Transposing Relations:
From Maybe Functions to Hash Tables

José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

Dep. Informatica, Universidade do Minho, Campus de Gualtar, 4700-320 Braga, Portugal
{jno,cjr}edi.uminho.pt

Abstract. Functional transposition is a technique for converting relations into
functions aimed at developing the relational algebra via the algebra of functions.
This paper attempts to develop a basis for generic transposition. Two instances
of this construction are considered, one applicable to any relation and the other
applicable to simple relations only.

Our illustration of the usefulness of the generic transpose takes advantage of the
free theorem of a polymorphic function. We show how to derive laws of relational
combinators as free theorems of their transposes. Finally, we relate the topic of
functional transposition with the hashing technique for efficient data representa-
tion.

1 Introduction

This paper is concerned with techniques for functional transposition of binary relations.
By functional transposition we mean the faithful representation of a relation by a (total)
function. But — what is the purpose of such a representation?

Functions are well-known in mathematics and computer science because of their
rich theory. For instance, they can be dualized (as happens e.g. with the projection/ in-
jection functions), they can be Galois connected (as happens e.g. with inverse functions)
and they can be parametrically polymorphic. In the latter case, they exhibit theorems
“for free” [20] which can be inferred solely by inspection of their types.

However, (total) functions are not enough. In many situations, functions are partial
in the sense that they are undefined for some of their input data. Programmers have
learned to deal with this situation by enriching the codomain of such functions with a
special error mark indicating that nothing is output. In C/C++, for instance, this leads
to functions which output pointers to values rather than just values. In functional lan-
guages such as Haskell [13], this leads to functions which output M aybe-values rather
than values, where M aybe is datatype M aybe a = Nothing | Just a.

Partial functions are still not enough because one very often wants to describe what
is required of a function rather than prescribe how the function should compute its re-
sult. A well-known example is sorting: sorting a list amounts to finding an ordered per-
mutation of the list independently of the particular sorting algorithm eventually chosen
to perform the task (eg. quicksort, mergesort, etc.). So one is concerned not only with
implementations but also with specifications, which can be vague (eg. which square root
is meant when one writes ““,/x”?) and non-deterministic. Functional programmers have

D. Kozen (Ed.): MPC 2004, LNCS 3125, pp. 334-356, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Transposing Relations: From Maybe Functions to Hash Tables 335

learned to cope with (bounded) non-determinism by structuring the codomain of such
functions as sets or lists of values.

In general, such powerset valued functions are models of binary relations: for each
such f one may define the binary relation R such that bRa means b € (f a) for all
suitably typed a and b. Such R is unique for the given f. Conversely, any binary relation
R is uniquely transposed into a set-valued function f. The existence and uniqueness of
such a transformation leads to the identification of a transpose operator A [6] satisfying
the following universal property,

f=AR= (bRa=b€ fa) (1)

forall R from Ato Band f: A —— PB . (PB denotes the set of all subsets of B.)

The power-transpose operator /A establishes a well-known isomorphism between
relations and set-valued functions which is often exploited in the algebra of relations,
see for instance textbook [6]. Less popular and usually not identified as a transpose is
the conversion of a partial function into a M aybe-valued function, for which one can
identify, by analogy with (1), isomorphism I" defined by (for all suitably typed a and b)

f=IR= (bRa= (f a= Justb)) (2)

where R ranges over partial functions.

Terms fotal and partial are avoided in relation algebra because they clash with a dif-
ferent meaning in the context of partial orders and total orders, which are other special
cases of relations. Instead, one writes entire for total, and simple relation is written in-
stead of partial function. The word function is reserved for total, simple relations which
find a central place in the taxonomy of binary relations depicted in Fig. 1 (all other
entries in the taxonomy will be explained later on).

Paper objectives. This paper is built around three main topics. First, we want to show
that A is not the only operator for transposing relations. It certainly is the most gen-
eral, but we will identify other such operators as we go down the hierarchy of binary
relations. Our main contribution will be to unify such operators under a single, generic
transpose construct based on the notion of generic membership which extends “€” to
collective types other than the powerset [6, 10, 11]. In particular, one of these operators
will be related with the technique of representing finite data collections by hash-tables,
which are efficient data-structures well-known in computer science [21, 12].

Second, we want to stress on the usefulness of transposing relations by exploit-
ing the calculation power of functions, namely free theorems. Such powerful reasoning
devices can be applied to relations provided we represent relations as functions (by
functional transposition), reason functionally and come back to relations where appro-
priate. In fact, several relational combinators studied in [6] arise from the definition
of the power-transpose A R of a relation R. However, some results could have been
produced as free-theorems, as we will show in the sequel.

Last but not least, we want to provide evidence of the practicality of the pointfree
relation calculus. The fact that pointfree notation abstracts from “points™ or variables
makes the reasoning more compact and effective, as is apparent in our final example
on hash-tables, if compared with its pointwise counterpart which one of the authors did
several years ago [16].

336 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

injective entire simple surjective

representation function abstraction

injection surjection

bijection (isomorphism)

Fig. 1. Binary relation taxonomy

Related work. In the literature, equations (1) and (2) have been dealt with in disparate
contexts. While (1) is adopted as “the” standard transpose in [6], for instance, (2) is
studied in [9] as an example of an adjunction between the categories of total and partial
functions. From the literature on the related topic of generic membership we select [6]
and [11].

Paper structure. This paper is structured as follows. In the next section we present
an overview of (pointfree) relation algebra. Section 3 presents our relational study of
generic transpose. In section 4, the two transposes (1) and (2) are framed in the generic
view. Section 5 presents an example of reasoning based on the generic transpose op-
erator and its instances. In the remainder of the paper we relate the topic of functional
transposition with the hash table technique for data representation and draw some con-
clusions which lead to plans for future work.

2 Overview of the Relational Calculus

Relations. Let B DL A denote a binary relation on datatypes A (source) and B
(target). We write bRa to mean that pair (b, a) is in R. The underlying partial order
on relations will be written R C S, meaning that S is either more defined or less
deterministic than R, that is, R C S = bRa = bSa for all a,b. R U S denotes the
union of two relations and T is the largest relation of its type. Its dual is L, the smallest
such relation. Equality on relations can be established by C-antisymmetry: R = S =
RCSASCR.

Relations can be combined by three basic operators: composition (R - S), converse
(R°) and meet (R N S). R° is the relation such that a(R°)b iff bRa holds. Meet cor-
responds to set-theoretical intersection and composition is defined in the usual way:
b(R - S)c holds wherever there exists some mediating a € A such that bRa A aSec.
Everywhere T' = R - S holds, the replacement of 7" by R - S will be referred to as a

“factorization” and that of R - S by T as “fusion”. Every relation B <% 4 admits

Transposing Relations: From Maybe Functions to Hash Tables 337

two trivial factorizations, R = R -td4 and R = idp - R where, for every X, idx is the
identity relation mapping every element of X onto itself.

Coreflexives. Some standard terminology arises from the id relation: a (endo)relation

A DL A (often called an order) will be referred to as reflexive iff id4 C R holds
and as coreflexive iff R C id 4 holds. As a rule, subscripts are dropped wherever types
are implicit or easy to infer.

Coreflexive relations are fragments of the identity relation which can be used to
model predicates or sets. The meaning of a predicate p is the coreflexive [p] such
that b[pJa = (b = a) A (p a), that is, the relation that maps every a which satisfies
p (and only such a) onto itself. The meaning of a set S C A is [Aa.a € S], that
is, b[S]a = (b =a) Aa € S. Wherever clear from the context, we will omit the [|
brackets.

Orders. Preorders are reflexive, transitive relations, where R is transitive iff R- R C R
holds. Partial orders are anti-symmetric preorders, where R is anti-symmetric wherever
RN R° C 1id holds. A preorder R is an equivalence if it is symmetric, that is, if
R = R°.

Converse is of paramount importance in establishing a wider taxonomy of binary
relations. Let us first define the kernel of a relation, ker R = R° - R and its dual,
img R = ker (R°), called the image of R. Alternatively, we may define img R =
R- R°, since converse commutes with composition, (R-S)° = S°- R° and is involutive,
that is, (R°)° = R. Kernel and image lead to the following terminology: a relation R
is said to be entire (or total) iff its kernel is reflexive; or simple (or functional) iff its
image is coreflexive. Dually, R is surjective iff R° is entire, and R is injective iff R° is
simple. This terminology is recorded in the following summary table:

| | | Reflexive | Coreflexive |

ker R|| entire R |[injective R (3)
img R|[surjective R| simple R

Functions. A relation is a function iff it is both simple and entire. Functions will be
denoted by lowercase letters (f, g, etc.) and are such that b fa means b = f a. Function
converses enjoy a number of properties of which the following is singled out because
of its rdle in pointwise-pointfree conversion [3] :

b(f°-R-g)a=(fb)R(ga) 4)

The overall taxonomy of binary relations is pictured in Fig. 1 where, further to the
standard classification, we add representations and abstractions. These are classes of
relations useful in data-refinement [15]. Because of C-antisymmetry, img S = id wher-
ever S is an abstraction and ker R = id wherever R is a representation. This ensures
that “no confusion” arises in a representation and that all abstract data are reachable by
an abstraction (“no junk™).

Isomorphisms (such as A and I" above) are functions, abstractions and represen-
tations at the same time. A particular isomorphism is id, which also is the smallest
equivalence relation on a particular data domain. So, b id a means the same as b = a.

338 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

Functions and relations. The interplay between functions and relations is a rich part of
the binary relation calculus. This arises when one relates the arguments and results of
pairs of functions f and g in, essentially, two ways:

f-SCR-g 5)

f°-5=R-yg (6)

As we shall see shortly, (5) is equivalentto S C f° - R - g which, by (4), means that f
and g produce R-related outputs f b and g a provided their inputs are S-related (bSa).

This situation is so frequent that one says that, everywhere f and g are such that (5)
holds, f is (R« S)-related to g:

f(R—S)g=f-SCR-g cf. diagram B

A (7

For instance, for partial orders R, S :=<, C, fact f(<+LC)f means that f is monotone.
For R, S :=<,id, fact f(< <+ id)g means

f<g=fC <.g (8)

that is, f and g are such that f b < g b for all b. Therefore, S lifts pointwise ordering
< to the functional level. In general, relation R < S will be referred to as “Reynolds
arrow combinator” (see section 5), which is extensively studied in [3].

Concerning the other way to combine relations with functions, equality (6) becomes
interesting wherever R and S are preorders,

C
f
fe-E=<-g cf. diagram: C\é - = CO ©)
9

in which case f, g are always monotone and said to be Galois connected. Function f
(resp. g) is referred to as the lower (resp. upper) adjoint of the connection. By introduc-
ing variables in both sides of (9) via (4) we obtain

(fb)Ea=b<(ga) (10)

Note that (9) boils down to f° = g (ie. f = ¢°) wherever < and C are id, in which
case f and g are isomorphisms, that is, f° is also a function and fb=a =0 = f°a
holds.

For further details on the rich theory of Galois connections and examples of appli-
cation see [1,3]. Galois connections in which the two preorders are relation inclusion
(£, E := C, Q) are particularly interesting because the two adjoints are relational com-
binators and the connection itself is their universal property. The following table lists
connections which are relevant for this paper:

Transposing Relations: From Maybe Functions to Hash Tables 339

(fX)CY=XC(9Y)

Description ‘ f | g | Obs. ‘
Converse (0)° ()°
Shunting rule (f) | (f°) NB: f is a function (11)
“Converse” shunting rule| (-f°) | (-f) NB: f is a function
Left-division (R) [(R\)| read“Runder...”
Right-division (‘R) |(/R) read “...over R”
Difference (-—R)|(RU)

From the two of these called shunting rules one infers the very useful fact that equating
functions is the same as comparing them in either way:

f=9=fCg=9gCf (12)

Membership. Equation (1) involves the set-theoretic membership relation A<—=—PA .
Sentence a € x (meaning that “a belongs to ™ or “a occurs in) can be generalized
to x’s other than sets. For instance, one may check whether a particular integer occurs
in one or more leaves of a binary tree, or of any other collective or container type F.

Such a generic membership relation will have type A < F4 , where F is a
type parametric on A. Technically, the parametricity of F is captured by regarding it as
a relator [5], a concept which extends functors to relations: F A describes a parametric
type while F R is a relation from F A to F B provided R is a relation from A to B.
Relators are monotone and commute with composition, converse and the identity.

The most simple relators are the identity relator |d, which is such that Id A = A and
Id R = R, and the constant relator K (for a particular concrete data type K') which is
suchthat K A = K and K R = idk.

Relators can also be multi-parametric. Two well-known examples of binary relators
are product and sum,

RxS=(R-m,S m) (13)
R+ S=[i1-R,iy- 5] (14)

where 71, o denote the projection functions of a Cartesian product, 71, ¢2 denote the
injection functions of a disjoint union, and the split/either relational combinators are
defined by

(R,S)=n]{-RNmg-S (15)
[R,S] = (R-i7)U(S-i3) (16)
By putting these four kinds of relator (product, sum, identity and constant) together

with fixpoint definition one is able to specify a large class of parametric structures —
called polynomial — such as those implementable in Haskell. For instance, the M aybe

340 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

datatype is an implementation of polynomial relator F = Id + 1 (ie. FA = A + 1),
where 1 denotes the singleton datatype, written () in Haskell.

There is more than one way to generalize A << P A to relators other than the
powerset. (For a thorough presentation of the subject see chapter 4 of [10].) For the

purpose of this paper it will be enough to say that A <—— F A , if it exists, is a lax
natural transformation [6], that is,

cr-FRCR-€f (17)

holds. Moreover, relators involving +, X, Id and constants have membership defined
inductively as follows:

def

€k = L (18)
cu & id (19)
Erxc 2 (€F -m1) U (€ -m2) (20)
eric E [er, g @1)

3 A Study of Generic Transposition

Thanks to rule (4), it is easy to remove variables b and a from transposition rules (1)
and (2), yielding

f=AR=(R=¢€-f) (22)
f=I'R= (R=1%-f) (23)

where, in the second equivalence, R ranges over simple relations and Just is replaced
by injection 4; associated with relator Id 4+ 1. In turn, f and R can also be abstracted
from (22,23) using the same rule, whereby we end up with A = (€-)° and I" = (i$-)°.

The generalization of both equations starts from the observation that, in the same
way € is the membership relation associated with the powerset, 7] is the membership
relation associated with Id + 1, as can be easily checked:

Cld+1
= { by 2D}

(€14, €1]
= { by (19) and (18) }

lid, L] (24)
= { by (16) and properties of L }

id - 19

= { identity }

i

This suggests the definitions and results which follow.

Transposing Relations: From Maybe Functions to Hash Tables 341

Definition. Given a relator F with membership relation €, a particular class of binary

relations A <t B is said to be F-transposable iff, for each such R, there exists a

unique function f : B —— FA such that €r - f = R holds. This is equivalent (by
skolemisation) to saying that there exists a function /¢ (called the F-transpose) such
that, for all such R and f,

f=ItR=¢cr-f=R cf.diagram A<2— R (25)

o| A

FA

In other words, such a generic F-transpose operator is the converse of membership
post-composition:

It = (€r)° (26)

The two instances we have seen of (25) are the power-transpose (F A = P A) and the
M aybe-transpose (F A = A + 1). While the former is known to be applicable to every
relation [6], the latter is only applicable to simple relations, a result to be justified after
we review the main properties of generic transposition. These extend those presented in
[6] for the power-transpose.

Properties. Cancellation and reflection
€r-IfFR=R (27
Ir €g=1id (28)
arise from (25) by substitutions f := I'rR and f := id, respectively. Fusion
It(T-S)=([¥T)-S < (I¥T) - S is a function (29)

arises in the same way — this time for substitution f := (IF7")-.S —as follows (assuming
the side condition ensuring that (I£7") - S is a function):

(I¥T)-S=IrR=¢cr- ((I¥T)-S) =R
= { associativity }
(ep-I¥T)-S=R
= { cancellation (27) }
T-S=R
The side condition of (29) requires S to be entire but not necessarily simple. In fact,

it suffices that img S C ker (I¥T") since, in general, the simplicity of f - S equivales
img S C ker f:

342 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

img S C ker f
= { definitions }
(S5-5°)cf-f
{ id is the unit of composition }
(S-S°)Cfo-id-f
= { shunting rules (11) }
f-(8-5°)-f°Cid
= { composition is associative ; converse of composition }
(f-5)-(f-5)" Cid
{ definition of img }
img (f-S) Cid

= { simplicity }
(f - S) is simple

In summary, the simplicity of (entire) .S is a sufficient (but not necessary) condition
for the fusion law (29) to hold. In particular, S can be a function, and it is under this
condition that the law is presented in [6].

Substitution f := I'¢.S in (25) and cancellation (27) lead to the injectivity law,

ItS=IfrR=S5S=R (30)
Finally, the generic version of the absorption property,
FR-I¥S=Ir(R-S)<R-€pC€r-FR (31)
is justified as follows:

FR-I+S = I+(R- S)

{ universal property (25) }
€r-FR-IES=R-S

{assume €r-FR=R-€f) }
R-€g-I¥S=R-S

{ cancellation (27) }
R-S=R-S

The side condition of (31) arises from the property assumed in the second step of the
proof. Together with (17), it establishes the required equality by anti-symmetry, which
is equivalent to writing F R = I'+(R- €f) in such situations.

! Cf. exercise 5.9 in [6]. See also exercise 4.48 for a result which is of help in further reasoning
about the side condition of (29).

Transposing Relations: From Maybe Functions to Hash Tables 343

Unit and inclusion. Two concepts of set-theory can be made generic in the context
above. The first one has to do with singletons, that is, data structures which contain a
single datum. The function 7¢ mapping every A to its singleton of type F is obtainable
by transposing id, 7 = I'rid, and is such that (by the fusion law) 7¢- f = I'r f. Another
concept relevant in the sequel is generic inclusion, defined by

FA EF\GF FA (32)

and involving left division (11), the relational operator which is defined by the fact that
(R) is the upper-adjoint of (R -) for every R.

4 Instances of Generic Transposition

In this section we discuss the power-transpose (F = P) and the M aybe-transpose
(F = Id + 1) as instances of the generic transpose (25). Unlike the former, the latter
is not applicable to every relation. To conclude that only simple relations are M aybe-
transposable, we first show that, for every F-transposable R, its image is at most the
image of €f:

img R C img €f (33)
The proof is easy to follow:
img R
= { definition }
R-R°

= { R is F-transposable ; cancellation (27) }
(EF . FFR) . (EF . FFR)O
= { converses }
ce-IeR- (FFR)O . EFO
C { I*rR is simple ; monotonicity }
€F- €’
= { definition }
img €f
So, €f restricts the class of relations R which are F-transposable. Concerning the
power-transpose, it is easy to see that img €g= T since, for every a, a’, there exists at
least the set {a, a’} which both a and o’ belong to. Therefore, no restriction is imposed
on img R and transposition witnesses the well-known isomorphism (24)8 = 2Bx4
(writing 24 for P A and identifying every relation with its graph, a set of pairs).
By contrast, simple memberships can only be associated to the transposition of sim-

ple relations. This is what happens with €411= 7] which, as the converse of an injec-
tion, is simple (3).

344 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

Conversely, appendix A shows that all simple relations are (ld 4 1)-transposable.
Therefore, (Id 4 1)-transposability defines the class of simple relations and witnesses
isomorphism (B + 1)4 = A — B, where A— B denotes the set of all simple relations
from A to B 2.

Another difference between the two instances of generic transposition considered
so far can be found in the application of the absorption property (31). That its side
condition holds for the M aybe-transpose is easy to show:

R-iS Ci°- (R+id)

= { shunting }
in-RC (R+14d) - iy

= { anti-symmetry }
i1-R=(R+1d)- i1

= { R+ S (14)is a coproduct [6] }
1w-R=1"-R

Concerning the power-transpose, [6] define the absorption property for the existential
image functor, ER = A(R- €), which coincides with the powerset relator for functions.
However, E is not a relator’. So, the absorption property of the power-transpose can only
be used where R is a function: Pf - AS = A(f - S).

Finally, inclusion (32) for the power-transpose is the set-theoretic subset ordering
[6], while its M aybe instance corresponds to the expected “flat-cpo ordering’:

(€411 \ €1ds1)y =Va.x = (i1 a) = y = (i1 a)

So Nothing will be included in anything and every “non-Nothing” x will be included
only in itself*.

5 Applications of Generic Transpose

The main purpose of representing relations by functions is to take advantage of the
(sub)calculus of functions when applied to the transposed relations. In particular, trans-
position can be used to infer properties of relational combinators. Suppose that f & g
is a functional combinator whose properties are known, for instance, f & g = [f, g] for
which we know universal property

k-ip=f

ki (34)

e~ 1= {

% This isomorphism is central to the data refinement calculus presented in [15].

3 See [10] and exercise 5.15 in [6].

4 This is, in fact, the ordering <= which is derived for M aybe as instance of the Ord class in
the Haskell Prelude [13].

Transposing Relations: From Maybe Functions to Hash Tables 345

We may inquire about the corresponding property of another, this time relational, com-
binator R ® S induced by transposition:

IT(R® S)=(IxR) ® (I¥S) (35)
= {25}
R®S=¢cr-({FR) ® (IF9)) (36)

This can happen in essentially two ways, which are described next.

Proof of universality by transposition. It may happen that the universal property of
functional combinator & is carried intact along the move from functions to relations. A
good example of this is relational coproduct, whose existence is shown in [6] to stem
from functional coproducts (34) by transposition®. One only has to instantiate (34) for
k,f,g:=I¥T,I¢R, S and reason:

IE¥T = [FFR,FFS] = (FFT)-il =IrR A (FFT)-iQ =1IES
{ (25) and fusion (29) twice, for S := i1,z }

T = e'[FFRprS]E FF(TZI):FFR/\FF(TZQ):FFS

{ injectivity (30) }
T= ¢ [[FRItS]=T -iy=RAT is=5
{ define [R, S] = € - [[FR, ¢S] }
T=[R,S|=T iy=RAT in=5

{ coproduct definition }
[R, S| is a coproduct

Defined in this way, relational coproducts enjoy all properties of functional coproducts,
eg. fusion, absorption etc.

This calculation, however, cannot be dualized to the generalization of the split-
combinator (f, g) to relational (R, .S). In fact, relational product is not a categorical
product, which means that some properties will not hold, namely the fusion law,

(g.h) - f=A{g-f.h-f) (37)
when g, h, f are replaced by relations. According to [6], what we have is
(R,S)-f=(R-f,Sf) (38)

whose proof can be carried out by resorting to the explicit definition of the split combi-
nator (15) and some properties of simple relations grounded on the so-called modular

law®.

> For the same outcome without resorting to transposition see §2.5.2 of [10].
6 See Exercise 5.9 in [6].

346 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

In the following we present an alternative proof of (38) as an example of the calcula-
tion power of transposes combined with Reynolds abstraction theorem in the pointfree
style [3]. The proof is more general and leads to other versions of the law, depending
upon which transposition is adopted, that is, which class of relations is considered.

From the type of functional split,

() (AxB)«—C)—((A=C)x (B<C(C)) (39)

we want to define the relational version of this combinator — denote it by (- ® _) for the
time being — via the adaptation of (_, _) (39) to transposed relations, to be denoted by
(- -). This will be of type

t=(FAxB)«—C)—(FA—-C)x (FB—())) (40)

Reynolds abstraction theorem. Instead of defining (- @ _) explicitly, we will reason
about its properties by applying the abstraction theorem due to J. Reynolds [19] and
advertised by P. Wadler [20] under the “theorem for free” heading. We follow the point-
free styled presentation of this theorem in [3], which is remarkably elegant: let f be
a polymorphic function f :t, whose type t can be written according to the following
“grammar” of types:

tu=t —t’
t = F(t1,...,t,) forn-ary relator F
to=

v for v a type variable (= polymorphism “dimension”)

Let V be the set of type variables involved in type ¢; { R, } ., be a V-indexed family of
relations (f, in case all such R, are functions); and R; be a relation defined inductively
as follows:

Rt::F(tl,...,tn) = F(Rtl’ tr Rtn)
Rt::v - RU
Ry—pryn = Ry« Ry

where R <« Ry~ is defined by (7). The free theorem of type t reads as follows: given
any function f : t and V as above, f R, f holds for any relational instantiation of type
variables in V. Note that this theorem is a result about ¢ and holds for any polymorphic
function of type t independently of its actual definition’.

In the remainder of this section we deduce the free theorem of type t (40) and draw
conclusions about the fusion and absorption properties of relational split based on such
a theorem. First we calculate R;:

Ry

= { induction on the structure of ¢ (40) }

7 See [3] for comprehensive evidence on the the power of this theorem when combined with
Galois connections, which stems basically from the interplay between equations (5) and (6).

Transposing Relations: From Maybe Functions to Hash Tables 347

(F (RA X RB) — Rc) — ((F RA — Rc> X (F RB — Rc)))

{ substitution R4, Rp, Rc := R, S, Q in order to remove subscripts }
(F(RxS)—Q)—(FR—Q)x(FS—Q)))
Next we calculate the free theorem of (- ® _) : ¢ :

@ I)(R)(- D)

= { expansion of R;}

(@ JFExS)—Q)—(FR=Q)x (FS—Q))(-®-)

= { meaning of Reynolds arrow combinator (7) }
(&) (FR=Q)x(FS<Q)) CF(RxS) Q) (&)
= { shunting (11) }
FR—Q)x(FS—Q)C(®) (F(RxS)—Q) - (-@-)
= { going pointwise and (4) }
([, (FR—Q)x (FS—Q))(h,k) = (f&g)(F(RxS)—Q)(h&k)
= { product relator and (7) }
fFR=QhNg(FS—Qk= (feyg) QCFRxS) (h&k)
= { Reynolds arrow combinator (7) three times }
f-QCFR-hAg-QCFS-k= (f®g) - QCF(RxS) - (hok)

Should we replace functions f, h, g, k by transposed relations I U, IV, [X, [Z,
respectively, we obtain

(I¥U) @ (X)) - Q CF (R x 8) - (I¥V) @ ([2)) (41)
provided conjunction
(I+U) - QCFR-(ItV) A (I+X)-Q CF S (I+2) (42)
holds. Assuming (35), (41) can be re-written as
FU®X)-QCF(RxS) - IF(V®Z) (43)

At this point we restrict () to a function ¢ and apply the fusion law (29) without extra
side conditions:

For R, S := id, id we will obtain —“for free” — the standard fusion law

U®X) q=U-q®X-q)

348 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

presented in [6] for the split combinator (38), ie. for (R®.S) = (R, S). In the reasoning,
all factors involving R and S disappear and fusion takes place in both conjuncts of (42).
Moreover, inclusion (C) becomes equality of transposed relations — thanks to (12) — and
injectivity (30) is used to remove all occurrences of IF.

Wherever R and S are not identities, one has different results depending on the
behaviour of the chosen transposition concerning the absorption property (31).

M aybe transpose. In case of simple relations under the M aybe-transpose, absorption
has no side condition, and so (44) rewrites to

UeX)-qg=Rx9) - (V®2Z) (45)

by further use of (12) — recall that transposed relations are functions — and injectivity
(30), provided (42) holds, which boilsdownto U - ¢ =R -V and X - ¢ = S - Z under
a similar reasoning. For ¢ := id and (- ® _) instantiated to relational split, this becomes
absorption law

(R-V,S-Z)=(RxS)-(V,Z) if R,S,V,Z are simple (46)

In summary, our reasoning has shown that the absorption law for simple relations is a
free theorem.

Power transpose. In case of arbitrary relations under the power-transpose, absorption
requires R and S in (44) to be functions (say r, s), whereby the equation re-writes to

[F(U® X) - q) C Te((r x) - (V @ 2)) “7)

provided IF(U - q) C Ie(r-V) and I'r(X - q) C Ir(s- Z) hold. Again by combined
use of (12) and injectivity (30) one gets

UeX)-gq=F(rxs)- (VeZ2) (48)

provided U - ¢ = r -V and X - ¢ = s - Z hold. Again instantiating ¢ := ¢d and
(-®) = (., -), this becomes absorption law

(r-Vis-Z)y=(rxs) - (V,Z) (49)

Bird and Moor [6] show, in (admittedly) a rather tricky way, that product absorption
holds for arbitrary relations. Our calculations have identified two restricted versions of
such a law — (46) and (49) — as “free” theorems, which could be deduced in a more
elegant, parametric way.

6 Other Transposes

So far we have considered two instances of transposition, one applicable to any relation
and the other restricted to simple relations. That entire relations will have their own
instance of transposition is easy to guess: it will be a variant of the power-transpose

Transposing Relations: From Maybe Functions to Hash Tables 349

imposing non-empty power objects (see exercise 4.45 in [6]). Dually, by (3) we will
obtain a method for reasoning about surjective and injective relations.

We conclude our study of relational transposition by relating it with a data repre-
sentation technique known in computer science as hashing. This will require further
restricting the class of the transposable relations to coreflexive relations. On the other
hand, the transpose combinator will be enriched with an extra parameter called the
“hash function”.

7 The Hash Transpose

Hashing. Hash tables are well known data structures [21, 12] whose purpose is to effi-
ciently combine the advantages of both static and dynamic storage of data. Static struc-
tures such as arrays provide random access to data but have the disadvantage of filling
too much primary storage. Dynamic, pointer-based structures (eg. search lists, search
trees etc.) are more versatile with respect to storage requirements but access to data is
not as immediate.

The idea of hashing is suggested by the informal meaning of the term itself: a large
database file is “hashed” into as many “pieces” as possible, each of which is randomly
accessed. Since each sub-database is smaller than the original, the time spent on access-
ing data is shortened by some order of magnitude. Random access is normally achieved

by a so-called hash function, say B < A , which computes, for each data item a
(of type A), its location h a (of type B) in the hash table. Standard terminology regards
as synonyms all data competing for the same location. A set of synonyms is called a
bucket.

Data collision can be handled either by eg. linear probing [21] or overflow handling
[12]. The former is not a totally correct representation of a data collection. Overflow
handling consists in partitioning a given data collection S C A into n-many, disjoint
buckets, each one addressed by the relevant hash index computed by h 8.

This partition can be modelled by a function ¢ of type P A <! B and the so-
called “hashing effect” is the following: the membership test a € S (which requires an
inspection of the whole dataset S) can be replaced by a € t(h a) (which only inspects
the bucket addressed by location h a). That is, equivalence

a€S=actha) (50)

must hold for ¢ to be regarded as a hash table.

Hashing as a transpose. First of all, we reason about equation (50):
acS=actha)
= { introduce b = ha }
ace SANb=ha=ac(th)

8 In fact, such buckets (“collision segments”) are but the equivalence classes of ker h restricted
to S (note that the kernel of a function is always an equivalence relation).

350 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

= { introduce a = a’ }
a€ESNa=a ANb=hd =a€(th)

= { introduce S as a coreflexive ; converse of hash function }
aSa’ Na'h°b =a € (tb)

= { relational composition and rule (4) }
a(S-h°)b=a(e-t)b

= { going pointfree }
S-h°=¢€-t

= { power transpose }

t=A(S - h°)

So, for an arbitrary coreflexive relation A <5 A , its hash-transpose (for a fixed

hash function B < A)isafunction PA <t B , satisfying

ct=S-h° A< 4

PA <~ B
By defining

O S = A(S - h°) (51)

we obtain a h-indexed family of hash transpose operators and associated universal prop-
erties

t=6,8 = e€-t=5-h° (52)
and thus the cancellation law
€-(BpS)=58-h° (53)

etc.

In summary, the hash-transpose extends the power-transpose of coreflexive relations
in the sense that A = (©;4). That is, the power-transpose is the hash-transpose using id
as hash function. In practice, this is an extreme case, since some “lack of injectivity” is
required of h for the hash effect to take place. Note, in passing, that the other extreme

! : . . .
case is h = !4, where 1 <—— A denotes the unique function of its type: there is a
maximum loss of injectivity and all data become synonyms!

Transposing Relations: From Maybe Functions to Hash Tables 351

Hashing as a Galois connection. As powerset-valued functions, hash tables are ordered

by the lifting of the subset ordering P A <S— PA defined by <= €\ €, recall (32).
That the construction of hash tables is monotonic can be shown using the relational

calculus. First we expand §

t<t

{ pointwise ordering lifted to functions (8) }

tC<-t

{ definition of the subset ordering (32) }
tC(e\e)-t
= { law (R\S)-f =R\ (S- f) [6], since t’ is a function }
tCe\(e-t)

{ (&) is lower adjoint of (€\), recall (11) }

e-tCe-t (54)
Then we reason:
(61)S < (En)R
{ by (54}
€-(0,)S Ce-(Oy)R
{ cancellation (53) }

S-h° CR-h°
= { (-h®) is monotone, cf. lower-adjoints in (11) }
SCR

So, the smallest hash-table is that associated with the empty relation L, that is AL,
which is constant function ¢ = (), and the largest one is ¢ = Ah°, the hash-transpose of
id 4. In set-theoretic terms, this is A itself, the “largest” set of data of type A.

That the hash-transpose is not an isomorphism is intuitive: not every function ¢
mapping B to P A will be a hash-table, because it may fail to place data in the correct
bucket. Anyway, it is always possible to “filter” the wrongly placed synonyms from ¢
yielding the “largest” (correct) hash table ¢’ it contains,

t'=tnN A(h°)

where, using vector notation [4], f N g is the lifting of N to powerset-valued functions,
(f N g)b= (fb)n(gb) for all b. In order to recover all data from such filtered ¢’ we
evaluate

rng (€ -t)

352 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

where rng R (read “range of R”’) means img R M id. Altogether, we may define a func-
tion on powerset valued functions =t = rag (€ - (t N A(h°))) which extracts the
coreflexive relation associated with all data correctly placed in ¢. By reconverting =},¢
into a hash-table again one will get a table smaller than ¢:

On(Ent) < t (55)

(See proof'in [18].) Another fact we can prove is a “perfect” cancellation on the other
side:

Zh(01S) = S (56)

(See proof in [18].) These two cancellations, together with the monotonicity of the
hash transpose ©;, and that of =} (this is monotone because it only involves mono-
tonic combinators) are enough, by Theorem 5.24 in [1], to establish perfect Galois
connection

OLS <t = SCrmg(e-(tNAR°)))

C <
/\4 O L/-\
cf. diagram {S|S Cida} (PA)B . Being a lower adjoint, the hash-

B
h

transpose will distribute over union, @, (R U S) = (O,R) U (04S5) (so hash-table
construction is compositional) and enjoy other properties known of Galois connections.

From (56) we infer that @), (resp. =}) is injective (resp. surjective) and so can
be regarded as a data representation (resp. abstraction) in the terminology of Fig. 1,
whereby typical “database” operations such as insert, find, and remove (specified on
top of the powerset algebra) can be implemented by calculation [16, 18].

(1)

8 Conclusions and Future Work

Functional transposition is a technique for converting relations into functions aimed
at developing the algebra of binary relations indirectly via the algebra of functions. A
functional transpose of a binary relation of a particular class is an “F-resultric” function
where F is a parametric datatype with membership. This paper attempts to develop a
basis for a theory of generic transposition under the following slogan: generic transpose
is the converse of membership post-composition.

Instances of generic transpose provide universal properties which all relations of
particular classes of relations satisfy. Two such instances are considered in this paper,
one applicable to any relation and the other applicable only to simple relations. In either
cases, genericity consists of reasoning about the transposed relations without using the
explicit definition of the transpose operator itself.

Our illustration of the purpose of transposition takes advantage of the free theo-
rem of a polymorphic function. We show how to derive laws of relational combinators
as free theorems involving their transposes. Finally, we relate the topic of functional

Transposing Relations: From Maybe Functions to Hash Tables 353

transposition with hashing as a foretaste of a generic treatment of this well-known data
representation technique [18].

Concerning future work, there are several directions for improving the contents of
this paper. We list some of our concerns below.

Generic membership. Our use of this device, which has received some attention in
the literature [6, 10, 11], is still superficial. We would like to organize the taxonomy
of binary relations in terms of morphisms among the membership relations of their
“characteristic” transposes. We would also like to assess the role of transposition in
the context of coalgebraic process refinement [14], where structural membership and
inclusion seem to play a prominent role.

The monadic flavour. Transposed relations are “F-resultric” functions and can so be
framed in a monadic structure wherever F is a monad. This is suggested in the study of
the power-transpose in [6] but we haven’t yet checked the genericity of the proposed
constructs. This concern is related to exploiting the adjoint situations studied in [9, 8]
and, in general, those involving the Kleisli category of a monad [2].

Generic hashing. Our approach to hashing in this paper stems from [16]. “Fractal”
types [17] were later introduced as an attempt to generalize the process of hash table
construction, based on characterizing datatype invariants by sub-objects and pullbacks.
In the current paper we could dispense with such machinery by using coreflexive re-
lations instead. The extension of this technique to other transposes based on Galois
connections is currently under research [18].

Acknowledgments

The work reported in this paper has been carried out in the context of the PURE Project
(Program Understanding and Re-engineering: Calculi and Applications) funded by
FcT (the Portuguese Science and Technology Foundation) under contract POSI/
TCHS/44304/2002.

The authors wish to thank Roland Backhouse for useful feedback on an earlier ver-
sion of this work. The anonymous referees also provided a number of helpful sugges-
tions.

References

1. Chritiene Aarts, Roland Backhouse, Paul Hoogendijk, Ed Voermans, and Jaap van der
Woude. A relational theory of datatypes, December 1992.

2. J. Adamek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories. John Wiley &
Sons, Inc., 1990.

3. K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free,via logical
relations and Galois connections. Science of Computer Programming, 2003. Accepted for
publication.

354

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

R.C. Backhouse. Regular algebra applied to language problems. Available from
http://www.cs.nott.ac.uk/rcb/papers/ (Extended version of Fusion on Languages published
in ESOP 2001. Springer LNCS 2028, pp. 107-121.).

. R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, , and J. van der

Woude. Polynomial relators. In 2nd Int. Conf. Algebraic Methodology and Software Tech-
nology (AMAST’91), pages 303-362. Springer LNCS, 1992.

R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall
International, 1997. C. A. R. Hoare, series editor.

J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques for Soft-
ware Development . Cambridge University Press, 1st edition, 1998.

M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda Informatica
94-28, University of Twente, June 1994.

M.M. Fokkinga and L. Meertens. Adjunctions. Memoranda Informatica 94-31, University of
Twente, June 1994.

Paul Hoogendijk. A Generic Theory of Data Types. PhD thesis, University of Eindhoven,
The Netherlands, 1997.

Paul F. Hoogendijk and Oege de Moor. Container types categorically. Journal of Functional
Programming, 10(2):191-225, 2000.

E. Horowitz and S. Sahni. Fundamentals of Data Structures. Computer Software Engineer-
ing Series. Pitman, 1978. E. Horowitz (Ed.).

S.L. Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press, Cam-
bridge, UK, 2003. Also published as a Special Issue of the Journal of Functional Program-
ming, 13(1) Jan. 2003.

Sun Meng and L.S. Barbosa. On refinement of generic state-based software components.
In C. Rettray, S. Maharaj, and C. Shankland, editors, 10th Int. Conf. Algebraic Methods
and Software Technology (AMAST), Stirling, July 2004. Springer Lect. Notes Comp. Sci. (to
appear).

J.N. Oliveira. Software Reification using the SETS Calculus . In Tim Denvir, Cliff B. Jones,
and Roger C. Shaw, editors, Proc. of the BCS FACS 5th Refinement Workshop, Theory and
Practice of Formal Software Development, London, UK, pages 140-171. ISBN 0387197524,
Springer-Verlag, 8—10 January 1992. (Invited paper).

J. N. Oliveira. Hash Tables — A Case Study in <-calculation. Technical Report DI/INESC
94-12-1, INESC Group 2361, Braga, December 1994.

J. N. Oliveira. ‘Fractal’ Types: an Attempt to Generalize Hash Table Calculation. In Work-
shop on Generic Programming (WGP’98), Marstrand, Sweden, June 1998.

J. N. Oliveira. Hash tables as transposed data structures, 2004. PURe Project technical report
(in preparation).

J. C. Reynolds. Types, abstraction and parametric polymorphism. Information Processing
83, pages 513-523, 1983.

P. Wadler. Theorems for free! In 4th International Symposium on Functional Programming
Languages and Computer Architecture, London, Sep. 1989. ACM.

N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.

Transposing Relations: From Maybe Functions to Hash Tables 355

A Proof That All Simple Relations Are M aybe-Transposable

We want to prove the existence of function /441 which converts simple relations into
(Id + 1)-resultric functions and is such that I'ig+1 = (€14+1-)°, that is,

€e-f=R=f=IR
omitting the Id 4 1 subscripts for improved readability. Our proof is inspired by [9]:
f=TIR
{ introduce id }
id-f=IR
{ coproduct reflexion }

[i1,i2] - f=T'R

{ uniqueness of 1 - 1 =id }

[i1,92-!]- f=TR

= { require “obvious” properties (57,58) below }
[Mid, " L]-f=TR

{ see (63) below }
(I'lid, L]))-f=ITR

= { the required fusion law stems from (62) below }

(Flid, 1])- f=TR

{ I is injective, see (60) below }

= { recall (24) }
e-f=R

A number of facts were assumed above whose proof is on demand. Heading the list
are

I'l =is-! (57)
I'f=i,-f (58)
which match our intuition about the introduction of “error” outputs: totally undefined
relation | should be mapped to the “everywhere- Nothing” function 75 - !, while any
other simple relation R should “override” i5 - | with the (non- Nothing) entries in ¢; - R.

Clearly, entirety of R will maximize the overriding — thus property (58).

I'R)°
Arrow B +1 LE A suggests its converse B + 1 u> A expressed by

(I'R)° = [R®,- -] (59)

356 José Nuno Fonseca de Oliveira and César de Jesus Pereira Cunha Rodrigues

which is consistent with (57) and (58) — it is easy to infer (I" L)° = [L°,!°] and
(I" f)° =[f°, L] from (16) — and is enough to prove that I" has € = i as left-inverse,

c-I'=1id (60)
that is, that I" is injective. We reason, for all R:
i1-T'R=R
= { take converses }
(’'R)° -i1 = R°
= { assumption (59) }
[R°,--] i1 = R°

{ coproduct cancellation }
R° =R°

The remaining assumptions in the proof require us to complete the construction of
the transpose operator. Inspired by (57) and (58), we define

Fan1R < (iz-1) 1 (i1 - R) ©61)

where R 1 S, the “relation override” operator’, is defined by (R - (id — ker S)) U S, or
simply by R{ S = S<S>R if we resort to relational conditionals [1]. This version of
the override operator is useful in proving the particular instance of fusion (29) required
in the proof: this stems from

(RtS)-f=(R-[)T(5-f) (62)

itself a consequence of a fusion property of the relational conditional [1].

It can be checked that (61) validates all other previous assumptions, namely (57,58)
and (59). Because R { S preserves entirety on any argument and simplicity on both
(simultaneously), I R will be a function provided R is simple.

The remaining assumption in the proof stems from equalities

[["id, I’ 1) =Tid, L] = I'(i]) = imgi; Uimgiy = id (63)

which arise from (61) and the fact that ¢; and i, are (dis)jointly surjective injections.

? This extends the map override operator of VDM [7].

