on a physical database.
- All of this defined in DBD = Data Base Definition

Access

- PSB = Program Specification Block.

- Define which segments are accessible (sensitive) to which programs.

- Database operations are performed via utility calls with appropriate args.
- SSA = Sensitive Search Argument can be passed as argument.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

IMS versus SQL C :
A rough correspondance -

1431150
IMS SQL
segment table
field column
SSA where clause
logical database view
utility call query
DBD DDL
PSB -

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Approach < :
Sketch of solution -

Dataflow analysis

- Find data-flow paths between column occurrences.
- Multilingual: Cobol, IMS, DB2.

- Across modules, programs, systems.

- Scalable to complete portfolio.

Path selection
- Select paths that indicate data model relationships.
Validation

- On the basis of types, naming, indexing, path length, etc.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Approach c :
Some basic required ingredients -

144 1150

Parsing 145 1 150

- (embedded) DB2 SQL parser
- Parsers for IMS definitions
- Parser for Cobol

Name resolution

- SQL column names: find corresponding tables, possibly via aliases.

- Cobol field names: find corr. field declaration, possibly via redefines.

- IMS segment and field names: reconstruct correspondence of Cobol
field names to IMS fields via PCBs, logical databases, memory layout.

- Link SQL host names to Cobol field names.

Type matching
- SQL column types ~ Cobol record member types ~ IMS field types.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Approach < :
Dataflow -

Challenges 1461150

- Record moves.

- Dynamic calls, call handlers, asynchronous calls (IMS triggers).
- Compound keys (follow parallel dataflow).

- Cursors.

- Nested queries, complex queries, joins in views.

- Indirection via views.

- Scalability.

- Pollution, due to auxiliary variables, utility call parameters, ...

Requirements

- Modular (for scalability).
- Generic (for manageability).
- Customizable (to reduce pollution and silences) ...

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Approach c :
Risks and their mitigation -

1471150

Silences (false negatives, incorrectly not found)

- Source: missing dataflow links, e.g. due to non-resolvable dynamic calls.

- However: relationship between 2 columns/fields only absent if ALL dataflow
paths are missing a link.

Noise (false positives, incorrectly found)
- Source: tangling dataflow links, e.g. due to auxiliary variables or utility parameters.
- Counter measure: fine-tuning of heuristics to suppress noise-generating links.

Scale

- Dataflow analysis for an entire portfolio is a resource intensive computation.

- Counter measure: modularization of the analysis algorithm, persistency for
(partial) data flow graphs, hardware.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Study characteristics < -
-

1481150

General
- 7 systems (out of about 250)
- DB2: 992 tables, 882 views, 106 foreign keys

- IMS: 2110 databases, 4778 segments, 8163 fields, 8143
sensitive segments, 7716 sensitive fields

- Cobol (9 MLoc in 2786 listings), 2203 selects and fetches,
272 inserts and updates, 5993 IMS operations using 1446
sensitive search arguments.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Findings -
e Jr

Observations 1491150

- Small number of foreign key definitions given the number of tables.
- Only a handful of non-programmatic joins.

- Only a handful of views with a complex query.

- Programmatic joins often via cursor, often via call.

- Dataflow paths length for programmatic joins within a single program
usually between 3 en 8.

- Programmatic joins between IMS en DB2 occur.

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

": L J
More info? Feel free to contact... - d

1501150

Dr. ir. Joost Visser

E: j.visser@sig.nl
W: www.sig.nl
T: +31 20 3140950

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

