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On maths and computing

Interaction between maths and computing:

• computers helping maths: theorem proving, computational
maths etc

• maths helping computing: many examples, among which the
algebra of programming (AoP)

While the former are widely acknowledged, among the latter AoP
is known only to the initiated.

• This talk aims at framing AoP in its proper algebraic context
while showing its relevance to program construction.

It all starts from semirings of computations [3]...
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Semirings of computations

Abstract notion of a computation:

Semiring (S ,+, ·, 0, 1) inhabited by computations (eg.
instructions, statements) where

• x · y (usually abbreviated to xy) captures
sequencing

• x + y captures choice (alternation)
• 0 means death
• 1 means skip (do nothing)

Technically:

• (S , ·, 1) is a monoid

• (S ,+, 0) is a Abelian monoid

• (·) distributes over (+)

• 0 annihilates (·)
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Idempotency

• If x + x = x holds for all x , then

x ≤ y
def
= x + y = y (1)

is a partial order.

• Clearly, 0 ≤ x for all x and (+) is the lub with respect to ≤:

x + y ≤ z ⇔ x ≤ z ∧ y ≤ z (2)

NB: z := x + y in (2) means x + y is upper bound; ⇐ means
it is the least upper bound (lub).
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Kleene algebras

A Kleene algebra [5] adds to semiring (S ,+, ·, 0, 1) the Kleene star
operator (∗) such that

y + x(x∗y) ≤ x∗y (3)

y + (yx∗)x ≤ yx∗ (4)

and

y + xz ≤ z ⇒ x∗y ≤ z (5)

y + zx ≤ z ⇒ yx∗ ≤ z (6)

These basically establish x∗y and yx∗ as prefix points of
(monotonic) functions (y + x · ) and (y + · x), respectively.
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KATs (tests and domains)
KAT = Kleene algebra with tests

• every p below 1 (p ≤ 1) is a test and such that, for every
such p there is ¬p (the complement of p) such that

p + ¬p = 1

p · ¬p = 0 = ¬p · p

• Recent addition to semirings (inc. KATs) of a domain
operator d(x) capturing “enabledness” and satisfying axioms

d(x) ≤ 1

d(0) = 0

d(x + y) = d(x) + d(y)

d(xy) = d(x d(y))

x ≤ d(x)x
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Binary relations

The algebra of binary relations is a well known KAT:

KAT Binary relations Description
x · y R · S composition

x + y R ∪ S union
0 ⊥ empty relation
1 id identity relation

x ≤ y R ⊆ S inclusion
p,¬p R ⊆ id , ¬R = id − R coreflexive relations
d(x) δ R domain of R

Moreover, they form a complete, distributive lattice once glbs

X ⊆ R ∩ S ⇔ (X ⊆ R) ∧ (X ⊆ S) (7)

and supremum > are added.
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How useful are binary relations?

• Not much if regarded merely as “sets of pairs”

• Very useful indeed — as a device for the algebraization of
logic — if regarded as “arrows” ie. morphisms of a particular
allegory [4]

• Arrows bring about a type discipline which leads to good
things such as parametric polymorphism, etc etc
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Relations as morphisms
Binary relations are typed:

Arrow notation
Arrow A

R // B denotes a binary relation from A (source) to B
(target).

A,B are types. Writing B A
Roo means the same as A

R // B .

Infix notation
The usual infix notation used in natural language — eg.

John IsFatherOf Mary

— and in maths — eg.
0 ≤ π

— extends to arbitrary B A
Roo : we write

b R a

to denote that (b, a) ∈ R.
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Functions are relations

• Lowercase letters (or identifiers starting by one such letter) will
denote special relations known as functions, eg. f , g , suc , etc.

• We regard function f : A −→ B as the binary relation which
relates b to a iff b = f a. So,

b f a literally means b = f a

• Therefore, we generalize

B A
foo

b = f a

to B A
Roo

b R a

• So, function id is the equality (equivalence) relation:

b id a means the same as b = a
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Composition

Function composition

B A
foo C

g
oo

f ·g

ii

b = f (g c)

(8)

extends to R · S in the obvious way:

b(R · S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (9)

Note how this rule removes quantifier ∃ when applied from right to
left.
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Converses

Every relation B A
Roo has a converse B

R◦ // A which is
such that, for all a, b,

a(R◦)b ⇔ b R a (10)

Note that converse commutes with composition

(R · S)◦ = S◦ · R◦ (11)

and cancels itself

(R◦)◦ = R (12)
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Function converses

Function converses f ◦, g◦ etc. always exist (as relations) and
enjoy the following (very useful) property:

(f b)R(g a) ⇔ b(f ◦ · R · g)a (13)

cf. diagram:

C D
Roo

B

f

OO

A

g

OO

f ◦·R·g
oo



Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Why id (really) matters

Terminology:

• Say R is reflexive iff id ⊆ R
pointwise: 〈∀ a :: a R a〉

• Say R is coreflexive iff R ⊆ id
pointwise: 〈∀ b, a : b R a : b = a〉

Define, for B A
Roo :

Kernel of R Image of R

A A
kerRoo B B

imgRoo

ker R 4 R◦ · R img R 4 R · R◦
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Example

Kernels of functions:

a′(ker f )a

⇔ { substitution }

a′(f ◦ · f )a

⇔ { PF-transform rule (13) }

(f a′) = (f a)

In words: a′(ker f )a means a′ and a “have the same f -image”
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Binary relation taxonomy
Topmost criteria:

binary relation

injective entire simple surjective

Definitions:

Reflexive Coreflexive

ker R entire R injective R
img R surjective R simple R

(14)

Facts:

ker (R◦) = img R (15)

img (R◦) = ker R (16)
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Binary relation taxonomy

The whole picture:

binary relation

injective entire simple surjective

representation function abstraction

injection surjection

bijection

(17)

Clearly:

• converse of injective is simple (and vice-versa)

• converse of entire is surjective (and vice-versa)

• smaller than injective (simple) is injective (simple)

• larger than entire (surjective) is entire (surjective)
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Functions in one slide

A function f is a binary relation such that

Pointwise Pointfree
“Left” Uniqueness

b f a ∧ b′ f a ⇒ b = b′ img f ⊆ id (f is simple)
Leibniz principle

a = a′ ⇒ f a = f a′ id ⊆ ker f (f is entire)

which both together are equivalent to any of “al-gabr” rules

f · R ⊆ S ⇔ R ⊆ f ◦ · S (18)

R · f ◦ ⊆ S ⇔ R ⊆ S · f (19)
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“Al-gabr” rules?

Recall calculus of al-gabr and al-muqâbala 1:

al-gabr
x − z ≤ y ⇔ x ≤ y + z

al-hatt
x ∗ z ≤ y ⇔ x ≤ y ∗ z−1

(z > 0)

al-muqâbala

Ex:
4x2 + 3 = 2x2 + 2x + 6 ⇔ 2x2 = 2x + 3

1Cf. Kitâb al-muhtasar fi hisab al-gabr wa-almuqâbala by Abû Al-Huwârizm̂ı,
the famous 9c Persian mathematician.
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Example: function equality

Equating functions means comparing them in either way:

f = g ⇔ f ⊆ g ⇔ g ⊆ f (20)

Calculation:

f ⊆ g

⇔ { “al-gabr” (18) on f }

id ⊆ f ◦ · g
⇔ { “al-gabr” (19) on g }

g◦ ⊆ f ◦

⇔ { converses }

g ⊆ f
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A “Laplace transform analog” for logical quantification

The pointfree (PF) transform

φ PF φ

〈∃ a :: b R a ∧ a S c〉 b(R · S)c
〈∀ a, b :: b R a⇒ b S a〉 R ⊆ S

〈∀ a :: a R a〉 id ⊆ R
〈∀ x :: x R b⇒ x S a〉 b(R \ S)a
〈∀ c :: b R c ⇒ a S c〉 a(S / R)b

b R a ∧ c S a (b, c)〈R, S〉a
b R a ∧ d S c (b, d)(R × S)(a, c)
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f ◦ · R · g)a

True b > a
False b ⊥ a

What do 〈R,S〉, R × S etc mean?
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Forks for tupling
The fork (“split”) combinator is essential for transforming
predicates holding more than two quantified variables. From the
definition,

(b, c)〈R, S〉a ⇔ b R a ∧ c S a

which PF-transforms to

〈R,S〉 = π◦1 · R ∩ π◦2 · S (21)

we infer diagram

A A× B
π1oo π2 // B

C
R

ff

〈R,S〉

OO

S

88

and “al-gabr” rule (Galois connection)

π1 · X ⊆ R ∧ π2 · X ⊆ S ⇔ X ⊆ 〈R,S〉 (22)
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Coproducts for “if-then-else’ing”

Define dual (“either”) combinator as

[R ,S ] = (R · i◦1 ) ∪ (S · i◦2 ) cf. A
i1 //

R
&&

A + B

[R ,S]
��

B
i2oo

S
xx

C

From this and the lub rule (2) we infer another “al-gabr” rule
(Galois connection)

[R ,S ] ⊆ X ⇔ R ⊆ X · i1 ∧ S ⊆ X · i2 (23)

In fact, the stronger universal property holds:

[R ,S ] = X ⇔ R = X · i1 ∧ S = X · i2 (24)
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Multiplying and adding relations

From “fork” and “either” derive

R × S 4 〈R · π1,S · π2〉 (25)

R + S = [i1 · R , i2 · S ] (26)

whose pointwise meaning is, as given earlier:

φ PF φ

a R c ∧ b S c (a, b)〈R,S〉c
b R a ∧ d S c (b, d)(R × S)(a, c)

Absorption properties:

〈R · X , S · Y 〉 = (R × S) · 〈X ,Y 〉 (27)

[R ,S ] · (X + Y ) = [R · X ,S · Y ] (28)
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+ meets ×

From both (22) and (24) we easily infer the exchange law,

[〈R, S〉 , 〈T ,V 〉] = 〈[R ,T ], [S ,V ]〉 (29)

holding for all relations as in diagram

A
i1 //

R
�� S

))

A + B B
T

uu

V
��

i2oo

C C × Dπ1

oo
π2

// D
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Inductive relations

Example — inductive definition of ≥ over the natural numbers: for

all y , x ∈ IN0, define IN0 IN0
≥oo as the least relation satisfying

y ≥ 0

y ≥ x ⇒ (y + 1) ≥ (x + 1)

Thanks to (13), these clauses PF-transform to

> ⊆ ≥ · 0
≥ ⊆ suc◦ · ≥ · suc

where 0 denotes the everywhere 0 constant function.
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Least prefix points
We reason: {

> ⊆ ≥ · 0
≥ ⊆ suc◦ · ≥ · suc

⇔ { al-gabr (18) ; coproducts }

[> , suc · ≥] ⊆ ≥ · [0 , suc]

⇔ { “al-gabr” (19) }

[> , suc · ≥] · [0 , suc]◦ ⊆ ≥

⇔ { absorption property (28) }

[> , suc] · (id +≥) · [0 , suc]◦ ⊆ ≥

In summary: ≥ is the least prefix point of monotonic function

f X 4 [> , suc] · (id + X ) · [0 , suc]◦
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Diagrams help

Recognizing [0 , suc] = in as initial (1 + )-algebra with carrier N0

(Peano isomorphism) we draw

IN0

≥

��

in◦
**

∼= 1 + IN0

id+≥

��

in

hh

⊇

IN0 1 + IN0
[> ,suc]

oo

[> , suc] · (id +≥) ⊆ ≥ · in

Since [> , suc] uniquely determines ≥ (least prefix points are
unique, etc), we resort to the popular notation

≥ = (|[> , suc]|) (30)

to express this fact. (See summary of general theory in the sequel.)
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Introducing the κατα combinator

In general, for F a polynomial functor (relator) and

µF F(µF)
inoo initial:

µF

(|R|)
��

in◦

**∼= F(µF)

F(|R|)
��

in

hh

A F A
R

oo

there is a unique solution to equation X = R · F X · in◦
characterized by universal property:

X = (|R|) ⇔ X = R · F X · in◦ (31)

(Read (|R|) as “κατα R”.)
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Introducing the κατα combinator
Therefore (cf. Knaster-Tarski) (|R|) is both the least prefix point

(|R|) ⊆ X ⇐ R · F X · in◦ ⊆ X (32)

and the greatest postfix point:

X ⊆ (|R|) ⇐ X ⊆ R · F X · in◦ (33)

Corollaries include reflexion,

(|in|) = id (34)

κατα-fusion,

S · (|R|) ⊆ (|X |) ⇐ S · R ⊆ X · F S (35)

monotonicity,

(|R|) ⊆ (|X |) ⇐ R ⊆ X (36)

etc.
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Why καταs?

• What’s the advantage of writing ≥ = (|[> , suc]|)? Is it just a
matter of style or economy of notation?

• No: think of proving that ≥ is transitive:

〈∀ x , y , z :: x ≥ y ∧ y ≥ z ⇒ x ≥ z〉

Instead of providing an explicit (inductive) proof, we go
pointfree and write:

≥ · ≥ ⊆ ≥

which instantiates κατα-fusion (35), for R,X := [> , suc].
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Thank you, κατα-fusion
We reason:

≥ · ≥ ⊆ ≥
⇔ { definition (30) }

≥ · (|[> , suc]|) ⊆ (|[> , suc]|)

⇐ { κατα-fusion (35) }

≥ · [> , suc] ⊆ [> , suc] · (id +≥)

⇔ { coproducts (28, etc) }

≥ · > ⊆ > ∧ ≥ · suc ⊆ suc · ≥
⇔ { everything is at most > }
≥ · suc ⊆ suc · ≥

⇐ { ≥ · suc = suc · ≥ (31) }

True
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By the way

Direct use of universal property (31) would lead to

≥ = (|[> , suc]|)

⇔ { (31) }

≥ · [0 , suc] = [> , suc] · (id +≥)

⇔ { expand, go pointwise, simplify }{
y ≥ 0
y ≥ (x + 1)⇔ y > 0 ∧ (y − 1) ≥ x

So, the above and our starting (co-inductively flavored) definition

y ≥ 0

y ≥ x ⇒ (y + 1) ≥ (x + 1)

are equivalent (by construction).
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κατα meets fork

What about καταs which are forks? We reason:

(|〈R,S〉|) ⊆ 〈X ,Y 〉

⇐ { least prefix point (32) }

〈R,S〉 · F〈X ,Y 〉 · in◦ ⊆ 〈X ,Y 〉

⇔ { “al-gabr” rule (22) }{
π1 · 〈R,S〉 · F〈X ,Y 〉 · in◦ ⊆ X
π2 · 〈R,S〉 · F〈X ,Y 〉 · in◦ ⊆ Y

⇐ { X := 〈R,S〉 in (22); monotonicity }{
R · F〈X ,Y 〉 · in◦ ⊆ X
S · F〈X ,Y 〉 · in◦ ⊆ Y
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Handling mutually recursive relations

• Rule

(|〈R,S〉|) ⊆ 〈X ,Y 〉 ⇐
{

R · F〈X ,Y 〉 · in◦ ⊆ X
S · F〈X ,Y 〉 · in◦ ⊆ Y

(37)

tells us how to combine two mutually recursive relations into a
single one.

• In the case of functions (20) we get equivalence{
x · in = r · F〈x , y〉
y · in = s · F〈x , y〉 ⇔ 〈x , y〉 = (|〈r , s〉|) (38)

known as “Fokkinga’s mutual recursion theorem” [2].

• Both (37,38) generalize to n > 2 mutually recursive relations
(functions) and can be used for program optimization.
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Handling mutually recursive relations

• Notice that in◦ plays no special role in the calculation of (37);
so it can be replaced by arbitrary (suitably typed) D.

• This generalizes rule (37) to divide-and-conquer algorithms
described by recursive relations which are fixpoints of
f X 4 R · (F X ) ·D, where R describes the conquer step and
D the divide step.
(Btw, these are known as hylomorphisms [2].)

• For economy of presentation, the example which follows is a
direct application of the special case where all relations are
functions (38).
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Example — exponential function
Taylor series:

ex =
∞∑
i=0

x i

i !
(39)

Computing finite approximation (n terms)

ex n =
n∑

i=0

x i

i !
(40)

takes quadratic time. Wishing to calculate a linear-time algorithm
from this mathematical definition, we first head for an inductive
definition:

ex 0 = 1

ex (n + 1) =
xn+1

(n + 1)!︸ ︷︷ ︸
hxn

+
n∑

i=0

x i

i !︸ ︷︷ ︸
ex n
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Example — exponential function

We thus get primitive recursive definition

ex 0 = 1

ex (n + 1) = hxn + ex n

where hxn unfolds to xn+1

(n+1)! = x
n+1

xn

n! . Therefore:

hx0 = x

hx(n + 1) =
x

n + 2
(hxn)

Introducing s2 n = n + 2, we derive:

s2 0 = 2

s2(n + 1) = 1 + s2 n



Context Kleene algebras Relations Functions + meets × Induction (| |) meets fork Summing up

Example — exponential function
We can thus put ex , s2 and hx together in a system of three
mutually recursive functions ex , s2x and hx over the naturals,
which PF-transform to

ex · in = [1 , (+) · 〈π1, π2 · π2〉]︸ ︷︷ ︸
r

·F〈ex , 〈s2x , hx〉〉

s2x · in = [2 , suc · π1 · π2]︸ ︷︷ ︸
s

·F〈ex , 〈s2x , hx〉〉

hx · in = [x , (∗) · ((x/)× id) · π2]︸ ︷︷ ︸
t

·F〈ex , 〈s2x , hx〉〉

respectively, for

in = [0 , suc]

F X = id + X
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Example — exponential function

From this system we obtain, thanks to the mutual recursion law
(38)

auxx 4 〈ex , 〈s2x , hx〉〉

= { (38) }

(|〈r , 〈s, t〉〉|)

for

r = [1 , (+) · 〈π1, π2 · π2〉]
s = [2 , suc · π1 · π2]

t = [x , (∗) · ((x/)× id) · π2︸ ︷︷ ︸
u

]
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Example — exponential function

Next we apply the exchange law (29) to 〈r , 〈s, t〉〉 (twice):

〈r , 〈s, t〉〉 = [〈1, 〈2, x〉〉 , 〈(+) · 〈π1, π2 · π2〉, 〈suc · π1 · π2, u〉〉]

Thanks to universal properties (31) and (22) 2 we obtain

auxx · 0 = 〈1, 〈2, x〉〉
auxx · suc = 〈(+) · 〈π1, π2 · π2〉, 〈suc · π1 · π2, u〉〉 · auxx

ex = π1 · auxx

that is, we have calculated linear implementation

2For functions.
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Example — exponential function

exp x n = let (e,b,c) = aux x n

in e where

aux x 0 = (1,2,x)

aux x (i+1) = let (e,s,h) = aux x i

in (e+h,s+1,(x/s)*h)

which can be identified as the denotational semantics of a while
loop, encoded below in the C programming language:

float exp(float x, int n)

{

float e=1; int s=2; float h=x; int i;

for (i=0;i<n+1;i++) {e=e+h;h=(x/s)*h;s++;}

return e;

};
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Summing up

• Algebra of Programming (AoP): calculating (“correct by
construction”) programs from specifications

• Pointfree notation: Tarski’s set theory without variables [7]

• Kleene algebra of (typed) relations: arrows (not points)
provide further structure while ensuring type checking

• Ut faciant opus signa:

[Symbolisms] “have invariably been introduced to make
things easy. [...] by the aid of symbolism, we can make
transitions in reasoning almost mechanically by the eye,
which otherwise would call into play the higher faculties
of the brain. [...] Civilisation advances by extending the
number of important operations which can be performed
without thinking about them.”

(Alfred Whitehead, 1911)
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However

Despite textbooks such as [2], Algebra of Programming is still
land of nobody. Why?

• Software theorists: too busy with their pre-scientific theories
(if any)

• Algebraists: not sufficiently aware of program construction as
a mathematical discipline

• Both: the required background (categories, allegories, etc) is
most often found missing from undergrad curricula.
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Selected topic of interest

• Pointfree notations are emerging elsewhere in the context of
eg. digital signal processing (SPIRAL project, CMU [6]) which
abstract linear signal transforms in terms of (index-free)
matrix operators.

• Kleene algebras scale up to the corresponding matrix Kleene
algebras [1]

• Parallel with relational algebra is obvious.

• Following a similar path, we want to investigate the “matrices
as arrows” approach purported by categories of matrices
(PhD project).

• We believe a better (typed!) calculus of (Kleene) matrix
algebras will emerge which will improve reasoning about linear
transforms in DSP, divide-and-conquer algorithms, etc.
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