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Structure of the lectures

Last week

• Introduction SIG

• General overview of software analysis and testing

• Testing

• Patterns

Today

• Quality & metrics

• Reverse engineering
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Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns
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METRICS & QUALITY
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Software analysis

What?

performance

complexity

defects

reliability

security

correctness
size

adaptability

usability

Quality
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The bermuda triangle of software quality

Process
(organizational)

Project
(individual)

People
(individual)

Product

CMMI
(Scampi)

Prince2

Siebel
(Oracle)

ITIL

SAS70

J2EE
(IBM)

MCP
(Microsoft)

COBIT Security
ISO17799

ISO27001

BS7799

Six Sigma

ISO 20000

DSDM

TickIT
ISO9001:2000

TMap

ISTQB RUP
(IBM)

PMI
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Software Quality

Process

Capability Maturity Model® Integration (CMMI®)

• “… is a process improvement approach that provides organizations with the

essential elements of effective processes..”  (SEI)

• CMMI for Development (CMMI-DEV), Version 1.2, August 2006.

• consists of 22 process areas with capability or maturity levels.

• CMMI was created and is maintained by a team consisting of members from

industry, government, and the Software Engineering Institute (SEI)

• http://www.sei.cmu.edu/cmmi

The Standard CMMI Appraisal Method

for Process Improvement (SCAMPI)

• “… is the official SEI method to provide

benchmark-quality ratings relative to CMMI models.”
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Software Quality
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Software Quality

Process

Levels

• L1: Initial

• L2: Managed

• L3: Defined

• L4: Quantitatively Managed

• L5: Optimizing

http://www.cmmi.de
(browser)

Process Areas

• Causal Analysis and Resolution

• Configuration Management

• Decision Analysis and Resolution

• Integrated Project Management

• Measurement and Analysis

• Organizational Innovation and Deployment

• Organizational Process Definition

• Organizational Process Focus

• Organizational Process Performance

• Organizational Training

• Product Integration

• Project Monitoring and Control

• CMMI Project Planning

• Process and Product Quality Assurance

• Quantitative Project Management

• Requirements Development

• Requirements Management

• Risk Management

• Supplier Agreement Management

• Technical Solution

• Validation

• Verification
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The bermuda triangle of software quality

Process
(organizational)

Project
(individual)

People
(individual)

Product

CMMI
(Scampi)

Prince2
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But …

What is software quality?

What are the technical and functional aspects of quality?

How can technical and functional quality be measured?
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Software product quality standards

ISO/IEC 9126

Software engineering -- Product quality

1. Quality model

2. External metrics

3. Internal metrics

4. Quality in use metrics

ISO/IEC 14598

Information technology -- Software product evaluation

1. General overview

2. Planning and management

3. Process for developers

4. Process for acquirers

5. Process for evaluators

6. Documentation of evaluation modules
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ISO/IEC 9126, Part 1

Quality perspectives

external quality

internal quality

quality in use
effect of

software

product

software

product

build

test

deploy

9126, Part 3

9126, Part 2

9126, Part 4

metricsphase
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ISO/IEC 9126, Part 1

Product quality model: internal and external

ISO/IEC 9126

Internal/External Quality

reliability
usability

efficiency
portability

maintainability

analysability

changeability

stability

testability

functionality

suitability

accuracy

interoperability

security

maturity

fault-tolerance

recoverability

understandability

learnability

operability

attractiveness

time behavior

resource 

  utilisation

adaptability

installability

co-existence

replaceability
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ISO 9126, Part 1

Maintainability (= evolvability)

Maintain

Analyze Change Stabilize Test

Maintainability =

• Analyzability: easy to understand where and how to modify?

• Changeability: easy to perform modification?

• Stability: easy to keep coherent when modifying?

• Testability: easy to test after modification?
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ISO 9126, Part 1

Reliability

Degree of failure

Prevent Tolerate Recover

Reliability =

• Maturity: how much has been done to prevent failures?

• Fault tolerance: when failure occurs, is it fatal?

• Recoverability: when fatal failure occurs, how much effort to restart?
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ISO/IEC 9126, Part 1

Product quality model: quality-in-use

ISO/IEC 9126

Quality in Use

effectiveness
productivity

satisfaction
safety
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ISO 9126

Part 2,3: metrics

External metrics, e.g.:

• Changeability: “change implementation elapse time”,

time between diagnosis and correction

• Testability: “re-test efficiency”, time between correction and conclusion of test

Internal metrics, e.g.:

• Analysability: “activity recording”,

ratio between actual and required number of logged data items

• Changeability: “change impact”,

number of modifications and problems introduced by them

Critique

• Not pure product measures, rather product in its environment

• Measure after the fact

• No clear distinction between functional and technical quality
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The issue

• Companies innovate and change

• Software systems need to adapt in the same pace as the business changes

• Software systems that do not adapt lose their value

• The technical quality of software systems is a key element

Clients

Business

IT
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Functional vs technical quality

Functional quality

Technical

quality

low cost & risk

high cost & risk

Software with high technical quality can evolve with low cost and

risk to keep meeting functional and non-functional requirements.
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ISO/IEC 9126, Part 1

Product quality model: technical quality

ISO/IEC 9126

Software Product Quality

reliability
usability

efficiency
portability

maintainability

analysability

changeability

stability

testability

functionality

suitability

accuracy

interoperability

security

maturity

fault-tolerance

recoverability

understandability

learnability

operability

attractiveness

time behavior

resource 

  utilisation

adaptability

installability

co-existence

replaceability
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So …

What is software quality?

What are the functional and technical aspects of quality?

How can technical quality be measured?
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A Challenge

Use source code metrics to measure technical quality?

Plenty of metrics defined in literature

• LOC, cyclomatic complexity, fan in/out, coupling,

cohesion, …

• Halstead, Chidamber-Kemener, Shepperd, …

Plenty of tools available

• Variations on Lint, PMD, FindBugs, …

• Coverity, FxCop, Fortify, QA-C, Understand, …

• Integrated into IDEs

But:

• Do they measure technical quality of a system?
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Source code metrics

Lines of code (LOC)

• Easy! Or …

• SLOC = Source Lines of Code

• Physical (! newlines)

• Logical (! statements)

• Blank lines, comment lines, lines with only “}”

• Generated versus manually written

• Measure effort / productivity: specific to programming language
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Source code metrics

Function Point Analysis (FPA)

• A.J. Albrecht - IBM - 1979

• Objective measure of functional size

• Counted manually

• IFPUG, Nesma, Cocomo

• Large error margins

• Backfiring

• Per language correlated with LOC

• SPR, QSM

• Problematic, but popular for estimation

71 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Source code metrics

Cyclomatic complexity

• T. McCabe, IEEE Trans. on Sw Engineering, 1976

• Accepted in the software community

• Number of independent, non-circular paths per method

• Intuitive: number of decisions made in a method

• 1 + the number of if statements (and while, for, ...)

if

if

while
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Code duplication

Definition

Code duplication measurement

0: abc

1: def

2: ghi

3: jkl

4: mno

5: pqr

6: stu

7: vwx

8: yz

34: xxxxx

35: def

36: ghi

37: jkl

38: mno

39: pqr

40: stu

41: vwx

42: xxxxxx

Number of 

duplicated lines:

14
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Code duplication

Code duplication

78%

25%
22%

35%

0

50000

100000

150000

200000

250000

300000

350000

400000

450000
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written

Generator

Lines

Percentage

A B C D
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Source code metrics

Coupling

• Efferent Coupling (Ce)

• How many classes do I depend on?

• Afferent Coupling (Ca)

• How many classes depend on me?

• Instability = Ce/(Ca+Ce) ! [0,1]

• Ratio of efferent versus total coupling

• 0 = very stable = hard to change

• 1 = very instable = easy to change
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A Challenge

Do metrics measure technical quality?

500.000 LOC Java code source code analyzer

+

=
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A Challenge

500.000 LOC Java code source code analyzer

+

=
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Wealth of technical data at code level

must be translated into:

• Quality information

• Business risks

• Decisions

at system level.
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Source code metrics

Cyclomatic complexity

• T. McCabe, IEEE Trans. on Sw Engineering, 1976

• Accepted in the software community

• Academic: number of independent paths per method

• Intuitive: number of decisions made in a method

• Really, the number of if statements (and while, for, ...)

• Software Engineering Institute:
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Complexity per unit

Quality profiles

Aggregation by averaging is fundamentally flawed
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Quality profiles, in general

Input

• type Input metric =  Map x (metric,LOC)

Risk groups

• type Risk = Low | Moderate | High | Very High

• risk :: metric " Risk

Output

• type ProfileAbs = Map Risk LOC

• type Profile = Map Risk Percentage

Aggregation

• profile :: Input metric " Profile
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Combining metrics

The SIG approach

ISO 9126 quality sub-characteristics

e.g. changeability

source code properties

e.g. complexity

source code measures

e.g. cyclomatic complexity

influences

indicates

can be caused by

can be measured by
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Mapping source code properties onto quality

sub-characteristics

V
olum

e

C
om

plexity

U
nit size

D
uplication

U
nit testing

Analysability X X X

Changeability X X

Stability X

Testability X X X
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Source code properties and metrics

Volume

• LOC, within the context of a single language

• Man years via backfiring function points

Complexity per unit

• McCabe’s cyclomatic complexity, SEI risk categories, %LOC for each category

Duplication

• Duplicated blocks, threshold 6 lines, %LOC

Unit size

• LOC, risk categories, %LOC for each category

Unit testing

• Unit test coverage

• Number of assert statements (as validation)
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Duplication

V
olum

e

C
om

plexity

U
nit size

D
uplication

U
nit testing

Analysability X X X

Changeability X X

Stability X

Testability X X X

20-100%

10-20%

5-10%

3-5%

0-3%

duplicationRank

Duplicate blocks

• Over 6 lines

• String comparison

• Remove leading spaces
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Complexity

V
olum

e

C
om

plexity

U
nit size

D
uplication

U
nit testing

Analysability X X X

Changeability X X

Stability X

Testability X X X

---

5%15%50%

0%10%40%

0%5%30%

0%0%25%

very highhighmoderateRank

Maximum relative LOC

very high>50

high21-50

medium11-20

low1-10

riskcomplexity

Software Engineering Institute



86 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Rating example

V
olum

e

C
om

plexity

U
nit size

D
uplication

U
nit testing

Analysability X X X

Changeability X X

Stability X

Testability X X X
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That’s all?

Practical

• Fast, repeatable, technology independent

• Sufficiently accurate for our purposes

• Explainable

Beyond core model  …

• Only one instrument in Software Risk Assessments and Software Monitor

• Weighting schemes

• Dynamic analysis

• Quality of process, people, project
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See
I. Heitlager, T. Kuipers, J. Visser.
A pragmatic model for measuring maintainability.
QUATIC 2007.

Further reading
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What is software quality?

What are the technical aspects of quality?

How can technical quality be measured?
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Projects

Quality

Static
Analysis

Dynamic
Analysis

metrics testing

“interpretation of

source code clusters”

“evaluation of QuickCheck

solutions for Java”
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Interpretation of Source Code Clusters

Clustering

• Data mining technique

• Input: N measurement values for each item

• Groups together “similar” items based on measurement values

Problem

• Apply to source code metrics of large software system

• BUT: clusters have no “meaning”

Solution

• ISO/IEC 9126: standard for software product quality

• Give clusters meaning by scoring against ISO 9126 using SIG method

Fun

• Apply your tool to REAL BIG systems from our clients!
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See
Yiannis Kanellopoulos, I. Heitlager, J. Visser.
Interpretation of source code clusters in terms of ISO 9126 quality characteristics.
Draft.

Further reading
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Case 1

Curbing Erosion

System

• About 15 years old

• Automates primary business process

• Maintenance has passed through various organizations

• New feature requests at regular intervals

Questions

• Improve management’s control over quality and associated costs

Metrics in this example

• Volume

• Duplication
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Case 1

Curbing Erosion
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Case 1

Curbing erosion

• All growth is caused by

duplication

• There is no “real”

productivity



96 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Case 2

Systems accounting from code churn

System

• 1.5 MLOC divided over 7000 files

• Estimated 240 people divided over 25 subcontractors

Questions

• Is staffing justified?

Metrics in this example

• Code churn = number of added, changed, deleted LOC
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Case 2

Systems accounting from code churn
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Case 2

Systems accounting from code churn

Volume over time
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Case 2

System accounting from code churn

Volume over time
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Case 3

Learn from failure

System

• Electronic commerce

• Replacement for functionally identical system which failed in rollout

• Outsourced development

Questions

• Monitor productivity and quality delivered by the developer

Metrics in this example

• Volume

• Complexity
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Case 3

Learn from failure
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What should you remember (so far)

from this lecture?

Testing

• Automated unit testing!

Patterns

• Run tools!

Quality and metrics

• Technical quality matters in the long run

• A few simple metrics are sufficient

• If aggregated in well-chosen, meaningful ways

• The simultaneous use of distinct metrics allows zooming in on root

causes
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Structure of the lectures

Analysis

Static
Analysis

Dynamic
Analysis

testingmetrics modelspatterns
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REVERSE ENGINEERING
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abstract
concrete

Models / Specifications

UML, ER, VDM, …

Programs

Java, SQL, Perl, …

Reverse

engineering

Re-engineering

Terminology
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Reverse engineering

Dependencies and graphs

• Extraction, manipulation, presentation

• Graph metrics

• Slicing

Advanced

• Type reconstruction

• Concept analysis

• Programmatic join extraction
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Extraction

From program sources, extract basic information into an initial

source model.

Manipulation

Combine, condense, aggregate, or otherwise process the basic

information to obtain a derived source model.

Presentation

Visualize or otherwise present source models to a user.

Reverse engineering trinity
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Green oval = module

Blue oval = table 

Purple arrow = select operation

Yellow arrow = insert/update operation

Brown arrow = delete operation

Example
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Example

Tables used by multiple modules. Tables used by a single module.
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Relation

type Rel a b = Set (a,b)     set of pairs

Graph

type Gph a = Rel a a         endo-relation

Labeled relation

type LRel a b l = Map (a,b) l    map from pairs

Note

Rel a b = Set(a,b)= Map(a,b)()= LRel a b ()

Relations and graphs

111 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Slicing (forward)
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Slicing (backward)
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Chop

 = Forward # Backward
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abstract
concrete

Java

program
Excel

spreadsheet System

architecture

slice

(interactive)

Graph

(control flow,

data flow,

structure, …)

extract

new program

/ spreadsheet

/ architecture

transform

Generic slicing
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See
Arun Lakhotia.
Graph theoretic foundations of program slicing and integration.
The Center for Advanced Computer Studies, University of Southwestern Louisiana.

Technical Report CACS TR-91-5-5, 1991.

Further reading
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How big?

How complex?

Recursive? To what degree?

Modular? To what degree?

Degree of internal reuse?

Questions about graphs
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abstract
concrete

size metrics

feature counts

tree impurity

fan, stability

modularity

recursiveness

Source

Code

Graph metrics



118 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

source files

size metrics

feature counts

extracted graph

tree impurity

fan, stability

transformed graph

coupling, stability

coherence

normalized size
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <xs:element name="Emp" type="EmployeeType"/>

  <xs:complexType name="EmployeeType">

    <xs:sequence>

      <xs:element name="Emp" type="EmployeeType"/>

    </xs:sequence>

    <xs:attribute name="EmployeeID" type="xs:ID"/>

    <xs:attribute name="FirstName" type="xs:string"/>

    <xs:attribute name="LastName" type="xs:string"/>

  </xs:complexType>

</xs:schema>

Adapted from the online .NET Framework Developer's Guide at http://msdn.microsoft.com/library/.

Example

source = XML Schema
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Successor graph

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  <xs:element name="Emp" type="EmployeeType"/>

  <xs:complexType name="EmployeeType">

    <xs:sequence>

      <xs:element name="Emp" type="EmployeeType"/>

    </xs:sequence>

    <xs:attribute name="EmployeeID" type="xs:ID"/>

    <xs:attribute name="FirstName" type="xs:string"/>

    <xs:attribute name="LastName" type="xs:string"/>

  </xs:complexType>

</xs:schema>

Example
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Successor graph

Tree impurity =                     = 4.76%

Fan-inmax                              = 2

Fan-outmax                            = 4

Instabilityavg =                       = 45.8%

! 

2(e"n+1)

(n"1)(n"2)

! 

fanout

fanout + fanin

Internal reuse

Spot extremes

Ease of change

Example
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Strong component
graph

Successor graph
Globals graph

Example
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Strong componentsSuccessors Globals

Tree impurity      = 4.76%            = 6.67%                  = 0%

Fan-inmax            = 2                    = 2                           = 1

Fan-outmax          = 4                    = 3                           = 2

Fan instabilityavg = 45.8%            = 46.4%                  = 41.7%

Afferent couplingmax    = 2                           = 2

Efferent couplingmax    = 3                           = 3

Coupling instabilityavg  = 46.43%                = 43.75%

Coherenceavg                     = 90.5%                  = 88.9%

Tree impurityavg           = 85.7%                  = 75.0%

Example: transformed graphs



124 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Strong componentsSuccessors Globals

Tree impurity      = 4.76%            = 6.67%                  = 0%

Fan instabilityavg = 45.8%            = 46.4%                  = 41.7%

Coupling instabilityavg  = 46.43%                = 43.75%

Coherenceavg                     = 90.5%                  = 88.9%

Tree impurityavg           = 85.7%                  = 75.0%

Node countmax                           = 2                          = 5

Normalized group count   = 85.7%                  = 50.0%

Recursion Encapsulation

Example: transformed graphs
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MathML

XML Schema

DSML

ebXML

SAML

SPML

UBL

UDDI v2, v3

XACML v1,v3

Schemas sampled
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UBL

How big?
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0
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51.35Non-singleton groups

100%97.2%Normalized group count

maxavg61.5% contain recursion
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XML Schema

MathML

ebXML

How much recursion?
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How much encapsulation
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See
Joost Visser.
Structure Metrics for XML Schema.
XATA 2006.

Further reading
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See

• Arie van Deursen and Leon Moonen.  An empirical Study Into Cobol Type
Inferencing. Science of Computer Programming 40(2-3):189-211, July 2001

Basic idea

1. Extract basic relations (entities are variables)
- assign: ex. a := b

- expression: ex. a <= b

- arrayIndex: ex. A[i ]

2. Compute derived relations

- typeEquiv: variables belong to the same type

- subtypeOf: variables belong to super/subtype

- extensional notion of type: set of variables

Type reconstruction

(from type-less legacy code)

131 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

Pseudo code from paper

Type reconstruction

(from type-less legacy code)
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Type reconstruction

(from type-less legacy code)

Data
type VariableGraph v array

  = (Rel v v, Rel v array, Rel v v)

type TypeGraph x

  = (Rel x x, Rel x x)  -- subtypes and type equiv

Operation
typeInference

  :: (Ord v, Ord array) =>

     VariableGraph v array -> TypeGraph v
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See
• Christian Lindig. Fast Concept  Analysis. In Gerhard Stumme, editors,  Working

with Conceptual Structures -  Contributions to ICCS 2000, Shaker Verlag,
Aachen, Germany, 2000.

Basic idea

1. Given formal context
  - matrix of objects vs. properties

2. Compute concept lattice
  - a concept = (extent,intent)
  - ordering is by sub/super set relation on intent/extent

Used in many fields, including program understanding.

Formal concept analysis
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Note that _’ operation denotes computation of intent from extent, or

vice versa, implicitly given a context.

Formal concept analysis

pseudo-code (1/2)
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Transposition to Haskell?

Formal concept analysis

pseudo-code (2/2)
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Representation

type Context g m = Rel g m

type Concept g m = (Set g, Set m)

type ConceptLattice g m

= Rel (Concept g m) (Concept g m)

Algorithm
neighbors :: (Ord g, Ord m)

          => Set g             -- extent of concept

          -> Context g m       -- formal context

          -> [Concept g m]     -- list of neighbors

lattice :: (Ord g, Ord m)

        => Context g m         -- formal context

        -> ConceptLattice g m  -- concept lattice

Formal concept analysis
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Goal: extract DB2 en IMS relations through program source analysis.

Especially programmatic relations:

• not defined explicitly in DB definitions,

• rather: encoded in application programs,

• can occur across modules, programs, systems.

Case: Test data stripping
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Explicitly modeled relationship

 -  Referential Integrity relationships (foreign keys in SQL)

Relationships in queries

 - Implicit join in SQL,  Explicit JOIN in SQL

 - Joins between sub-queries, Joins in views

 Programmatic relationships

 - Programmatic join within 1 program via dataflow en compares

      (SQL: where clause; IMS: segment search argument)

 - Programmatic join across programs via calls

 - Programmatic join across systems

Cod. standard: Cod. standard: between systemsbetween systems no RI relationships can be defined. no RI relationships can be defined.

Note: Relationships Note: Relationships between IMS en DB2between IMS en DB2 occur as well. occur as well.

Kinds of DB relationships

139 I 150

Software Analysis and Testing, MFES Universidade do Minho by Joost Visser, Software Improvement Group © 2007.

A simple programmatic join
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A simple programmatic join

with dataflow
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Issues

- long move chains

- record moves

- polution due to helper fields

- control flow

- indirection via views

Issues

- long call chains

- dynamic calls

- utility calls

- calls across systems

- asynchronous calls (IMS triggers, MQ)

A simple programmatic join

across programs
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General

 - IMS = Information Management System.

 - Developed by IBM in the late 60s.

Databases

 - Data is organized in tree structures.

 - Nodes of trees are segments, which are sequences of fields.

 - Logical databases define a selective view on a physical database.

 - All of this defined in DBD = Data Base Definition

Access

 - PSB = Program Specification Block.

 - Define which segments are accessible (sensitive) to which programs.

 - Database operations are performed via utility calls with appropriate args.

 - SSA = Sensitive Search Argument can be passed as argument.

IMS

Hierarchical database system
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-PSB

DDLDBD

queryutility call

viewlogical database

where clauseSSA

columnfield

tablesegment

SQLIMS

IMS versus SQL

A rough correspondance
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Dataflow analysis

 - Find data-flow paths between column occurrences.

 - Multilingual: Cobol, IMS, DB2.

 - Across modules, programs, systems.

 - Scalable to complete portfolio.

Path selection

 - Select paths that indicate data model relationships.

Validation

 - On the basis of types, naming, indexing, path length, etc.

Approach

Sketch of solution
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Parsing

- (embedded) DB2 SQL parser

- Parsers for IMS definitions

- Parser for Cobol

Name resolution

- SQL column names: find corresponding tables, possibly via aliases.

- Cobol field names: find corr. field declaration, possibly via redefines.

- IMS segment and field names: reconstruct correspondence of Cobol

  field names to IMS fields via PCBs, logical databases, memory layout.

- Link SQL host names to Cobol field names.

Type matching

- SQL column types ~ Cobol record member types ~ IMS field types.

Approach

Some basic required ingredients
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Challenges

- Record moves.

- Dynamic calls, call handlers, asynchronous calls (IMS triggers).

- Compound keys (follow parallel dataflow).

- Cursors.

- Nested queries, complex queries, joins in views.

- Indirection via views.

- Scalability.

- Pollution, due to auxiliary variables, utility call parameters, …

Requirements

- Modular (for scalability).

- Generic (for manageability).

- Customizable (to reduce pollution and silences) …

Approach

Dataflow
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Silences (false negatives,  incorrectly not found)

 - Source: missing dataflow links, e.g. due to non-resolvable dynamic calls.

 - However: relationship between 2 columns/fields only absent if ALL dataflow

    paths are missing a link.

Noise (false positives, incorrectly found)

 - Source: tangling dataflow links, e.g. due to auxiliary variables or utility parameters.

 - Counter measure: fine-tuning of heuristics to suppress noise-generating links.

Scale

 - Dataflow analysis for an entire portfolio is a resource intensive computation.

 - Counter measure: modularization of the analysis algorithm, persistency for

    (partial) data flow graphs, hardware.

Approach

Risks and their mitigation
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General

- 7 systems (out of about 250)

- DB2: 992 tables, 882 views, 106 foreign keys

- IMS: 2110 databases, 4778 segments, 8163 fields, 8143

sensitive segments, 7716 sensitive fields

- Cobol (9 MLoc in 2786 listings), 2203 selects and fetches,

272 inserts and updates, 5993 IMS operations using 1446

sensitive search arguments.

Study characteristics
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Observations

- Small number of foreign key definitions given the number of tables.

- Only a handful of non-programmatic joins.

- Only a handful of views with a complex query.

- Programmatic joins often via cursor, often via call.

- Dataflow paths length for programmatic joins within a single program

usually between 3 en 8.

- Programmatic joins between IMS en DB2 occur.

Findings
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More info? Feel free to contact…

Dr. ir. Joost Visser

      E: j.visser@sig.nl

      W: www.sig.nl

      T:  +31 20 3140950


