
Relational algebra: a Kleene algebra central to
the mathematics of program construction

J.N. Oliveira

Dept. Informática,
Universidade do Minho

Braga, Portugal

II Jornadas Luso-Galegas de Álgebra e Computação
Braga, 10-10-2008

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

On maths and computing

Interaction between maths and computing:

• computers helping maths: theorem proving, computational
maths etc

• maths helping computing: many examples, among which the
algebra of programming (AoP)

While the former are widely acknowledged, among the latter AoP
is known only to the initiated.

• This talk aims at framing AoP in its proper algebraic context
while showing its relevance to program construction.

It all starts from semirings of computations [3]...

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

On maths and computing

Interaction between maths and computing:

• computers helping maths: theorem proving, computational
maths etc

• maths helping computing: many examples, among which the
algebra of programming (AoP)

While the former are widely acknowledged, among the latter AoP
is known only to the initiated.

• This talk aims at framing AoP in its proper algebraic context
while showing its relevance to program construction.

It all starts from semirings of computations [3]...

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Semirings of computations

Abstract notion of a computation:

Semiring (S ,+, ·, 0, 1) inhabited by computations (eg.
instructions, statements) where

• x · y (usually abbreviated to xy) captures
sequencing

• x + y captures choice (alternation)
• 0 means death
• 1 means skip (do nothing)

Technically:

• (S , ·, 1) is a monoid

• (S ,+, 0) is a Abelian monoid

• (·) distributes over (+)

• 0 annihilates (·)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Idempotency

• If x + x = x holds for all x , then

x ≤ y
def
= x + y = y (1)

is a partial order.

• Clearly, 0 ≤ x for all x and (+) is the lub with respect to ≤:

x + y ≤ z ⇔ x ≤ z ∧ y ≤ z (2)

NB: z := x + y in (2) means x + y is upper bound; ⇐ means
it is the least upper bound (lub).

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Kleene algebras

A Kleene algebra [5] adds to semiring (S ,+, ·, 0, 1) the Kleene star
operator (∗) such that

y + x(x∗y) ≤ x∗y (3)

y + (yx∗)x ≤ yx∗ (4)

and

y + xz ≤ z ⇒ x∗y ≤ z (5)

y + zx ≤ z ⇒ yx∗ ≤ z (6)

These basically establish x∗y and yx∗ as prefix points of
(monotonic) functions (y + x ·) and (y + · x), respectively.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

KATs (tests and domains)
KAT = Kleene algebra with tests

• every p below 1 (p ≤ 1) is a test and such that, for every
such p there is ¬p (the complement of p) such that

p + ¬p = 1

p · ¬p = 0 = ¬p · p

• Recent addition to semirings (inc. KATs) of a domain
operator d(x) capturing “enabledness” and satisfying axioms

d(x) ≤ 1

d(0) = 0

d(x + y) = d(x) + d(y)

d(xy) = d(x d(y))

x ≤ d(x)x

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Binary relations

The algebra of binary relations is a well known KAT:

KAT Binary relations Description
x · y R · S composition

x + y R ∪ S union
0 ⊥ empty relation
1 id identity relation

x ≤ y R ⊆ S inclusion
p,¬p R ⊆ id , ¬R = id − R coreflexive relations
d(x) δ R domain of R

Moreover, they form a complete, distributive lattice once glbs

X ⊆ R ∩ S ⇔ (X ⊆ R) ∧ (X ⊆ S) (7)

and supremum > are added.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

How useful are binary relations?

• Not much if regarded merely as “sets of pairs”

• Very useful indeed — as a device for the algebraization of
logic — if regarded as “arrows” ie. morphisms of a particular
allegory [4]

• Arrows bring about a type discipline which leads to good
things such as parametric polymorphism, etc etc

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Relations as morphisms
Binary relations are typed:

Arrow notation
Arrow A

R // B denotes a binary relation from A (source) to B
(target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation
The usual infix notation used in natural language — eg.

John IsFatherOf Mary

— and in maths — eg.
0 ≤ π

— extends to arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Relations as morphisms
Binary relations are typed:

Arrow notation
Arrow A

R // B denotes a binary relation from A (source) to B
(target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation
The usual infix notation used in natural language — eg.

John IsFatherOf Mary

— and in maths — eg.
0 ≤ π

— extends to arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Functions are relations

• Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , suc , etc.

• We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a

• Therefore, we generalize

B A
foo

b = f a

to B A
Roo

b R a

• So, function id is the equality (equivalence) relation:

b id a means the same as b = a

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Composition

Function composition

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(8)

extends to R · S in the obvious way:

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (9)

Note how this rule removes quantifier ∃ when applied from right to
left.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Converses

Every relation B A
Roo has a converse B

R◦ // A which is
such that, for all a, b,

a(R◦)b ⇔ b R a (10)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (11)

and cancels itself

(R◦)◦ = R (12)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful) property:

(f b)R(g a) ⇔ b(f ◦ · R · g)a (13)

cf. diagram:

C D
Roo

B

f

OO

A

g

OO

f ◦·R·g
oo

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉

• Say R is coreflexive iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉

Define, for B A
Roo :

Kernel of R Image of R

A A
kerRoo B B

imgRoo

ker R 4 R◦ · R img R 4 R · R◦

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example

Kernels of functions:

a′(ker f)a

⇔ { substitution }

a′(f ◦ · f)a

⇔ { PF-transform rule (13) }

(f a′) = (f a)

In words: a′(ker f)a means a′ and a “have the same f -image”

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Binary relation taxonomy
Topmost criteria:

binary relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(14)

Facts:

ker (R◦) = img R (15)

img (R◦) = ker R (16)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Binary relation taxonomy

The whole picture:

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

(17)

Clearly:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Functions in one slide

A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

which both together are equivalent to any of “al-gabr” rules

f · R ⊆ S ⇔ R ⊆ f ◦ · S (18)

R · f ◦ ⊆ S ⇔ R ⊆ S · f (19)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

“Al-gabr” rules?

Recall calculus of al-gabr and al-muqâbala 1:

al-gabr
x − z ≤ y ⇔ x ≤ y + z

al-hatt
x ∗ z ≤ y ⇔ x ≤ y ∗ z−1

(z > 0)

al-muqâbala

Ex:
4x2 + 3 = 2x2 + 2x + 6 ⇔ 2x2 = 2x + 3

1Cf. Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala by Abû Al-Huwârizm̂ı,
the famous 9c Persian mathematician.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example: function equality

Equating functions means comparing them in either way:

f = g ⇔ f ⊆ g ⇔ g ⊆ f (20)

Calculation:

f ⊆ g

⇔ { “al-gabr” (18) on f }

id ⊆ f ◦ · g
⇔ { “al-gabr” (19) on g }

g◦ ⊆ f ◦

⇔ { converses }

g ⊆ f

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

A “Laplace transform analog” for logical quantification

The pointfree (PF) transform

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b :: b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
〈∀ x :: x R b⇒ x S a〉 b(R \ S)a
〈∀ c :: b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R, S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b > a
False b ⊥ a

What do 〈R,S〉, R × S etc mean?

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Forks for tupling
The fork (“split”) combinator is essential for transforming
predicates holding more than two quantified variables. From the
definition,

(b, c)〈R, S〉a ⇔ b R a ∧ c S a

which PF-transforms to

〈R,S〉 = π◦1 · R ∩ π◦2 · S (21)

we infer diagram

A A× B
π1oo π2 // B

C
R

ff

〈R,S〉

OO

S

88

and “al-gabr” rule (Galois connection)

π1 · X ⊆ R ∧ π2 · X ⊆ S ⇔ X ⊆ 〈R,S〉 (22)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Coproducts for “if-then-else’ing”

Define dual (“either”) combinator as

[R ,S] = (R · i◦1) ∪ (S · i◦2) cf. A
i1 //

R
&&

A + B

[R ,S]
��

B
i2oo

S
xx

C

From this and the lub rule (2) we infer another “al-gabr” rule
(Galois connection)

[R ,S] ⊆ X ⇔ R ⊆ X · i1 ∧ S ⊆ X · i2 (23)

In fact, the stronger universal property holds:

[R ,S] = X ⇔ R = X · i1 ∧ S = X · i2 (24)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Multiplying and adding relations

From “fork” and “either” derive

R × S 4 〈R · π1,S · π2〉 (25)

R + S = [i1 · R , i2 · S] (26)

whose pointwise meaning is, as given earlier:

φ PF φ

a R c ∧ b S c (a, b)〈R,S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

Absorption properties:

〈R · X , S · Y 〉 = (R × S) · 〈X ,Y 〉 (27)

[R ,S] · (X + Y) = [R · X ,S · Y] (28)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

+ meets ×

From both (22) and (24) we easily infer the exchange law,

[〈R, S〉 , 〈T ,V 〉] = 〈[R ,T], [S ,V]〉 (29)

holding for all relations as in diagram

A
i1 //

R
�� S

))

A + B B
T

uu

V
��

i2oo

C C × Dπ1

oo
π2

// D

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Inductive relations

Example — inductive definition of ≥ over the natural numbers: for

all y , x ∈ IN0, define IN0 IN0
≥oo as the least relation satisfying

y ≥ 0

y ≥ x ⇒ (y + 1) ≥ (x + 1)

Thanks to (13), these clauses PF-transform to

> ⊆ ≥ · 0
≥ ⊆ suc◦ · ≥ · suc

where 0 denotes the everywhere 0 constant function.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Least prefix points
We reason: {

> ⊆ ≥ · 0
≥ ⊆ suc◦ · ≥ · suc

⇔ { al-gabr (18) ; coproducts }

[> , suc · ≥] ⊆ ≥ · [0 , suc]

⇔ { “al-gabr” (19) }

[> , suc · ≥] · [0 , suc]◦ ⊆ ≥

⇔ { absorption property (28) }

[> , suc] · (id +≥) · [0 , suc]◦ ⊆ ≥

In summary: ≥ is the least prefix point of monotonic function

f X 4 [> , suc] · (id + X) · [0 , suc]◦

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Diagrams help

Recognizing [0 , suc] = in as initial (1 +)-algebra with carrier N0

(Peano isomorphism) we draw

IN0

≥

��

in◦
**

∼= 1 + IN0

id+≥

��

in

hh

⊇

IN0 1 + IN0
[> ,suc]

oo

[> , suc] · (id +≥) ⊆ ≥ · in

Since [> , suc] uniquely determines ≥ (least prefix points are
unique, etc), we resort to the popular notation

≥ = (|[> , suc]|) (30)

to express this fact. (See summary of general theory in the sequel.)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Introducing the κατα combinator

In general, for F a polynomial functor (relator) and

µF F(µF)
inoo initial:

µF

(|R|)
��

in◦

**∼= F(µF)

F(|R|)
��

in

hh

A F A
R

oo

there is a unique solution to equation X = R · F X · in◦
characterized by universal property:

X = (|R|) ⇔ X = R · F X · in◦ (31)

(Read (|R|) as “κατα R”.)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Introducing the κατα combinator
Therefore (cf. Knaster-Tarski) (|R|) is both the least prefix point

(|R|) ⊆ X ⇐ R · F X · in◦ ⊆ X (32)

and the greatest postfix point:

X ⊆ (|R|) ⇐ X ⊆ R · F X · in◦ (33)

Corollaries include reflexion,

(|in|) = id (34)

κατα-fusion,

S · (|R|) ⊆ (|X |) ⇐ S · R ⊆ X · F S (35)

monotonicity,

(|R|) ⊆ (|X |) ⇐ R ⊆ X (36)

etc.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Why καταs?

• What’s the advantage of writing ≥ = (|[> , suc]|)? Is it just a
matter of style or economy of notation?

• No: think of proving that ≥ is transitive:

〈∀ x , y , z :: x ≥ y ∧ y ≥ z ⇒ x ≥ z〉

Instead of providing an explicit (inductive) proof, we go
pointfree and write:

≥ · ≥ ⊆ ≥

which instantiates κατα-fusion (35), for R,X := [> , suc].

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Thank you, κατα-fusion
We reason:

≥ · ≥ ⊆ ≥
⇔ { definition (30) }

≥ · (|[> , suc]|) ⊆ (|[> , suc]|)

⇐ { κατα-fusion (35) }

≥ · [> , suc] ⊆ [> , suc] · (id +≥)

⇔ { coproducts (28, etc) }

≥ · > ⊆ > ∧ ≥ · suc ⊆ suc · ≥
⇔ { everything is at most > }
≥ · suc ⊆ suc · ≥

⇐ { ≥ · suc = suc · ≥ (31) }

True

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

By the way

Direct use of universal property (31) would lead to

≥ = (|[> , suc]|)

⇔ { (31) }

≥ · [0 , suc] = [> , suc] · (id +≥)

⇔ { expand, go pointwise, simplify }{
y ≥ 0
y ≥ (x + 1)⇔ y > 0 ∧ (y − 1) ≥ x

So, the above and our starting (co-inductively flavored) definition

y ≥ 0

y ≥ x ⇒ (y + 1) ≥ (x + 1)

are equivalent (by construction).

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

κατα meets fork

What about καταs which are forks? We reason:

(|〈R,S〉|) ⊆ 〈X ,Y 〉

⇐ { least prefix point (32) }

〈R,S〉 · F〈X ,Y 〉 · in◦ ⊆ 〈X ,Y 〉

⇔ { “al-gabr” rule (22) }{
π1 · 〈R,S〉 · F〈X ,Y 〉 · in◦ ⊆ X
π2 · 〈R,S〉 · F〈X ,Y 〉 · in◦ ⊆ Y

⇐ { X := 〈R,S〉 in (22); monotonicity }{
R · F〈X ,Y 〉 · in◦ ⊆ X
S · F〈X ,Y 〉 · in◦ ⊆ Y

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Handling mutually recursive relations

• Rule

(|〈R,S〉|) ⊆ 〈X ,Y 〉 ⇐
{

R · F〈X ,Y 〉 · in◦ ⊆ X
S · F〈X ,Y 〉 · in◦ ⊆ Y

(37)

tells us how to combine two mutually recursive relations into a
single one.

• In the case of functions (20) we get equivalence{
x · in = r · F〈x , y〉
y · in = s · F〈x , y〉 ⇔ 〈x , y〉 = (|〈r , s〉|) (38)

known as “Fokkinga’s mutual recursion theorem” [2].

• Both (37,38) generalize to n > 2 mutually recursive relations
(functions) and can be used for program optimization.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Handling mutually recursive relations

• Notice that in◦ plays no special role in the calculation of (37);
so it can be replaced by arbitrary (suitably typed) D.

• This generalizes rule (37) to divide-and-conquer algorithms
described by recursive relations which are fixpoints of
f X 4 R · (F X) ·D, where R describes the conquer step and
D the divide step.
(Btw, these are known as hylomorphisms [2].)

• For economy of presentation, the example which follows is a
direct application of the special case where all relations are
functions (38).

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function
Taylor series:

ex =
∞∑
i=0

x i

i !
(39)

Computing finite approximation (n terms)

ex n =
n∑

i=0

x i

i !
(40)

takes quadratic time. Wishing to calculate a linear-time algorithm
from this mathematical definition, we first head for an inductive
definition:

ex 0 = 1

ex (n + 1) =
xn+1

(n + 1)!︸ ︷︷ ︸
hxn

+
n∑

i=0

x i

i !︸ ︷︷ ︸
ex n

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

We thus get primitive recursive definition

ex 0 = 1

ex (n + 1) = hxn + ex n

where hxn unfolds to xn+1

(n+1)! = x
n+1

xn

n! . Therefore:

hx0 = x

hx(n + 1) =
x

n + 2
(hxn)

Introducing s2 n = n + 2, we derive:

s2 0 = 2

s2(n + 1) = 1 + s2 n

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function
We can thus put ex , s2 and hx together in a system of three
mutually recursive functions ex , s2x and hx over the naturals,
which PF-transform to

ex · in = [1 , (+) · 〈π1, π2 · π2〉]︸ ︷︷ ︸
r

·F〈ex , 〈s2x , hx〉〉

s2x · in = [2 , suc · π1 · π2]︸ ︷︷ ︸
s

·F〈ex , 〈s2x , hx〉〉

hx · in = [x , (∗) · ((x/)× id) · π2]︸ ︷︷ ︸
t

·F〈ex , 〈s2x , hx〉〉

respectively, for

in = [0 , suc]

F X = id + X

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

From this system we obtain, thanks to the mutual recursion law
(38)

auxx 4 〈ex , 〈s2x , hx〉〉

= { (38) }

(|〈r , 〈s, t〉〉|)

for

r = [1 , (+) · 〈π1, π2 · π2〉]
s = [2 , suc · π1 · π2]

t = [x , (∗) · ((x/)× id) · π2︸ ︷︷ ︸
u

]

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

Next we apply the exchange law (29) to 〈r , 〈s, t〉〉 (twice):

〈r , 〈s, t〉〉 = [〈1, 〈2, x〉〉 , 〈(+) · 〈π1, π2 · π2〉, 〈suc · π1 · π2, u〉〉]

Thanks to universal properties (31) and (22) 2 we obtain

auxx · 0 = 〈1, 〈2, x〉〉
auxx · suc = 〈(+) · 〈π1, π2 · π2〉, 〈suc · π1 · π2, u〉〉 · auxx

ex = π1 · auxx

that is, we have calculated linear implementation

2For functions.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function

exp x n = let (e,b,c) = aux x n

in e where

aux x 0 = (1,2,x)

aux x (i+1) = let (e,s,h) = aux x i

in (e+h,s+1,(x/s)*h)

which can be identified as the denotational semantics of a while
loop, encoded below in the C programming language:

float exp(float x, int n)

{

float e=1; int s=2; float h=x; int i;

for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}

return e;

};

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Summing up

• Algebra of Programming (AoP): calculating (“correct by
construction”) programs from specifications

• Pointfree notation: Tarski’s set theory without variables [7]

• Kleene algebra of (typed) relations: arrows (not points)
provide further structure while ensuring type checking

• Ut faciant opus signa:

[Symbolisms] “have invariably been introduced to make
things easy. [...] by the aid of symbolism, we can make
transitions in reasoning almost mechanically by the eye,
which otherwise would call into play the higher faculties
of the brain. [...] Civilisation advances by extending the
number of important operations which can be performed
without thinking about them.”

(Alfred Whitehead, 1911)

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

However

Despite textbooks such as [2], Algebra of Programming is still
land of nobody. Why?

• Software theorists: too busy with their pre-scientific theories
(if any)

• Algebraists: not sufficiently aware of program construction as
a mathematical discipline

• Both: the required background (categories, allegories, etc) is
most often found missing from undergrad curricula.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Selected topic of interest

• Pointfree notations are emerging elsewhere in the context of
eg. digital signal processing (SPIRAL project, CMU [6]) which
abstract linear signal transforms in terms of (index-free)
matrix operators.

• Kleene algebras scale up to the corresponding matrix Kleene
algebras [1]

• Parallel with relational algebra is obvious.

• Following a similar path, we want to investigate the “matrices
as arrows” approach purported by categories of matrices
(PhD project).

• We believe a better (typed!) calculus of (Kleene) matrix
algebras will emerge which will improve reasoning about linear
transforms in DSP, divide-and-conquer algorithms, etc.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

References

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

R.C. Backhouse.
Mathematics of Program Construction.
Univ. of Nottingham, 2004.
Draft of book in preparation. 608 pages.

R. Bird and O. de Moor.
Algebra of Programming.
Series in Computer Science. Prentice-Hall International, 1997.

J. Desharnais and G. Struth.
Domain axioms for a family of near-semirings.
In AMAST, pages 330–345. 2008.

P.J. Freyd and A. Scedrov.
Categories, Allegories, volume 39 of Mathematical Library.
North-Holland, 1990.

Dexter Kozen.
A completeness theorem for Kleene algebras and the algebra of
regular events., 1994.
Information and Computation, 110(2):366-390.

Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus
Püschel.
Formal datapath representation and manipulation for
implementing DSP transforms.
In DAC, pages 385–390, 2008.

A. Tarski and S. Givant.
A Formalization of Set Theory without Variables.
American Mathematical Society, 1987.
AMS Colloquium Publications, volume 41, Providence, Rhode
Island.

	Context
	Kleene algebras
	Relations
	Functions
	+ meets
	Induction
	(|_|) meets fork
	Summing up

