Transposing Relations: From Maybe Functions to Hash Tables

Jos 'e Nuno Fonseca deOliveira and C' esar de Jesus Pereira

CunhaRodrigues
2002

22/June / 2012

Samih Eisa

Paper Context

- Functional Transposition (FT)
- Converting Relations into functions
- To develop relational algebra via the algebra of functions
- In particular, transposition of binary relations

$$
A \xrightarrow{R} B
$$

Binary Relation

Binary relations	Description
$R \cdot S$	composition
$R \cup S$	union
\perp	empty relation
$i d$	identity relation
$R \subseteq S$	inclusion
$R \subseteq i d, \neg R=i d-R$	coreflexive relations
δR	domain of R

Why we need FT ?

- Functions have rich theory
- They can be
- Dualized - injection
- Galois connected - converse
- Parametrically polymorphic
- Therefore, we can exploit the calculation power of functions
- namely " free Theorems" reasoning

But

- Functions are not enough for some situations
- Undefined for some of their input data (Partial function)
- Functions might give non-deterministic output (Maybe values rather than values)
- Where Maybe is data type
- Maybe a = Nothing| just a

Cope with Non-deterministic output

- Functional Programmer structured the codomain of such functions as set or list of values
- Such Powerset valued functions are models of binary relations

$$
b R a \text { means } b \in\left(\begin{array}{ll}
f & a
\end{array}\right)
$$

- Any R is uniquely transposed into set value function

Set value Fucntion

$$
f=A R \equiv(b R a \equiv b \in f a)
$$

- \wedge : Transpose Operator
- Analogy, we can define the conversion of Maybevalue Function as follows:

$$
f=\Gamma R \equiv(b R a \equiv(f a=J u s t b))
$$

- \wedge is not enough for transposing relations

Binary relation Taxonomy

Fig. 1. Binary relation taxonomy

Need

- Unified, generic transpose construct to collect type other than powerset valued functions
- Solution :
- Using hash tables for efficient data representation

Generic Transposition

- How to derive laws of relational combinators as free Theorems
- Power-transpose
- Maybe-transpose

$$
\begin{aligned}
& f=\Lambda R \equiv(R=\in \cdot f) \\
& f=\Gamma R \equiv\left(R=i_{1}^{\circ} \cdot f\right)
\end{aligned}
$$

Hash Transpose

- Hash tables are static and dynamic storage of date
- Random access is normally achieved by a hash function

$$
B \stackrel{h}{\leftarrow} A
$$

Data Collision can be handled either by - Linear probing or - Over follow

Hash Transpose

- Overflow handling consists in partitioning a given data collection into n-many disjoint buckets
- Each one addressed by hash index
- Can be modeled as:

$$
a \in S \equiv a \in t(h a)
$$

Hashing as a transpose

- Derive previous equation
- Hash transpose:

$$
t=\Lambda\left(S \cdot h^{\circ}\right)
$$

The Paper in Points

- Basis for Generic transposition
- Two instances of transposition are considered
- Any relations
- Simple relations
- Relate the topic of functional transposition with hashing for data representation

