
Towards a Linear Algebra of Programming

(Introduction)

J.N. Oliveira

HASLAB — INESC TEC and Univ. Minho, Portugal

Thematic Seminar II
MAPi PhD Programme 2011/12

18–22 of January, 2012
FEUP, Porto

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Context

A Doctoral Programme on Computer Science (Informatics)
brings about

• Informatics engineering

• Software engineering

• Software equality

• Software (un)predictability

• Software testing techniques

• Software modeling

• ...

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Software Engineering

Does the word “engineering” in phrase

“software engineering”

mean the same as in phrases

“civil engineering” , “mechanic engineering”

and so on?

(My) answer:

Thus far (I am sorry to say. . .) — no.

Why?

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

What is wrong?

As Parnas (2010) writes,

(...) there is a disturbing gap between software
development and traditional engineering disciplines.

In such disciplines one finds a well-established maths background
taught regularly at every higher-education institute, essentially
made of calculus, linear algebra and probability theory.

Worse than this (Parnas again):

We must learn to use mathematics in software
development, but we need to (...) be prepared to discard,
most of the methods that we have been discussing and
promoting for all these years.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Engineering mathematics

Central to engineering mathematics is the construction of sets of
simultaneous equations as models of physical systems (eg.
circuits, power grids),











a11x1 + a12x2 + a1mxm = b1
...

...
...

an1x1 + an2x2 + anmxm = bn

(1)

that is, formulæ of the form

∀ i : 1 ≤ i ≤ n :

m
�

j=1

aijxj = bi (2)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Maturity

Maturity of traditional engineering mathematics:

• Engineers not intimidated by very large sets of equations.

• Thanks to the matrix and vector concepts, grouping all
coefficients aij of (1) in a matrix A, variables xj in a vector X
and values bi in a vector B , (1) becomes

A · X = B

where operator (·) denotes matrix multiplication.

Backhouse (2004) writes:

“In this way a set of equations has been reduced to a
single equation. This is a tremendous improvement in
concision that does not incur any loss of precision!”

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Quoting our “founding fathers”

Phrase software engineering seems to date from the Garmisch
NATO conference in 1968:

In late 1967 the Study Group recommended the holding of a
working conference on Software Engineering. The phrase
‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to
be based on the types of theoretical foundations and
practical disciplines, that are traditional in the established
branches of engineering.

Question:

• Provocative or not, how “scientific” do such foundations turn
out to be, 40 years later?

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Reaction

The Garmisch NATO conference triggered much research on
how to address the so-called software crisis.

In the words of Brian Randell, one of the authors of the
Garmisch Report, Edsger W. Dijkstra (1920-2002) was

one of a very small number of people who, through
their research and teaching, have provided
computing with an intellectual foundation that
can justifiably be termed a science.

Dijkstra’s work puts emphasis on formal logic and deductive
reasoning — far away from traditional engineering
mathematics.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Reaction

Much later, Bird and de Moor (1997) come up with a textbook on
an Algebra of Programming (AoP) about which Prof. Tony
Hoare (Microsoft Cambridge) writes:

Programming notation can be expressed by “ formulæ
and equations (...) which share the elegance of those
which underlie physics and chemistry or any other
branch of basic science”.

A well-known example of such a formula is

Sort ⊆ Ordered · Permutation

expressing the meaning of sorting.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

AoP (algebra of programming)

But, — is the meaning of the dot (·) in

Sort ⊆ Ordered · Permutation

the same as in linear algebra (matrix multiplication)?

In predicate logic one would write

l � = sort(l) ⇒ permutes(l �, l) ∧ ordered(ĺ)

where sort is some sorting algorithm and permutes, ordered are
the obvious predicates.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

AoP (algebra of programming)

The intuition behind the AoP relies on discrete maths (functions,
sets, relations) and set theory.

Emphasis on binary relation algebra.

Can be shown to relate to Codd’s relational database algebra.

AoP is already algebraic and calculational but... not yet the linear
algebra, calculus etc which stay at the foundations of the other
branches of engineering.

Research question:

Is there a way to do logic, set theory, etc in that very
same algebra which engineering as a whole is based
upon?

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Summary of seminar

In this seminar we will suggest linear algebra as a foundation
not only of science and engineering but also of software
engineering.

With this we hope to contribute to fulfilling the aims of the
founding fathers of software engineering which were quoted
before.

In particular, formal logic and set theory is encodable in LA.

However...

Standard LA is unfit for such purposes and needs to
be “spruced up” ;-) — more about this later.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Down to earth, please!

Trustworthiness — the Holy Grail of engineering in general.

Quoting Schneider (1999)’s “Trust in Cyberspace”, a
trustworthy system is one that

(...) does what people expect it to do — and not
something else — despite environmental disruption,
human user and operator errors, and attacks by
hostile parties.

Furthermore,

Design and implementation errors must be avoided,
eliminated or somehow tolerated.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Trustworthiness in software design

Two dual approaches to software trustworthiness:

1. “Angelic” — prevent bad things from happening — weakest
pre-conditions (Dijkstra): the least one should impose for a
program not blow up.

2. “Demonic” — force bad things to happen — strongest
post-conditions: evaluate worst blow-up scenario arising
from fault.

Example of fault injection: weaken (the weakest!!) pre-conditions.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

SWIFI

Fault-injection (Wikipedia):

In software testing, fault injection is a technique for
improving the coverage of a test by introducing faults to
test code paths, in particular error handling code paths,
that might otherwise rarely be followed.

Used used primarily as a test of the dependability on kernel
software services.

Example: SWIFI (software injected fault-injection) code mutation
such as eg. a := a - 1 where a := a + 1 had been written
before.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Evaluate? Quantify?

What does word evaluate mean in “evaluate worst blow-up
scenario” above?

In practice there is no prediction at all — software tools monitor
faulty software runs and gather data which, once mined, gives an
evaluation.

Example (dear to the national industry):

• Xception by CriticalSoftware SA — SWIFI tool used
for black box and white box testing

• Xtract — Xception Analysis Tool.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Evaluate? Quantify?

Research question:

Can worst scenarios be evaluated (quantified) without
running the code?

No magic: this could only be done by reasoning about the faulty
code and calculating (quantifying) the extent of the fault’s
impact.

However — reasoning about code being carried out in logic, how
does one “quantify in logic”?

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Example: fault-injected multiplication

Safe multiplication (over IN0): (a∗) = for (a+) 0, that is,

a ∗ 0 = 0

a ∗ (n + 1) = a+ a ∗ n

Bad multiplication, fault-injected — 5% probability of a wrong
base case (in extended functional notation):

a ∗ 0 =
.95 0

a ∗ 0 =
.05 a

a ∗ (n + 1) =1 a+ a ∗ n

Question: does the fault in the base case carry over to the overall
function? In what extent? (Quantify fault propagation.)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Quantitative computer science

Trend towards quantitative methods in computer science (using
LA in particular):

• Read Baroni and Zamparelli (2010) suggestive paper: Nouns
are vectors, adjectives are matrices in semantics of natural
languages.

• “Quantum inspiration” in Sernadas et al. (2008) who regard
probabilistic programs as linear transformations over suitable
vector spaces.

Our own trend: MAPi PhD thesis by Macedo (2012) entitled

”Matrices as Arrows” — Why Categories of Matrices
Matter”

“Arrows”? What’s this? What for?

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

The function-relation-matrix hierarchy

• Functions — rule of correspondence between inputs and
outputs, eg.

y = f (x)
y = ax + b
y = height of x

• Relations—multi-way, non-deterministic correspondences, eg.

y likes x
y ≤ x

• Matrices — quantified relations, cf.

y M x = k

further to
y M x = true

eg. John likes Mary = 99% (“very much”!)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Arrow notation for functions

Used everywhere for declaring functions, eg.

f : IN → IR

n �→ n

π

The first line is the type of the function (syntax) and the second
line is the rule of correspondence (semantics).

Compositionality — functions compose with each other:

B A
f

�� C
g

��

f ·g

��

b = f (g c)

(3)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Relations
In real life, “everything is a relation” — look how book Pride and
Prejudice (Jane Austin, 1813) is captured at Wikipedia:

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Arrow notation for relations

The picture is a collection of relations — vulg. a semantic
network — elsewhere known as a (binary) relational system.

Besides the use of
arrows in the picture
(aside) not many
people would write

mother of : People → People

as the type of relation
mother of .

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Arrow notation for (binary) relations

Binary relations are typed:

Arrow notation

Arrow A
R �� B denotes a binary relation from A (source) to B

(target).

A,B are types. Writing B A
R�� means the same as A

R �� B .

Compositionality — relations compose with each other:

B A
R

�� C
S

��

R·S

�� (4)

b(R · S)c ⇔ �∃ a :: b R a ∧ a S c� (5)

Example: Uncle = Brother · Parent

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Relations as arrows

In fact:

u Uncle c ⇔ �∃ p :: u Brother p ∧ p Parent c�

Question:

Can we make relational notation useful for specifying a
reasoning about software?

The remainder of these slides try to provide you with an affirmative
answer.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Is thinking an art?

Extract from Propositiones ad acuendos iuuenes

(“Problems to sharpen the young”) compiled by abbot Alcuin of
York († 804):

XVIII. Propositio de homine et capra et lvpo.

Homo quidam debebat ultra fluuium transferre lupum, capram,
et fasciculum cauli. Et non potuit aliam nauem inuenire, nisi
quae duos tantum ex ipsis ferre ualebat. Praeceptum itaque ei
fuerat, ut omnia haec ultra illaesa omnino transferret. Dicat,
qui potest, quomodo eis illaesis transire potuit?

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Is thinking an art?

XVIII. Fox, goose and bag of beans puzzle. A
farmer goes to market and purchases a fox, a goose, and
a bag of beans. On his way home, the farmer comes to a
river bank and hires a boat. But in crossing the river by
boat, the farmer could carry only himself and a single one
of his purchases - the fox, the goose, or the bag of the
beans. (If left alone, the fox would eat the goose, and
the goose would eat the beans.) Can the farmer carry
himself and his purchases to the far bank of the river,
leaving each purchase intact?

Let us identify the main types and relations involved in the puzzle
and draw them in a diagram.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Humans’ mind main ability to solve problems has to do with
abstraction — the ability to tell apart the things which belong to
the solution from those which don’t matter. For instance,

Being = {Fox ,Goose,Beans,Farmer}
Bank = {Left,Right}

matter, as do the relationships among them:

Being
Eats �� Being

where
��

Bank
cross �� Bank

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

It’s easy to see that cross is a function which we would write eg.

cross Left = Right

cross Right = Left

in a functional programming language. In the beginning, all beings
are on the same bank, eg. Left:

Fox

where ��

Goose

where
��

Beans
where

��

Farmer
where

��
Left

(initial state of the relational model)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

At the end (should there be an end...) we want them all on the
other bank:

Fox

where
��

Goose

where ��

Beans

where
��

Farmer
where

��
Right

(final state of the relational model).

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

In between there are safe states (=legal), for instance

Fox

where ��

Beans

where
��

Goose

where
��

Farmer
where

��
Left Right

but there is always the risk of moving to an unsafe state (=illegal)
as, for instance,

Fox

where ��

Eats �� Goose

where
��

Beans

where
��

Farmer
where

��
Left Right

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Relation Eats is the obvious food chain

Fox > Goose > Beans

Observations concerning where: one will always say, eg.

“the” bank where the Goose is

and not

“a” bank where where the Goose may be

This happens because beings are always at one and only one
bank.

In the same way we say that, when crossing the river,

one crosses to “the” other bank

and not to “another” bank.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Likewise, we say

6 is (“the” outcome of)“the” product of 2 by 3
(6 = 2 ∗ 3)

and not

6 is “a” (possible) outcome of multiplying 2 by 3

This is so because, like cross and where, the multiplication of two
numbers

• always exists (existence)

• is one and the same number (uniqueness).

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Existence and uniqueness make the usual notation

y = f (x)

meaningful, making it mathematically meaningful to substitute y
for f (x) wherever it occurs. From the linguistic perspective,

functions in mathematics and modeling are related to the
use of definite articles in natural languages.

As counter-example take, for instance, one saying that 2 is “a”
square root of 4, for there is another one: −2. This, notation
2 =

√
4 often found in textbooks is incorrect.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Functions are relations

• We regard function f : A → B as the binary relation which relates b
to a iff b = f a. So, b f a literally means b = f a.

• Therefore, we specialize

B A
R��

b R a

to B A
f��

b = f a

• Lowercase letters (or identifiers starting by one such letter) will
denote functions, eg. f , g , succ , etc.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Partial functions

Let us now inspect relation Eats:

Fox
Eats

��
�

�

�

�

�

�

�

�

�

�

Fox

Goose
Eats

��
�

�

�

�

�

�

�

�

�

�

Goose

Beans Beans

Farmer Farmer

(as Farmer ’s eating habits are irrelevant to the problem).

Question: is Eats a function (over Being)?

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Partial functions

One can observe that uniqueness holds (frugality: any x eats at
most one y) but existence doesn’t: g don’t eat anything, for
instance.

• Relations of this kind are known as partial functions or
simple relations

• They are ubiquitous in maths and computing.

• They can be regarded as deterministic relations or as
“functions” which are undefined for some of its inputs.

• As data structures, simple relations establish primary key

relationships, eg. Individual IN
Passport
�� — not every passport

number is in use + no two passports have the same number.

• Functional dependencies in databases are simple relations.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Naturally, we may build new relations out of existing ones, for
instance:

Being
SameBank �� Being

which is easy to define:

b SameBank a if and only if where(b) = where(a)

Another example,

Being
CanEat �� Being

defined by:

b CanEat a if and only if (b SameBank a) and (b Eats a)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

The usual symbol in relation algebra for denoting this situation is:

CanEat = SameBank ∩ Eats

In general, given two relations R and S , define

b(R ∩ S)a ⇔ b R a ∧ b S a

This relational combinator R ∩ S is known as intersection and it
captures two simultaneous relationships among the same objects
(one R and the other S).

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

The most important ingredient of the problem is the property
which, in words, reads as follows:

If anybody can eat somebody then the farmer should be
on that bank (in presence of the farmer animals are
forced to starving)

Properties such as this, which we want to hold at any time,
whatever moves are made, are known as invariant properties (ie.
the model may change state but only within the validity space of
its invariants).

It’s easy to express the above invariant property using already
defined relationships:

CanEat only if SameBank · Farmer

(Notation Farmer is explained below.)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo
First note the expression

R only if S

whose meaning is

for all b, a, wherever b R a holds, then b S a also holds.

Usual notation and definition:

R ⊆ S ⇔ �∀ b, a : b R a : b S a� (6)

(read R ⊆ S as “R is at most S”)

Notation Farmer is an instance of a constant function. In general,
given a non-empty set K and some k ∈ K , we have

y k x ⇔ y = k

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Later we will learn to prove that the given invariant is the same as

where · CanEat ⊆ where · Farmer

In words:

Where one can eat (somebody) that’s where the farmer
is

— which can be drawn in the following way, thanks to the arrow
view of relations:

Being

where

��

Being
CanEat��

Farmer

��
⊆

Bank Being
where

��

depicting the relationships involved.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Summing up

Questions:

• How advantageous are the expressions and diagrams above in
solving the puzzle?

• Is there a programming language helping us to find a
solution?

Answer to the first question:

• The notation given so far is that of so-called Relational
Mathematics, which enables a calculational style similar to
that one is used in solving systems of equations in algebra.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Relational Mathematics

Relational maths finds its
roots in the pioneering
work

On the syllogism:
IV, and on the
logic of relations

read by the British
mathematician Augustus
de Morgan (1806-71), on
the 23rd April 1860 to the
Cambridge Philosophical
Society.
(Excerpts of this work
follow.)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Augustus de Morgan (1806-71)

Binary relations:

[...] Let X ..LY signify that X is some one of the objects of
thought which stand to Y in the relation L, or is one of the
Ls of Y .

Relational composition:

[...] When the predicate is itself the subject of a relation, there
may be a composition: thus if X ..L(MY), if X be one of the
Ls of one of the M s of Y , we may think of X as an ‘L of M’
of Y , expressed by X ..(LM)Y , or simply by X ..LMY . [...][So]
brother of parent is identical with uncle, by mere definition.

Relational converse:

[...] The converse relation of L, L−1, is defined as usual: if
X .. L Y , Y .. L−1 X : if X be one of the Ls of Y , Y is one of
the L−1 s of X .

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Bad fate

As Maddux (1991); Givant (2006) explain:

• Charles Peirce (1839-1914) invented quantifier notation to
explain de Morgan’s algebra of relations.

• Further (monumental) contribution by Ernst Schröder
(1841-1902) eventually led to first order logic (FOL) itself.

However, and in spite of Bertrand Russell (1872-1970)’s writing

[...] The subject of symbolic logic is formed by three
parts: the calculus of propositions, the calculus of
classes, and the calculus of relations

in his Principles of Mathematics (1903), the language (FOL)
invented to explain the calculus of relations became eventually
more popular than the calculus itself.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Formal specification (modeling) languages

Answer to the second question:

• The languages which help at this high level of abstraction are
no longer conventional programming languages, but rather
those known as formal specification languages.

• In such languages we tell the machine what we want it to
achieve. rather that prescribing the details (machine
instructions) on how to do it.

• The equivalent to interpreters at this level are tools known as
model checkers.

• Instead of computing and printing results, a model checker
helps us to see whether what we intend to achieve makes
sense (cf. contradictions, ambiguities etc).

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Alloy

Alloy Analyser is a model
checker which uses relational
algebra as core notation. It has
been developed at M.I.T.
(Boston, Mass.) by a group lead
by Daniel Jackson (1963-).

It therefore is a model checker
specially devoted to Relational
Mathematics, as captured by its
lemma

“(...) in Alloy
everything is a relation”

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Here is how the model of our puzzle above is perceived by the
Alloy Analyser:

The arrows A extends B should be read as: A is a B.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Here is how diagram

Being
Eats �� Being

where �� Bank
cross �� Bank

is captured in Alloy notation,

abstract sig Being { Eats : set Being }

abstract sig Bank { cross: Bank }

and how we declare the particular beings and banks:

one sig Farmer, Beans, Goose, Fox extends Being {}

one sig Left, Right extends Bank {}

Later we will see how to declare relation where.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Food chain

Fox
Eats �� Goose

Eats �� Beans

is written explicitly in Alloy as a fact:

fact { Eats = Fox -> Goose + Goose -> Beans }

Likewise, cross is another fact in Alloy:

fact { cross = Left -> Right +

Right -> Left

}

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

We proceed to showing how to model the dynamic part of the
problem, that is, how to specify the steps which need be carried
out to model check the evolution of the puzzle.

Note how, in each step (“move”) the only entity which changes is
function where, beginning at

Fox

where ��

Goose

where
��

Beans
where

��

Farmer
where

��
Left

and stopping when where is the other possible constant function of
its type (everybody at the Right bank).

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

The moves of the game are transitions among steps, that is,
states of an automaton, In this case,

sig State { where : Being -> one Bank }

where qualifier one is Alloy’s way of telling that where is a
function.

What kind of “move” can we do? One, in fact: letting the Farmer
choose one Being from his bank and take it to the other bank:

before
trip

�� after is the move:

let a such that a SameBank Farmer (before),

whoMoves = Farmer + a (before)

in transit[before, after , cross,whoMoves]

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

In Alloy notation we write this in the following way:

pred trip[s,s’ : State] {

some c: (s.SameBank).Farmer |

let fc = (Farmer + c) <: s.where |

s’.where = s.where ++ fc.cross

}

We won’t go into notation details at this point, sufficing to see
how the rules of the game are written in Alloy syntax:

fact {

all s : State | starving[s]

first.where = Being->Left

last.where = Being->Right

all s : State, s’ : s.next | trip[s,s’]

}

where starving is the invariant drawn as a diagram earlier on.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Demo (start state):

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Propositio de homine et capra et lvpo

Demo (final state):

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

Summary and prospects for what next

We have seen how relational mathematics naturally follows
natural language in problem modeling.

We have also seen a notation — Alloy — which captures such
models.

We have also seen a tool — Alloy Analyser which model-cheks
such models.

However:

• Model-checking is incomplete verification — it can only show
the presence of errors in modeling, not their absence.

• Relational algebra (vulg. AoP, algebra of programming) will
compensate for this, see the workflow of the next slides.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

What next — Alloy meets the AoP

The “Alloy-meets-AoP” approach to software design advocated in
this seminar puts together two trends in software validation which
usually do not interact with each other:

Relational Thinking

Alloy AoP

(7)

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

What next — Alloy meets the AoP

Sketch of a life-cycle:

Alloy
Model "Checking"

PF-calculus
Proof

OK

Success

PF-notation
Refinement

Model refinedFound flaw

Refinement validated Check proof steps

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

What next — From the AoP to the LAoP

Further on:

• relations are Boolean matrices;

• when generalizing to arbritrary matrices we move from
qualitative modeling to quantitative models ...

• ... towards a Linear Algebra of Programming (LAoP).

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

References

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

R.C. Backhouse. Mathematics of Program Construction. Univ. of
Nottingham, 2004. Draft of book in preparation. 608 pages.

M. Baroni and R. Zamparelli. Nouns are vectors, adjectives are
matrices: representing adjective-noun constructions in semantic
space. In Proceedings, EMNLP ’10, pages 1183–1193,
Morristown, NJ, USA, 2010. Association for Computational
Linguistics.

R. Bird and O. de Moor. Algebra of Programming. Series in
Computer Science. Prentice-Hall International, 1997.

S. Givant. The calculus of relations as a foundation for
mathematics. J. Autom. Reasoning, 37(4):277–322, 2006. ISSN
0168-7433. doi:
http://dx.doi.org/10.1007/s10817-006-9062-x.

H. Macedo. Matrices as Arrows — Why Categories of Matrices
Matter. PhD thesis, University of Minho, 2012. (Submitted
Jan. 2012).

R.D. Maddux. The origin of relation algebras in the development
and axiomatization of the calculus of relations. Studia Logica,
50:421–455, 1991.

Motivation SWIFI Functions Relations Propositio XVIII Alloy Alloy syntax Summary References

David Lorge Parnas. Really rethinking “formal methods”. IEEE
Computer, 43(1):28–34, 2010.

Fred B. Schneider. Trust in Cyberspace. The National Academies
Press, 1999. ISBN 9780309131827. URL
http://www.nap.edu/openbook.php?record_id=6161.
Committee on Information Systems Trustworthiness,
Commission on Physical Sciences, Mathematics, and
Applications, National Research Council.

A. Sernadas, J. Ramos, and P. Mateus. Linear algebra techniques
for deciding the correctness of probabilistic programs with
bounded resources. Technical report, SQIG - IT and IST - TU
Lisbon, 1049-001 Lisboa, Portugal, 2008. Short paper presented
at LPAR 2008, Doha, Qatar. November 22-27.

http://www.nap.edu/openbook.php?record_id=6161

	Motivation
	SWIFI
	Functions
	Relations
	Propositio XVIII
	Alloy
	Alloy syntax
	Summary

