Relational algebra: a Kleene algebra central to the mathematics of program construction

J.N. Oliveira
Dept. Informática, Universidade do Minho
Braga, Portugal

II Jornadas Luso-Galegas de Álgebra e Computação
Braga, 10-10-2008

On maths and computing

Interaction between maths and computing:

- computers helping maths: theorem proving, computational maths etc
- maths helping computing: many examples, among which the algebra of programming (AoP)
While the former are widely acknowledged, among the latter AoP is known only to the initiated.
- This talk aims at framing AoP in its proper algebraic context while showing its relevance to program construction.

On maths and computing

Interaction between maths and computing:

- computers helping maths: theorem proving, computational maths etc
- maths helping computing: many examples, among which the algebra of programming (AoP)
While the former are widely acknowledged, among the latter AoP is known only to the initiated.
- This talk aims at framing AoP in its proper algebraic context while showing its relevance to program construction.

It all starts from semirings of computations [3]...

Semirings of computations

Abstract notion of a computation:
Semiring ($S,+, \cdot, 0,1$) inhabited by computations (eg. instructions, statements) where

- $x \cdot y$ (usually abbreviated to xy) captures sequencing
- $x+y$ captures choice (alternation)
- 0 means death
- 1 means skip (do nothing)

Technically:

- $(S, \cdot, 1)$ is a monoid
- $(S,+, 0)$ is a Abelian monoid
- (\cdot) distributes over $(+)$
- 0 annihilates (.)

Idempotency

- If $x+x=x$ holds for all x, then

$$
\begin{equation*}
x \leq y \stackrel{\text { def }}{=} x+y=y \tag{1}
\end{equation*}
$$

is a partial order.

- Clearly, $0 \leq x$ for all x and $(+)$ is the lub with respect to \leq :

$$
\begin{equation*}
x+y \leq z \quad \Leftrightarrow \quad x \leq z \wedge y \leq z \tag{2}
\end{equation*}
$$

NB: $z:=x+y$ in (2) means $x+y$ is upper bound; \Leftarrow means it is the least upper bound (lub).

Kleene algebras

A Kleene algebra [5] adds to semiring $(S,+, \cdot, 0,1)$ the Kleene star operator (*) such that

$$
\begin{align*}
y+x\left(x^{*} y\right) & \leq x^{*} y \tag{3}\\
y+\left(y x^{*}\right) x & \leq y x^{*} \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& y+x z \leq z \quad \Rightarrow \quad x^{*} y \leq z \tag{5}\\
& y+z x \leq z \quad \Rightarrow \quad y x^{*} \leq z \tag{6}
\end{align*}
$$

These basically establish $x^{*} y$ and $y x^{*}$ as prefix points of (monotonic) functions $\left(y+x \cdot{ }_{-}\right)$and $\left(y+_{-} \cdot x\right)$, respectively.

KATs (tests and domains)

$\mathrm{KAT}=$ Kleene algebra with tests

- every p below $1(p \leq 1)$ is a test and such that, for every such p there is $\neg p$ (the complement of p) such that

$$
\begin{gathered}
p+\neg p=1 \\
p \cdot \neg p=0=\neg p \cdot p
\end{gathered}
$$

- Recent addition to semirings (inc. KATs) of a domain operator $d(x)$ capturing "enabledness" and satisfying axioms

$$
\begin{aligned}
d(x) & \leq 1 \\
d(0) & =0 \\
d(x+y) & =d(x)+d(y) \\
d(x y) & =d(x d(y)) \\
x & \leq d(x) x
\end{aligned}
$$

Binary relations

The algebra of binary relations is a well known KAT:

KAT	Binary relations	Description
$x \cdot y$	$R \cdot S$	composition
$x+y$	$R \cup S$	union
0	\perp	empty relation
1	$i d$	identity relation
$x \leq y$	$R \subseteq S$	inclusion
$p, \neg p$	$R \subseteq i d, \neg R=i d-R$	coreflexive relations
$d(x)$	δR	domain of R

Moreover, they form a complete, distributive lattice once glbs

$$
\begin{equation*}
X \subseteq R \cap S \Leftrightarrow(X \subseteq R) \wedge(X \subseteq S) \tag{7}
\end{equation*}
$$

and supremum T are added.

How useful are binary relations?

- Not much if regarded merely as "sets of pairs"
- Very useful indeed - as a device for the algebraization of logic - if regarded as "arrows" ie. morphisms of a particular allegory [4]
- Arrows bring about a type discipline which leads to good things such as parametric polymorphism, etc etc

Relations as morphisms

Binary relations are typed:
Arrow notation
Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).
A, B are types. Writing $B \stackrel{R}{\gtrless}_{\Vdash^{R}} A$ means the same as $A \xrightarrow{R} B$.
 John IsFatherOf Mary

to denote that $(b, a) \in R$.

Relations as morphisms

Binary relations are typed:
Arrow notation
Arrow $A \xrightarrow{R} B$ denotes a binary relation from A (source) to B (target).
A, B are types. Writing $B \stackrel{R}{R}_{L^{2}} A$ means the same as $A \xrightarrow{R} B$.
Infix notation
The usual infix notation used in natural language - eg.
John IsFatherOf Mary
— and in maths - eg.

$$
0 \leq \pi
$$

- extends to arbitrary $B<^{R} A$: we write

$$
b R a
$$

to denote that $(b, a) \in R$.

Functions are relations

- Lowercase letters (or identifiers starting by one such letter) will denote special relations known as functions, eg. f, g, suc, etc.
- We regard function $f: A \longrightarrow B$ as the binary relation which relates b to a iff $b=f a$. So,

$$
b f \text { a literally means } b=f a
$$

- Therefore, we generalize

to

$$
B \underset{b R a}{\underset{b}{R}} A
$$

- So, function id is the equality (equivalence) relation:

$$
b \text { id } a \text { means the same as } b=a
$$

Composition

Function composition

$$
\begin{aligned}
& b=f(g c)
\end{aligned}
$$

extends to $R \cdot S$ in the obvious way:

$$
\begin{equation*}
b(R \cdot S) c \Leftrightarrow\langle\exists a:: b R a \wedge a S c\rangle \tag{9}
\end{equation*}
$$

Note how this rule removes quantifier \exists when applied from right to left.

Converses

Every relation $B \stackrel{R}{\longleftarrow} A$ has a converse $B \xrightarrow{R^{\circ}} A$ which is such that, for all a, b,

$$
\begin{equation*}
a\left(R^{\circ}\right) b \Leftrightarrow b R a \tag{10}
\end{equation*}
$$

Note that converse commutes with composition

$$
\begin{equation*}
(R \cdot S)^{\circ}=S^{\circ} \cdot R^{\circ} \tag{11}
\end{equation*}
$$

and cancels itself

$$
\begin{equation*}
\left(R^{\circ}\right)^{\circ}=R \tag{12}
\end{equation*}
$$

Function converses

Function converses f°, g° etc. always exist (as relations) and enjoy the following (very useful) property:

$$
\begin{equation*}
(f b) R(g a) \Leftrightarrow b\left(f^{\circ} \cdot R \cdot g\right) a \tag{13}
\end{equation*}
$$

cf. diagram:

Why id (really) matters

Terminology:

- Say R is reflexive iff id $\subseteq R$ pointwise: $\quad\langle\forall$ a $::$ a R a \rangle
- Say R is coreflexive iff $R \subseteq i d$
pointwise: $\quad\langle\forall b, a: b R a: b=a\rangle$

Define, for $B<^{R} A$:

Kernel of R	Image of R
A R}A 	$\operatorname{img} R$ $\operatorname{img} R \triangleq R$

Example

Kernels of functions:

$$
\begin{array}{lc}
& a^{\prime}(\operatorname{ker} f) a \\
\Leftrightarrow & \{\text { substitution }\} \\
& a^{\prime}\left(f^{\circ} \cdot f\right) a \\
\Leftrightarrow & \{\text { PF-transform rule (13) }\} \\
& \left(f \quad a^{\prime}\right)=\left(\begin{array}{ll}
f & a
\end{array}\right)
\end{array}
$$

In words: $a^{\prime}(\operatorname{ker} f) a$ means a^{\prime} and a "have the same f-image"

Binary relation taxonomy

Topmost criteria:

Definitions:

	Reflexive	Coreflexive
$\operatorname{ker} R$	entire R	injective R
$\operatorname{img} R$	surjective R	simple R

Facts:

$$
\begin{align*}
\operatorname{ker}\left(R^{\circ}\right) & =\operatorname{img} R \tag{15}\\
\operatorname{img}\left(R^{\circ}\right) & =\operatorname{ker} R \tag{16}
\end{align*}
$$

Binary relation taxonomy

The whole picture:

Clearly:

- converse of injective is simple (and vice-versa)
- converse of entire is surjective (and vice-versa)
- smaller than injective (simple) is injective (simple)
- larger than entire (surjective) is entire (surjective)

Functions in one slide

A function f is a binary relation such that

which both together are equivalent to any of "al-gabr" rules

$$
\begin{align*}
& f \cdot R \subseteq S \Leftrightarrow R \subseteq f^{\circ} \cdot S \tag{18}\\
& R \cdot f^{\circ} \subseteq S \Leftrightarrow R \subseteq S \cdot f \tag{19}
\end{align*}
$$

"Al-gabr" rules?

Recall calculus of al-gabr and al-muqâbala ${ }^{1}$:
al-gabr

$$
x-z \leq y \quad \Leftrightarrow \quad x \leq y+z
$$

al-hatt

$$
\begin{equation*}
x * z \leq y \quad \Leftrightarrow \quad x \leq y * z^{-1} \tag{z>0}
\end{equation*}
$$

al-muqâbala
Ex:

$$
4 x^{2}+3=2 x^{2}+2 x+6 \Leftrightarrow 2 x^{2}=2 x+3
$$

${ }^{1}$ Cf. Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala by Abû Al-Huwârizmî, the famous 9c Persian mathematician.

Example: function equality

Equating functions means comparing them in either way:

$$
\begin{equation*}
f=g \quad \Leftrightarrow \quad f \subseteq g \quad \Leftrightarrow \quad g \subseteq f \tag{20}
\end{equation*}
$$

Calculation:

$$
\begin{array}{lc}
& f \subseteq g \\
\Leftrightarrow & \\
& \quad\{\text { "al-gabr" (18) on } f\} \\
& i d \subseteq f^{\circ} \cdot g \\
\Leftrightarrow & \quad\{\text { "al-gabr" (19) on } g\} \\
& g^{\circ} \subseteq f^{\circ} \\
\Leftrightarrow & \\
& \\
& \\
& g \subseteq f
\end{array}
$$

A "Laplace transform analog" for logical quantification
The pointfree (PF) transform

ϕ	$P F \phi$
$\langle\exists a:: b R a \wedge a S c\rangle$	$b(R \cdot S) c$
$\langle\forall a, b:: b R a \Rightarrow b S a\rangle$	$R \subseteq S$
$\langle\forall a:: a R a\rangle$	$i d \subseteq R$
$\langle\forall x:: \times R b \Rightarrow x S a\rangle$	$b(R \backslash S) a$
$\langle\forall c:: b R c \Rightarrow a S c\rangle$	$a(S / R) b$
$b R a \wedge c S a$	$(b, c)\langle R, S\rangle a$
$b R a \wedge d S c$	$(b, d)(R \times S)(a, c)$
$b R a \wedge b S a$	$b(R \cap S) a$
$b R a \vee b S a$	$b(R \cup S) a$
$(f b) R(g a)$	$b\left(f^{\circ} \cdot R \cdot g\right) a$
TRUE	$b \top a$
FALSE	$b \perp a$

What do $\langle R, S\rangle, R \times S$ etc mean?

Forks for tupling

The fork ("split") combinator is essential for transforming predicates holding more than two quantified variables. From the definition,

$$
(b, c)\langle R, S\rangle a \Leftrightarrow b R a \wedge c S a
$$

which PF-transforms to

$$
\begin{equation*}
\langle R, S\rangle=\pi_{1}^{\circ} \cdot R \cap \pi_{2}^{\circ} \cdot S \tag{21}
\end{equation*}
$$

we infer diagram

and "al-gabr" rule (Galois connection)

$$
\begin{equation*}
\pi_{1} \cdot X \subseteq R \wedge \pi_{2} \cdot X \subseteq S \quad \Leftrightarrow \quad X \subseteq\langle R, S\rangle \tag{22}
\end{equation*}
$$

Coproducts for "if-then-else'ing"

Define dual ("either") combinator as

$$
[R, S]=\left(R \cdot i_{1}^{\circ}\right) \cup\left(S \cdot i_{2}^{\circ}\right) \quad \text { cf. } \quad A \xrightarrow{i_{1}} A+B<i_{2}
$$

From this and the lub rule (2) we infer another "al-gabr" rule (Galois connection)

$$
\begin{equation*}
[R, S] \subseteq X \quad \Leftrightarrow \quad R \subseteq X \cdot i_{1} \wedge S \subseteq X \cdot i_{2} \tag{23}
\end{equation*}
$$

In fact, the stronger universal property holds:

$$
\begin{equation*}
[R, S]=X \quad \Leftrightarrow \quad R=X \cdot i_{1} \wedge S=X \cdot i_{2} \tag{24}
\end{equation*}
$$

Multiplying and adding relations

From "fork" and "either" derive

$$
\begin{align*}
& R \times S \triangleq\left\langle R \cdot \pi_{1}, S \cdot \pi_{2}\right\rangle \tag{25}\\
& R+S=\left[i_{1} \cdot R, i_{2} \cdot S\right] \tag{26}
\end{align*}
$$

whose pointwise meaning is, as given earlier:

ϕ	$P F \phi$
$a R c \wedge b S c$	$(a, b)\langle R, S\rangle c$
$b R a \wedge d S c$	$(b, d)(R \times S)(a, c)$

Absorption properties:

$$
\begin{align*}
\langle R \cdot X, S \cdot Y\rangle & =(R \times S) \cdot\langle X, Y\rangle \tag{27}\\
{[R, S] \cdot(X+Y) } & =[R \cdot X, S \cdot Y] \tag{28}
\end{align*}
$$

+ meets \times

From both (22) and (24) we easily infer the exchange law,

$$
\begin{equation*}
[\langle R, S\rangle,\langle T, V\rangle]=\langle[R, T],[S, V]\rangle \tag{29}
\end{equation*}
$$

holding for all relations as in diagram

Inductive relations

Example - inductive definition of \geq over the natural numbers: for all $y, x \in N_{0}$, define $N_{0} \longleftarrow N_{0}$ as the least relation satisfying

$$
\begin{aligned}
& y \geq 0 \\
& y \geq x \Rightarrow(y+1) \geq(x+1)
\end{aligned}
$$

Thanks to (13), these clauses PF-transform to

$$
\begin{aligned}
& \top \subseteq \geq \cdot \underline{0} \\
& \geq \subseteq \text { suc }^{\circ} \cdot \geq \cdot \text { suc }
\end{aligned}
$$

where $\underline{0}$ denotes the everywhere 0 constant function.

Least prefix points

We reason:

$$
\left.\left.\begin{array}{ll}
& \left\{\begin{array}{l}
\top \subseteq \geq \cdot \underline{0} \\
\geq \\
\hline
\end{array} \text { suc }^{\circ} \cdot \geq \cdot\right. \text { suc }
\end{array}\right\} \begin{array}{c}
\quad\{\text { al-gabr (18) ; coproducts }\}
\end{array}\right\}
$$

In summary: \geq is the least prefix point of monotonic function

$$
f X \triangleq[\top, s u c] \cdot(i d+X) \cdot[\underline{0}, s u c]^{\circ}
$$

Diagrams help

Recognizing $[\underline{0}, s u c]=$ in as initial $\left(1++_{\text {_ }}\right)$-algebra with carrier N_{0} (Peano isomorphism) we draw

$$
[\top, \text { suc }] \cdot(i d+\geq) \subseteq \geq \cdot i n
$$

Since [T, suc] uniquely determines \geq (least prefix points are unique, etc), we resort to the popular notation

$$
\begin{equation*}
\geq=([\top, s u c] \mid) \tag{30}
\end{equation*}
$$

to express this fact. (See summary of general theory in the sequel.)

Introducing the $\kappa \alpha \tau \alpha$ combinator

In general, for F a polynomial functor (relator) and $\mu \mathrm{F}<{ }^{\text {in }} \mathrm{F}(\mu \mathrm{F})$ initial:

there is a unique solution to equation $X=R \cdot \mathrm{~F} X \cdot i n^{\circ}$ characterized by universal property:

$$
\begin{equation*}
X=(R) \quad \Leftrightarrow \quad X=R \cdot \mathrm{FX} \cdot i n^{\circ} \tag{31}
\end{equation*}
$$

(Read $(|R|)$ as " $\kappa \alpha \tau \alpha R^{\prime}$.)

Introducing the $\kappa \alpha \tau \alpha$ combinator

Therefore (cf. Knaster-Tarski) $(R \mid)$ is both the least prefix point

$$
\begin{equation*}
(|R|) \subseteq X \Leftarrow R \cdot \mathrm{~F} X \cdot i n^{\circ} \subseteq X \tag{32}
\end{equation*}
$$

and the greatest postfix point:

$$
\begin{equation*}
X \subseteq(R \mid) \Leftarrow X \subseteq R \cdot \mathrm{FX} \cdot i n^{\circ} \tag{33}
\end{equation*}
$$

Corollaries include reflexion,

$$
\begin{equation*}
(|i n|)=i d \tag{34}
\end{equation*}
$$

$\kappa \alpha \tau \alpha$-fusion,

$$
\begin{equation*}
S \cdot(R \mid) \subseteq(|X|) \Leftarrow S \cdot R \subseteq X \cdot \mathrm{~F} S \tag{35}
\end{equation*}
$$

monotonicity,

$$
\begin{equation*}
(|R|) \subseteq(|X|) \Leftarrow R \subseteq X \tag{36}
\end{equation*}
$$

etc.

Why $\kappa \alpha \tau \alpha s ?$

- What's the advantage of writing $\geq=([T\rceil$, suc] $])$? Is it just a matter of style or economy of notation?
- No: think of proving that \geq is transitive:

$$
\langle\forall x, y, z:: x \geq y \wedge y \geq z \Rightarrow x \geq z\rangle
$$

Instead of providing an explicit (inductive) proof, we go pointfree and write:

$$
\geq \cdot \geq \quad \subseteq \quad \geq
$$

which instantiates $\kappa \alpha \tau \alpha$-fusion (35), for $R, X:=[\top$, suc].

Thank you, $\kappa \alpha \tau \alpha$-fusion

We reason:

$$
\begin{aligned}
& \geq \cdot \geq \subseteq \geq \\
& \Leftrightarrow \quad\{\text { definition (30) }\} \\
& \geq \cdot([\top, s u c]) \subseteq([\top, s u c]) \\
& \Leftarrow \quad\{\kappa \alpha \tau \alpha \text {-fusion (35) }\} \\
& \geq \cdot[\top, s u c] \subseteq[\top, s u c] \cdot(i d+\geq) \\
& \Leftrightarrow \quad\{\text { coproducts (28, etc) \}} \\
& \geq \cdot T \subseteq T \wedge \geq \cdot \operatorname{suc} \subseteq \text { suc } \cdot \geq \\
& \Leftrightarrow \quad\{\text { everything is at most } \top \text { \} } \\
& \geq \cdot s u c \subseteq \text { suc } \cdot \geq \\
& \Leftarrow \quad\{\geq \cdot \text { suc }=\text { suc } \cdot \geq \text { (31) }\} \\
& \text { True }
\end{aligned}
$$

By the way

Direct use of universal property (31) would lead to

$$
\begin{aligned}
& \quad \geq=([\top, \text { suc }]) \\
& \Leftrightarrow \quad\{\quad(31)\} \\
& \\
& \Leftrightarrow \quad \geq \cdot[\underline{0}, \text { suc }]=[\top, \text { suc }] \cdot(\text { id }+\geq)
\end{aligned} \quad\{\text { expand, go pointwise, simplify }\}
$$

So, the above and our starting (co-inductively flavored) definition

$$
\begin{aligned}
& y \geq 0 \\
& y \geq x \Rightarrow(y+1) \geq(x+1)
\end{aligned}
$$

are equivalent (by construction).

$\kappa \alpha \tau \alpha$ meets fork

What about $\kappa \alpha \tau \alpha$ s which are forks? We reason:

$$
\begin{aligned}
& (\langle R, S\rangle \mid) \subseteq\langle X, Y\rangle \\
& \Leftarrow \quad\{\text { least prefix point (32) \}} \\
& \langle R, S\rangle \cdot \mathrm{F}\langle X, Y\rangle \cdot i n^{\circ} \subseteq\langle X, Y\rangle \\
& \Leftrightarrow \quad\{\text { "al-gabr" rule (22) }\} \\
& \left\{\begin{array}{l}
\pi_{1} \cdot\langle R, S\rangle \cdot F\langle X, Y\rangle \cdot i n^{\circ} \subseteq X \\
\pi_{2} \cdot\langle R, S\rangle \cdot F\langle X, Y\rangle \cdot i n^{\circ} \subseteq Y
\end{array}\right. \\
& \Leftarrow \quad\{X:=\langle R, S\rangle \text { in (22); monotonicity }\} \\
& \left\{\begin{array}{l}
R \cdot F\langle X, Y\rangle \cdot i n^{\circ} \subseteq X \\
S \cdot F\langle X, Y\rangle \cdot i n^{\circ} \subseteq Y
\end{array}\right.
\end{aligned}
$$

Handling mutually recursive relations

- Rule

$$
(\langle R, S\rangle \mid) \subseteq\langle X, Y\rangle \Leftarrow\left\{\begin{array}{l}
R \cdot \mathrm{~F}\langle X, Y\rangle \cdot i n^{\circ} \subseteq X \tag{37}\\
S \cdot \mathrm{~F}\langle X, Y\rangle \cdot i n^{\circ} \subseteq Y
\end{array}\right.
$$

tells us how to combine two mutually recursive relations into a single one.

- In the case of functions (20) we get equivalence

$$
\left\{\begin{array}{l}
x \cdot i n=r \cdot F\langle x, y\rangle \tag{38}\\
y \cdot i n=s \cdot F\langle x, y\rangle
\end{array} \Leftrightarrow\langle x, y\rangle=(\langle\langle r, s\rangle|)\right.
$$

known as "Fokkinga's mutual recursion theorem" [2].

- Both $(37,38)$ generalize to $n>2$ mutually recursive relations (functions) and can be used for program optimization.

Handling mutually recursive relations

- Notice that $i n^{\circ}$ plays no special role in the calculation of (37); so it can be replaced by arbitrary (suitably typed) D.
- This generalizes rule (37) to divide-and-conquer algorithms described by recursive relations which are fixpoints of $f X \triangleq R \cdot(\mathrm{~F} X) \cdot D$, where R describes the conquer step and D the divide step.
(Btw, these are known as hylomorphisms [2].)
- For economy of presentation, the example which follows is a direct application of the special case where all relations are functions (38).

Example - exponential function

Taylor series:

$$
\begin{equation*}
e^{x}=\sum_{i=0}^{\infty} \frac{x^{i}}{i!} \tag{39}
\end{equation*}
$$

Computing finite approximation (n terms)

$$
\begin{equation*}
e^{x} n=\sum_{i=0}^{n} \frac{x^{i}}{i!} \tag{40}
\end{equation*}
$$

takes quadratic time. Wishing to calculate a linear-time algorithm from this mathematical definition, we first head for an inductive definition:

$$
\begin{aligned}
e^{x} 0 & =1 \\
e^{x}(n+1) & =\underbrace{\frac{x^{n+1}}{(n+1)!}}_{h_{x} n}+\underbrace{\sum_{i=0}^{n} \frac{x^{i}}{i!}}_{e^{x} n}
\end{aligned}
$$

Example - exponential function

We thus get primitive recursive definition

$$
\begin{aligned}
e^{x} 0 & =1 \\
e^{x}(n+1) & =h_{x} n+e^{x} n
\end{aligned}
$$

where $h_{x} n$ unfolds to $\frac{x^{n+1}}{(n+1)!}=\frac{x}{n+1} \frac{x^{n}}{n!}$. Therefore:

$$
\begin{aligned}
h_{x} 0 & =x \\
h_{x}(n+1) & =\frac{x}{n+2}\left(h_{x} n\right)
\end{aligned}
$$

Introducing s2 $n=n+2$, we derive:

$$
\begin{aligned}
& s 20=2 \\
& s 2(n+1)=1+s 2 n
\end{aligned}
$$

Example - exponential function

We can thus put $e^{x}, s 2$ and h_{x} together in a system of three mutually recursive functions $e^{x}, s 2_{x}$ and h_{x} over the naturals, which PF-transform to

$$
\begin{aligned}
e^{x} \cdot \text { in } & =\underbrace{\left[\underline{1},(+) \cdot\left\langle\pi_{1}, \pi_{2} \cdot \pi_{2}\right\rangle\right]}_{r} \cdot \mathrm{~F}\left\langle e^{x},\left\langle s 2_{x}, h_{x}\right\rangle\right\rangle \\
s 2_{x} \cdot \text { in } & =\underbrace{\left[\underline{2}, s u c \cdot \pi_{1} \cdot \pi_{2}\right]}_{s} \cdot \mathrm{~F}\left\langle e^{x},\left\langle s 2_{x}, h_{x}\right\rangle\right\rangle \\
h_{x} \cdot i n & =\underbrace{\left[\underline{x},(*) \cdot((x /) \times i d) \cdot \pi_{2}\right]}_{t} \cdot \mathrm{~F}\left\langle e^{x},\left\langle s 2_{x}, h_{x}\right\rangle\right\rangle
\end{aligned}
$$

respectively, for

$$
\begin{aligned}
\text { in } & =[\underline{0}, s u c] \\
\mathrm{FX} & =i d+X
\end{aligned}
$$

Example - exponential function

From this system we obtain, thanks to the mutual recursion law (38)

$$
\begin{array}{rlr}
a u x_{x} & \triangleq\left\langle e^{x},\left\langle s 2_{x}, h_{x}\right\rangle\right\rangle \\
& = & \{(38)\} \\
& & (\langle r,\langle s, t\rangle\rangle \mid)
\end{array}
$$

for

$$
\begin{aligned}
r & =\left[\underline{1},(+) \cdot\left\langle\pi_{1}, \pi_{2} \cdot \pi_{2}\right\rangle\right] \\
s & =\left[\underline{2}, \operatorname{suc} \cdot \pi_{1} \cdot \pi_{2}\right] \\
t & =[\underline{x}, \underbrace{(*) \cdot((x /) \times i d) \cdot \pi_{2}}_{u}]
\end{aligned}
$$

Example - exponential function

Next we apply the exchange law (29) to $\langle r,\langle s, t\rangle\rangle$ (twice):

$$
\langle r,\langle s, t\rangle\rangle=\left[\langle\underline{1},\langle\underline{2}, \underline{x}\rangle\rangle,\left\langle(+) \cdot\left\langle\pi_{1}, \pi_{2} \cdot \pi_{2}\right\rangle,\left\langle s u c \cdot \pi_{1} \cdot \pi_{2}, u\right\rangle\right\rangle\right]
$$

Thanks to universal properties (31) and (22) ${ }^{2}$ we obtain

$$
\begin{aligned}
a u x_{x} \cdot \underline{0} & =\langle\underline{1},\langle\underline{2}, \underline{x}\rangle\rangle \\
a u x_{x} \cdot s u c & =\left\langle(+) \cdot\left\langle\pi_{1}, \pi_{2} \cdot \pi_{2}\right\rangle,\left\langle s u c \cdot \pi_{1} \cdot \pi_{2}, u\right\rangle\right\rangle \cdot a u x_{x} \\
e^{x} & =\pi_{1} \cdot a u x_{x}
\end{aligned}
$$

that is, we have calculated linear implementation

[^0]
Example - exponential function

$$
\begin{aligned}
\exp \times \mathrm{n}= & \text { let }(\mathrm{e}, \mathrm{~b}, \mathrm{c})=\operatorname{aux} \mathrm{x} \mathrm{n} \\
& \text { in } \mathrm{e} \text { where } \\
& \text { aux } \times 0=(1,2, \mathrm{x}) \\
& \text { aux } \times(i+1)=\operatorname{let}(e, s, h)=\text { aux } \times i \\
& \text { in }(e+h, s+1,(x / s) * h)
\end{aligned}
$$

which can be identified as the denotational semantics of a while loop, encoded below in the C programming language:

```
float exp(float x, int n)
{
    float e=1; int s=2; float h=x; int i;
    for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}
    return e;
};
```


Summing up

- Algebra of Programming (AoP): calculating ("correct by construction") programs from specifications
- Pointfree notation: Tarski's set theory without variables [7]
- Kleene algebra of (typed) relations: arrows (not points) provide further structure while ensuring type checking
- Ut faciant opus signa:
[Symbolisms] "have invariably been introduced to make things easy. [...] by the aid of symbolism, we can make transitions in reasoning almost mechanically by the eye, which otherwise would call into play the higher faculties of the brain. [...] Civilisation advances by extending the number of important operations which can be performed without thinking about them."
(Alfred Whitehead, 1911)

However

Despite textbooks such as [2], Algebra of Programming is still land of nobody. Why?

- Software theorists: too busy with their pre-scientific theories (if any)
- Algebraists: not sufficiently aware of program construction as a mathematical discipline
- Both: the required background (categories, allegories, etc) is most often found missing from undergrad curricula.

Selected topic of interest

- Pointfree notations are emerging elsewhere in the context of eg. digital signal processing (SPIRAL project, CMU [6]) which abstract linear signal transforms in terms of (index-free) matrix operators.
- Kleene algebras scale up to the corresponding matrix Kleene algebras [1]
- Parallel with relational algebra is obvious.
- Following a similar path, we want to investigate the "matrices as arrows" approach purported by categories of matrices (PhD project).
- We believe a better (typed!) calculus of (Kleene) matrix algebras will emerge which will improve reasoning about linear transforms in DSP, divide-and-conquer algorithms, etc.

References

R R．C．Backhouse．
Mathematics of Program Construction．
Univ．of Nottingham， 2004.
Draft of book in preparation． 608 pages．

三
R．Bird and O．de Moor．
Algebra of Programming．
Series in Computer Science．Prentice－Hall International， 1997.
囲 J．Desharnais and G．Struth．
Domain axioms for a family of near－semirings．
In AMAST，pages 330－345． 2008.
固 P．J．Freyd and A．Scedrov．
Categories，Allegories，volume 39 of Mathematical Library． North－Holland， 1990.

围 Dexter Kozen．
A completeness theorem for Kleene algebras and the algebra of regular events．， 1994.
Information and Computation，110（2）：366－390

官
Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel.
Formal datapath representation and manipulation for implementing DSP transforms.
In DAC, pages 385-390, 2008.
國 A. Tarski and S. Givant.
A Formalization of Set Theory without Variables.
American Mathematical Society, 1987.
AMS Colloquium Publications, volume 41, Providence, Rhode Island.

[^0]: ${ }^{2}$ For functions.

