Transposing Relations: From Maybe Functions to Hash Tables

Jos´e Nuno Fonseca deOliveira and C´esar de Jesus Pereira CunhaRodrigues 2002

Paper Context

- Functional Transposition (FT)
- Converting Relations into functions
- To develop relational algebra via the algebra of functions
- In particular, transposition of binary relations

Binary Relation

Binary relations	Description
$R \cdot S$	composition
$R\cup S$	union
\perp	empty relation
id	identity relation
$R\subseteq S$	inclusion
$R \subseteq id, \neg R = id - R$	coreflexive relations
δR	domain of <i>R</i>

Why we need FT ?

- Functions have rich theory
- They can be
 - Dualized injection
 - Galois connected converse
 - Parametrically polymorphic
- Therefore, we can exploit the calculation power of functions
- namely "free Theorems" reasoning

But

- Functions are not enough for some situations
- Undefined for some of their input data (Partial function)
- Functions might give non-deterministic output (Maybe values rather than values)
 - Where Maybe is data type
 - Maybe a = Nothing| just a

Cope with Non-deterministic output

- Functional Programmer structured the codomain of such functions as set or list of values
- Such Powerset valued functions are models of binary relations

```
bRa \text{ means } b \in (f a)
```

 Any R is uniquely transposed into set value function

Set value Fucntion

$$f = \Lambda R \equiv (bRa \equiv b \in f a)$$

- Λ : Transpose Operator
- Analogy, we can define the conversion of Maybevalue Function as follows:

$$f = \Gamma R \equiv (bRa \equiv (f \ a = Just \ b))$$

Λ is not enough for transposing relations

Binary relation Taxonomy

Fig. 1. Binary relation taxonomy

Need

 Unified, generic transpose construct to collect type other than powerset valued functions

Solution :

Using hash tables for efficient data representation

Generic Transposition

- How to derive laws of relational combinators as free Theorems
- Power-transpose
- Maybe-transpose

$$f = A R \equiv (R = \in \cdot f)$$

$$f = \Gamma R \equiv (R = i_1^{\circ} \cdot f)$$

Hash Transpose

- Hash tables are static and dynamic storage of date
- Random access is normally achieved by a hash function

$$B \stackrel{h}{\longleftarrow} A$$

Data Collision can be handled either by •Linear probing or •Over follow

Hash Transpose

- Overflow handling consists in partitioning a given data collection into n-many disjoint buckets
- Each one addressed by hash index
 Can be modeled as:

$$a \in S \equiv a \in t(h \ a)$$

Hashing as a transpose

- Derive previous equation
- Hash transpose:

$$t = A(S \cdot h^{\circ})$$

The Paper in Points

- Basis for Generic transposition
- Two instances of transposition are considered
 - Any relations
 - Simple relations
- Relate the topic of functional transposition with hashing for data representation

