Relational algebra: a Kleene algebra central to the mathematics of program construction

J.N. Oliveira

Dept. Informática, Universidade do Minho Braga, Portugal

II Jornadas Luso-Galegas de Álgebra e Computação Braga, 10-10-2008

(日) (四) (문) (문) (문)

On maths and computing

Interaction between maths and computing:

- computers helping maths: theorem proving, computational maths etc
- maths helping computing: many examples, among which the algebra of programming (AoP)

While the former are widely acknowledged, among the latter **AoP** is known only to the initiated.

• This talk aims at framing **AoP** in its proper algebraic context while showing its relevance to program construction.

It all starts from semirings of computations [3]...

On maths and computing

Interaction between maths and computing:

- computers helping maths: theorem proving, computational maths etc
- maths helping computing: many examples, among which the algebra of programming (AoP)

While the former are widely acknowledged, among the latter **AoP** is known only to the initiated.

• This talk aims at framing **AoP** in its proper algebraic context while showing its relevance to program construction.

It all starts from semirings of computations [3]...

Semirings of computations

Abstract notion of a computation:

Semiring $(S, +, \cdot, 0, 1)$ inhabited by computations (eg. instructions, statements) where

- x · y (usually abbreviated to xy) captures sequencing
- *x* + *y* captures **choice** (alternation)
- 0 means death
- 1 means skip (do nothing)

Technically:

- $(S, \cdot, 1)$ is a monoid
- (S, +, 0) is a Abelian monoid
- (·) distributes over (+)
- 0 annihilates (·)

Context Kleene algebras Relations Functions + meets × Induction ([-]) meets fork Summing up Idempotency

• If x + x = x holds for all x, then

$$x \le y \quad \stackrel{\text{def}}{=} \quad x + y = y \tag{1}$$

is a partial order.

• Clearly, $0 \le x$ for all x and (+) is the *lub* with respect to \le :

$$x + y \le z \quad \Leftrightarrow \quad x \le z \land y \le z \tag{2}$$

NB: z := x + y in (2) means x + y is upper bound; \Leftarrow means it is the **least** upper bound (*lub*).

Kleene algebras

A Kleene algebra [5] adds to semiring $(S, +, \cdot, 0, 1)$ the Kleene star operator (*) such that

$$y + x(x^*y) \le x^*y$$
 (3)
 $y + (yx^*)x \le yx^*$ (4)

and

Kleene algebras

$$y + xz \le z \implies x^* y \le z$$
(5)
$$y + zx \le z \implies yx^* \le z$$
(6)

These basically establish x^*y and yx^* as prefix points of (monotonic) functions $(y + x \cdot _)$ and $(y + _ \cdot x)$, respectively.

KATs (tests and domains)

 $\mathsf{KAT}=\mathsf{Kleene}$ algebra with tests

every p below 1 (p ≤ 1) is a test and such that, for every such p there is ¬p (the complement of p) such that

 $p + \neg p = 1$ $p \cdot \neg p = 0 = \neg p \cdot p$

 Recent addition to semirings (inc. KATs) of a *domain* operator *d(x)* capturing "enabledness" and satisfying axioms

$$egin{array}{rcl} d(x) &\leq & 1 \ d(0) &= & 0 \ d(x+y) &= & d(x)+d(y) \ d(xy) &= & d(x \ d(y)) \ x &\leq & d(x)x \end{array}$$

t Kleene algebras Relations Functions + meets imes Induction ([...]) meets fork S

Binary relations

The algebra of **binary relations** is a well known KAT:

KAT	Binary relations	Description
$x \cdot y$	$R \cdot S$	composition
x + y	$R \cup S$	union
0		empty relation
1	id	identity relation
$x \leq y$	$R \subseteq S$	inclusion
$p, \neg p$	$R \subseteq id, \neg R = id - R$	coreflexive relations
d(x)	δR	domain of <i>R</i>

Moreover, they form a complete, distributive lattice once glbs

 $X \subseteq R \cap S \Leftrightarrow (X \subseteq R) \land (X \subseteq S)$ (7)

and supremum \top are added.

- Not much if regarded merely as "sets of pairs"
- Very useful indeed as a device for the algebraization of logic — if regarded as "arrows" ie. morphisms of a particular allegory [4]
- Arrows bring about a **type discipline** which leads to good things such as parametric **polymorphism**, etc etc

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Relations as morphisms

Binary relations are typed:

Arrow notation

Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).

A, B are types. Writing $B \stackrel{R}{\longleftarrow} A$ means the same as $A \stackrel{R}{\longrightarrow} B$.

Infix notation

The usual infix notation used in natural language — eg.

John *lsFatherOf* Mary

$$0 \le \pi$$

— extends to arbitrary $B \stackrel{R}{\longleftarrow} A$: we write

b R a

to denote that $(b, a) \in R$.

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

Relations as morphisms

Binary relations are typed:

Arrow notation

Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).

A, B are types. Writing $B \stackrel{R}{\longleftarrow} A$ means the same as $A \stackrel{R}{\longrightarrow} B$.

Infix notation

The usual infix notation used in natural language - eg.

John IsFatherOf Mary

— and in maths — eg.

 $0 \le \pi$

— extends to arbitrary $B \stackrel{R}{\longleftarrow} A$: we write

b R a

to denote that $(b, a) \in R$.

Functions are relations

- Lowercase letters (or identifiers starting by one such letter) will denote special relations known as functions, eg. f, g, suc, etc.
- We regard function f : A → B as the binary relation which relates b to a iff b = f a. So,

b f a literally means b = f a

Therefore, we generalize

• So, function *id* is the equality (equivalence) relation:

b id *a* means the same as b = a

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Function composition

extends to $R \cdot S$ in the obvious way:

$$b(R \cdot S)c \iff \langle \exists a :: b R a \land a S c \rangle \tag{9}$$

Note how this rule *removes* quantifier \exists when applied from right to left.

Every relation $B \stackrel{R}{\longleftarrow} A$ has a **converse** $B \stackrel{R^{\circ}}{\longrightarrow} A$ which is such that, for all a, b,

$$a(R^{\circ})b \Leftrightarrow b R a \tag{10}$$

Note that converse commutes with composition

$$(R \cdot S)^{\circ} = S^{\circ} \cdot R^{\circ} \tag{11}$$

and cancels itself

$$(R^{\circ})^{\circ} = R \tag{12}$$

Function converses f°, g° etc. always exist (as **relations**) and enjoy the following (very useful) property:

 $(f \ b)R(g \ a) \Leftrightarrow b(f^{\circ} \cdot R \cdot g)a$ (13)

cf. diagram:

Why *id* (really) matters

Terminology:

- Say *R* is <u>reflexive</u> iff id ⊆ *R* pointwise: (∀ a :: a R a)
- Say *R* is <u>coreflexive</u> iff $R \subseteq id$ pointwise: $\langle \forall b, a : b R a : b = a \rangle$

Define, for $B \leftarrow R \to A$:

Kernel of R	Image of R	
$A \stackrel{\ker R}{\leftarrow} A$	B ≤ B	
$\ker R \triangleq R^{\circ} \cdot R$	$\operatorname{img} R \triangleq R \cdot R^\circ$	

Kernels of functions:

 $a'(\ker f)a$ $\Leftrightarrow \qquad \{ \text{ substitution } \}$ $a'(f^{\circ} \cdot f)a$ $\Leftrightarrow \qquad \{ \text{ PF-transform rule (13) } \}$ (f a') = (f a)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In words: $a'(\ker f)a$ means a' and a "have the same f-image"

Topmost criteria:

Definitions:

	Reflexive	Coreflexive]
ker R	entire R	injective R	(14)
img R	surjective R	simple <i>R</i>	

Facts:

$$\ker(R^\circ) = \operatorname{img} R$$
(15)

$$\operatorname{img}(R^\circ) = \ker R$$
(16)

・ロト ・聞ト ・ヨト ・ヨト

æ

(日)、

Binary relation taxonomy

The whole picture:

Clearly:

- converse of *injective* is *simple* (and vice-versa)
- converse of entire is surjective (and vice-versa)
- smaller than injective (simple) is injective (simple)
- larger than entire (surjective) is entire (surjective)

Functions in one slide

A function f is a binary relation such that

Pointwise	Pointfree		
"Left" Uniquen	ess		
$b f a \wedge b' f a \Rightarrow b = b'$	$\inf f \subseteq id$	(f is simple)	
Leibniz principle			
$a=a' \Rightarrow f a=f a'$	$id \subseteq \ker f$	(f is entire)	

which both together are equivalent to any of "al-gabr" rules

$$f \cdot R \subseteq S \iff R \subseteq f^{\circ} \cdot S \tag{18}$$

$$R \cdot f^{\circ} \subseteq S \iff R \subseteq S \cdot f \tag{19}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Recall calculus of al-gabr and al-muqâbala ¹:

al-gabr $x-z \le y \iff x \le y+z$

$$al-hatt x * z \le y \iff x \le y * z^{-1}$$

(z > 0)

al-muqâbala

Ex: $4x^2 + 3 = 2x^2 + 2x + 6 \iff 2x^2 = 2x + 3$

¹Cf. *Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala* by Abû Al-Huwârizmî, the famous 9c Persian mathematician.

Example: function equality

Equating functions means comparing them in either way:

 $f = g \quad \Leftrightarrow \quad f \subseteq g \quad \Leftrightarrow \quad g \subseteq f \tag{20}$

Calculation:

 $f \subseteq g$ $\Leftrightarrow \qquad \{ \text{ "al-gabr" (18) on } f \}$ $id \subseteq f^{\circ} \cdot g$ $\Leftrightarrow \qquad \{ \text{ "al-gabr" (19) on } g \}$ $g^{\circ} \subseteq f^{\circ}$ $\Leftrightarrow \qquad \{ \text{ converses } \}$ $g \subseteq f$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

・ロト・日本・モート モー うへぐ

A "Laplace transform analog" for logical quantification The pointfree (PF) transform

φ	$PF \phi$
$\langle \exists a :: b R a \land a S c \rangle$	$b(R \cdot S)c$
$\langle \forall a, b :: b R a \Rightarrow b S a \rangle$	$R \subseteq S$
$\langle orall \; a \; :: \; a \; R \; a angle$	$id \subseteq R$
$\langle \forall x :: x \ R \ b \Rightarrow x \ S \ a \rangle$	b(R ∖ S)a
$\langle \forall \ c \ :: \ b \ R \ c \Rightarrow a \ S \ c \rangle$	a(<mark>S / R</mark>)b
b R a \land c S a	$(b,c)\langle R,S\rangle$ a
$b \ R \ a \wedge d \ S \ c$	$(b,d)(R \times S)(a,c)$
$b \ R \ a \wedge b \ S \ a$	b (R ∩ S) a
$b \ R \ a \lor b \ S \ a$	b (R ∪ S) a
(f b) R (g a)	$b(f^{\circ} \cdot R \cdot g)a$
True	$b \top a$
FALSE	$b\perp a$

What do $\langle R, S \rangle$, $R \times S$ etc mean?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Forks for tupling

The **fork** ("split") combinator is essential for transforming predicates holding more than two quantified variables. From the definition,

 $(b,c)\langle R,S
angle a \iff b \ R \ a \wedge c \ S \ a$

which PF-transforms to

$$\langle R, S \rangle = \pi_1^{\circ} \cdot R \cap \pi_2^{\circ} \cdot S$$
 (21)

we infer diagram

and "al-gabr" rule (Galois connection)

 $\pi_1 \cdot X \subseteq R \land \pi_2 \cdot X \subseteq S \quad \Leftrightarrow \quad X \subseteq \langle R, S \rangle$ (22)

Coproducts for "if-then-else'ing"

Define dual ("either") combinator as

From this and the *lub* rule (2) we infer another "al-gabr" rule (Galois connection)

 $[R, S] \subseteq X \quad \Leftrightarrow \quad R \subseteq X \cdot i_1 \land S \subseteq X \cdot i_2 \tag{23}$

In fact, the stronger universal property holds:

$$[R, S] = X \quad \Leftrightarrow \quad R = X \cdot i_1 \land S = X \cdot i_2 \tag{24}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiplying and adding relations

From "fork" and "either" derive

$R \times S$	$\underline{\Delta}$	$\langle R \cdot \pi_1, S \cdot \pi_2 \rangle$	(25)
R+S	=	$[i_1 \cdot R, i_2 \cdot S]$	(26)

whose pointwise meaning is, as given earlier:

$$\begin{array}{c|c}
\phi & PF \phi \\
\hline
a R c \land b S c & (a,b)\langle R,S\rangle c \\
b R a \land d S c & (b,d)(R \times S)(a,c)
\end{array}$$

Absorption properties:

$$\langle R \cdot X, S \cdot Y \rangle = (R \times S) \cdot \langle X, Y \rangle$$

$$[R, S] \cdot (X + Y) = [R \cdot X, S \cdot Y]$$

$$(27)$$

$$(28)$$

From both (22) and (24) we easily infer the exchange law,

 $[\langle R, S \rangle, \langle T, V \rangle] = \langle [R, T], [S, V] \rangle$ (29)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

holding for all relations as in diagram

ontext Kleene algebras Relations Functions + meets × Induction ([_]) meets fork Summing up

Example — inductive definition of \geq over the natural numbers: for all $y, x \in \mathbb{N}_0$, define $\mathbb{N}_0 \xleftarrow{\geq} \mathbb{N}_0$ as the **least** relation satisfying

 $y \ge 0$ $y \ge x \implies (y+1) \ge (x+1)$

Thanks to (13), these clauses PF-transform to

 $T \subseteq \geq \cdot \underline{0}$ $\geq \subseteq suc^{\circ} \cdot \geq \cdot suc$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\underline{0}$ denotes the everywhere 0 constant function.

Least prefix points

We reason:

$$\left\{ \begin{array}{l} \top \quad \subseteq \quad \ge \cdot \underline{0} \\ \ge \quad \subseteq \quad \textit{suc}^{\circ} \cdot \ge \cdot \textit{suc} \end{array} \right.$$

 $\Leftrightarrow \qquad \{ \text{ al-gabr (18) ; coproducts } \}$

 $[\top, \textit{suc} \cdot \ge] \subseteq \ge \cdot [\underline{0}, \textit{suc}]$

 $\Leftrightarrow \qquad \{ \text{ "al-gabr" (19)} \}$

- $[\top \ , \textit{suc} \cdot \geq] \cdot [\underline{0} \ , \textit{suc}]^\circ \ \subseteq \ \geq$
- $\Leftrightarrow \qquad \{ \text{ absorption property (28) } \}$
 - $[\top \ , \textit{suc}] \cdot (\textit{id} + \geq) \cdot [\underline{0} \ , \textit{suc}]^\circ \ \subseteq \ \geq$

In summary: \geq is the least **prefix** point of monotonic function $f X \triangleq [\top, suc] \cdot (id + X) \cdot [\underline{0}, suc]^{\circ}$

Diagrams help

Recognizing $[\underline{0}, suc] = in$ as initial $(1 + _)$ -algebra with carrier N_0 (Peano isomorphism) we draw

Since $[\top, suc]$ uniquely determines \geq (least prefix points are unique, etc), we resort to the popular notation

$$\geq = ([\top, suc])$$
(30)

to express this fact. (See summary of general theory in the sequel.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

+ meets \times

Introducing the $\kappa\alpha\tau\alpha$ combinator

In general, for F a polynomial functor (relator) and $\mu F \stackrel{in}{\leftarrow} F(\mu F)$ initial:

there is a unique solution to equation $X = R \cdot F X \cdot in^{\circ}$ characterized by universal property:

$$X = (|R|) \quad \Leftrightarrow \quad X = R \cdot \mathsf{F} \, X \cdot in^{\circ} \tag{31}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

(Read (|R) as " $\kappa \alpha \tau \alpha R$ ".)

Introducing the $\kappa \alpha \tau \alpha$ combinator

Therefore (cf. Knaster-Tarski) (|R|) is both the least prefix point

 $([R]) \subseteq X \quad \Leftarrow \quad R \cdot \mathsf{F} X \cdot \mathsf{in}^\circ \subseteq X \tag{32}$

and the greatest postfix point:

 $X \subseteq (|R|) \quad \Leftarrow \quad X \subseteq R \cdot \mathsf{F} X \cdot \mathsf{in}^{\circ} \tag{33}$

Corollaries include reflexion,

$$(|in|) = id \tag{34}$$

 $\kappa \alpha \tau \alpha$ -fusion,

 $S \cdot (|R|) \subseteq (|X|) \quad \Leftarrow \quad S \cdot R \subseteq X \cdot \mathsf{F} S \tag{35}$

monotonicity,

$$(|R|) \subseteq (|X|) \quad \Leftarrow \quad R \subseteq X \tag{36}$$

etc.

Context Kleene algebras Relations Functions + meets \times Induction ([-]) meets fork Summing up Why $\kappa lpha au lpha$ s?

- What's the advantage of writing ≥ = ([⊤, suc])? Is it just a matter of style or economy of notation?
- No: think of proving that \geq is **transitive**:

 $\langle \forall x, y, z :: x \ge y \land y \ge z \Rightarrow x \ge z \rangle$

Instead of providing an explicit (inductive) proof, we go *pointfree* and write:

 $\geq \cdot \geq \quad \subseteq \quad \geq$

which instantiates $\kappa \alpha \tau \alpha$ -fusion (35), for $R, X := [\top, suc]$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Thank you, $\kappa \alpha \tau \alpha$ -fusion

We reason:

 $> \cdot > \subset >$ \Leftrightarrow { definition (30) } $> \cdot (|[\top, suc]|) \subseteq (|[\top, suc]|)$ $\{\kappa\alpha\tau\alpha$ -fusion (35) $\}$ \Leftarrow $\geq \cdot [\top, suc] \subseteq [\top, suc] \cdot (id + \geq)$ $\{ coproducts (28, etc) \}$ \Leftrightarrow $> \cdot \top \subset \top \land > \cdot \mathit{suc} \subset \mathit{suc} \cdot >$ { everything is at most \top } \Leftrightarrow $> \cdot suc \subseteq suc \cdot >$ $\Leftarrow \qquad \{ \geq \cdot \operatorname{suc} = \operatorname{suc} \cdot \geq (31) \}$ TRUE

Induction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Direct use of universal property (31) would lead to

$$\geq = ([\top, suc])$$

$$\Leftrightarrow \qquad \{ (31) \}$$

$$\geq \cdot [\underline{0}, suc] = [\top, suc] \cdot (id + \geq)$$

$$\Leftrightarrow \qquad \{ \text{ expand, go pointwise, simplify } \}$$

$$\left\{ \begin{array}{l} y \geq 0 \\ y \geq (x+1) \Leftrightarrow y > 0 \land (y-1) \geq x \end{array} \right.$$

So, the above and our starting (co-inductively flavored) definition

$$y \ge 0$$

$$y \ge x \implies (y+1) \ge (x+1)$$

are equivalent (by construction).

What about $\kappa \alpha \tau \alpha s$ which are forks? We reason:

Relations

 $(\langle R, S \rangle) \subset \langle X, Y \rangle$ \Leftarrow { least prefix point (32) } $\langle R, S \rangle \cdot \mathsf{F} \langle X, Y \rangle \cdot in^{\circ} \subset \langle X, Y \rangle$ $\{$ "al-gabr" rule (22) $\}$ \Leftrightarrow $\begin{cases} \pi_1 \cdot \langle R, S \rangle \cdot \mathsf{F} \langle X, Y \rangle \cdot in^\circ \subseteq X \\ \pi_2 \cdot \langle R, S \rangle \cdot \mathsf{F} \langle X, Y \rangle \cdot in^\circ \subseteq Y \end{cases}$ { $X := \langle R, S \rangle$ in (22); monotonicity } \Leftarrow $\begin{cases} R \cdot F\langle X, Y \rangle \cdot in^{\circ} \subseteq X \\ S \cdot F\langle X, Y \rangle \cdot in^{\circ} \subseteq Y \end{cases}$

(|_) meets fork

Handling mutually recursive relations

• Rule

$$\{ \langle R, S \rangle \} \subseteq \langle X, Y \rangle \quad \Leftarrow \quad \left\{ \begin{array}{l} R \cdot \mathsf{F} \langle X, Y \rangle \cdot in^{\circ} \subseteq X \\ S \cdot \mathsf{F} \langle X, Y \rangle \cdot in^{\circ} \subseteq Y \end{array} \right.$$
(37)

tells us how to combine two mutually recursive relations into a single one.

• In the case of functions (20) we get equivalence

$$\begin{cases} x \cdot in = r \cdot F\langle x, y \rangle \\ y \cdot in = s \cdot F\langle x, y \rangle \end{cases} \Leftrightarrow \langle x, y \rangle = (\langle r, s \rangle)$$
(38)

known as "Fokkinga's mutual recursion theorem" [2].

• Both (37,38) generalize to n > 2 mutually recursive relations (functions) and can be used for program optimization.

- Notice that *in*° plays no special role in the calculation of (37); so it can be replaced by arbitrary (suitably typed) *D*.

(Btw, these are known as *hylomorphisms* [2].)

• For economy of presentation, the example which follows is a direct application of the special case where all relations are functions (38).

Taylor series:

$$e^{x} = \sum_{i=0}^{\infty} \frac{x^{i}}{i!}$$
(39)

Computing finite approximation (*n* terms)

$$e^{x} n = \sum_{i=0}^{n} \frac{x^{i}}{i!}$$
 (40)

takes quadratic time. Wishing to calculate a linear-time algorithm from this mathematical definition, we first head for an inductive definition:

$$e^{x} 0 = 1$$

 $e^{x} (n+1) = \frac{x^{n+1}}{(n+1)!} + \sum_{\substack{i=0\\e^{x} n}}^{n} \frac{x^{i}}{i!}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example — exponential function

We thus get primitive recursive definition

 $e^{x} 0 = 1$ $e^{x} (n+1) = h_{x}n + e^{x} n$ where $h_{x}n$ unfolds to $\frac{x^{n+1}}{(n+1)!} = \frac{x}{n+1} \frac{x^{n}}{n!}$. Therefore: $h_{x}0 = x$ $h_{x}(n+1) = \frac{x}{n+2}(h_{x}n)$

Introducing s2 n = n + 2, we derive:

$$s2 \ 0 = 2$$

 $s2(n+1) = 1 + s2 \ n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example — exponential function

We can thus put e^{\times} , s^2 and h_{\times} together in a system of three mutually recursive functions e^{\times} , s^2_{\times} and h_{\times} over the naturals, which PF-transform to

$$e^{x} \cdot in = \underbrace{\left[\underline{1}, (+) \cdot \langle \pi_{1}, \pi_{2} \cdot \pi_{2} \rangle\right]}_{r} \cdot \mathsf{F} \langle e^{x}, \langle s2_{x}, h_{x} \rangle \rangle$$

$$s2_{x} \cdot in = \underbrace{\left[\underline{2}, suc \cdot \pi_{1} \cdot \pi_{2}\right]}_{s} \cdot \mathsf{F} \langle e^{x}, \langle s2_{x}, h_{x} \rangle \rangle$$

$$h_{x} \cdot in = \underbrace{\left[\underline{x}, (*) \cdot ((x/) \times id) \cdot \pi_{2}\right]}_{t} \cdot \mathsf{F} \langle e^{x}, \langle s2_{x}, h_{x} \rangle \rangle$$

respectively, for

$$in = [\underline{0}, suc]$$

F X = $id + X$

From this system we obtain, thanks to the mutual recursion law (38)

$$aux_{x} \triangleq \langle e^{x}, \langle s2_{x}, h_{x} \rangle \rangle$$
$$= \{ (38) \}$$
$$(\langle r, \langle s, t \rangle \rangle)$$

for

$$r = [\underline{1}, (+) \cdot \langle \pi_1, \pi_2 \cdot \pi_2 \rangle]$$

$$s = [\underline{2}, suc \cdot \pi_1 \cdot \pi_2]$$

$$t = [\underline{x}, \underbrace{(*) \cdot ((x/) \times id) \cdot \pi_2}_{u}]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Next we apply the exchange law (29) to $\langle r, \langle s, t \rangle \rangle$ (twice):

 $\langle r, \langle s, t \rangle \rangle = [\langle \underline{1}, \langle \underline{2}, \underline{x} \rangle \rangle, \langle (+) \cdot \langle \pi_1, \pi_2 \cdot \pi_2 \rangle, \langle suc \cdot \pi_1 \cdot \pi_2, u \rangle \rangle]$

Thanks to universal properties (31) and (22)² we obtain

$$\begin{aligned} aux_{x} \cdot \underline{0} &= \langle \underline{1}, \langle \underline{2}, \underline{x} \rangle \rangle \\ aux_{x} \cdot suc &= \langle (+) \cdot \langle \pi_{1}, \pi_{2} \cdot \pi_{2} \rangle, \langle suc \cdot \pi_{1} \cdot \pi_{2}, u \rangle \rangle \cdot aux_{x} \\ e^{x} &= \pi_{1} \cdot aux_{x} \end{aligned}$$

that is, we have calculated linear implementation

²For functions.

which can be identified as the denotational semantics of a while loop, encoded below in the C programming language:

```
float exp(float x, int n)
{
   float e=1; int s=2; float h=x; int i;
   for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}
   return e;
};</pre>
```

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Summing up

- Algebra of Programming (AoP): calculating ("correct by construction") programs from specifications
- Pointfree notation: Tarski's set theory without variables [7]
- Kleene algebra of (typed) relations: arrows (not points) provide further structure while ensuring type checking
- Ut faciant opus signa:

[Symbolisms] "have invariably been introduced to make things easy. [...] by the aid of symbolism, we can make transitions in reasoning almost mechanically by the eye, which otherwise would call into play the higher faculties of the brain. [...] Civilisation advances by extending the number of important operations which can be performed without thinking about them."

(Alfred Whitehead, 1911)

Despite textbooks such as [2], **Algebra of Programming** is still land of nobody. Why?

- Software theorists: too busy with their pre-scientific theories (if any)
- Algebraists: not sufficiently aware of program construction as a mathematical discipline
- Both: the required background (categories, allegories, etc) is most often found missing from undergrad curricula.

Selected topic of interest

- Pointfree notations are emerging elsewhere in the context of eg. digital signal processing (SPIRAL project, CMU [6]) which abstract linear signal transforms in terms of (index-free) matrix operators.
- Kleene algebras scale up to the corresponding matrix Kleene algebras [1]
- Parallel with relational algebra is obvious.
- Following a similar path, we want to investigate the "matrices as arrows" approach purported by **categories of matrices** (PhD project).
- We believe a better (typed!) calculus of (Kleene) matrix algebras will emerge which will improve reasoning about linear transforms in DSP, divide-and-conquer algorithms, etc.

ontext Kleene algebras

Relations

Functions

+ meets \times

Induction

(|_) meets fork

Summing up

References

+ meets imes

Induction

(|_|) meets fork

Summing up

R.C. Backhouse.

Mathematics of Program Construction. Univ. of Nottingham, 2004. Draft of book in preparation. 608 pages.

- R. Bird and O. de Moor.
 Algebra of Programming.
 Series in Computer Science. Prentice-Hall International, 1997.
- J. Desharnais and G. Struth. Domain axioms for a family of near-semirings. In *AMAST*, pages 330–345. 2008.
- P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of Mathematical Library. North-Holland, 1990.

Dexter Kozen.

A completeness theorem for Kleene algebras and the algebra of regular events., 1994.

Information and Computation, 110(2):366-390 B . CENCE . SO

Context

Functions

+ meets \times

duction

fork Summing up

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel.

Formal datapath representation and manipulation for implementing DSP transforms. In *DAC*, pages 385–390, 2008.

A. Tarski and S. Givant.

A Formalization of Set Theory without Variables.

American Mathematical Society, 1987.

AMS Colloquium Publications, volume 41, Providence, Rhode Island.