Functions as types or the “Hoare logic”
of functional dependencies

Outline

Funtional Dependency (DBs)
Injectivity

Hoare Logic (Pre/Post Conditions)
Aplication 1: Type Checking
Aplication 2: Query Optimization
Conclusion & Future work

Introdution

Unify Functional Dependency and Hoare Logic
theories, by encoding them in abstract
algebra;

Using this general theory, can we type check
database programming?

Also can we do Query Optimization?
What are the consequences..

Functional Dependency (1/3)

StudentiD Semester

1234
2380
1234
1201
1201

6

R N+) B

A 0w N

Lecture TA
Numerical Methods John
Numerical Methods Peter
Visual Computing Amina
Numerical Methods Peter

Physics Il Simone

<

6

Functional Dependency (2/3)

* Logical definition:

Vit tt €T = (tla]=t[z] = tly] = t[y])

e Applying relational algebra rules, we obtain:

[T] - 2°-2-[T]” Cy° -y

Where [[T]] is the binary relation of T

Functional Dependency (3/3)

e Let’s generalized table T to an arbitrary relation
R:

R-f"-f-R"Cyg g

* Informally, every unique f via R has an unique g
* So let’s represent this by:

. R
f——=9

Injectivity
e Let’s define injectivity by < using the kernel:
R<S £ kerSCkerR
* |[n a sense, the bigger the kernel, the less
Injective it is.
* For atotal function, the kernel is bounded by:

| < R <1id

Hoare Logic

* A Program R, a Pre-condition p and post-
condition g are represented as:

R,

{p}tR{q} . P —=q

 We can define this relation in our algebric
notation using injectivity:

{p}R{q} = q<p-R°

Type Checking a DB (1/2)

e We want to know what it means for the
merging of two database files to satisfy a
particular functional dependency:

RUS f

{ definition (13) ; converse distributes by union }
g<[f-(R°US®)
= { relational composition distributes through union }
g<f-R°Uf-S°
{ algebra of injectivity (20); definition (13) again, twice }

9<R—f A g<S—f A R-ker f-S° Ckerg

{ introduce “mutual dependency” shorthand }

R,S
g<2—f A g<2—f A g1

Query Optimization (1/3)

* |let's have a DB table Movies(Title,Director,Actor)

{(d,a") | t =1, (t,d,a) € Movies, (t',d',a’) € Movies}

 Which in linear algebra is defined as (abbreviated
types): .
d-M-(kert)-M-a" =X

* The aim is to obtain a solution X containing only
one instance of M.

d=—1

= {1}
d<t-M°

- { expanding (11,12); M°® = M since M is a set }
M-t°t-MCd®-d

{ composition (-M) with a set (partial identity) is a closure operator }
M-t t-MCd°-d-M
= { shunting (16,17); monotonicity of (-a°); kernel (11) }
d-M-(kert)-M-a°Cd-M-a°

Query Optimization (3/3)

d-M-a° Cd-M - (kert) - M-a°

< { id C ker t because kernels are equivalence relations }
d-M-a°Cd-M-M-a°

= { M-M=MnNM = M because M is a set }
d-M-a° Cd-M-a°

e So we know our X, let’s revert back to the prior
notation (with variables):

X {(d,a") | (t,d,a") € Movies}

Conclusion/Future Work

Concept prove of unifying theories through LA

We can adapt/generalize software from on
side to the other (Prover9)

Type Checking and Query Optimization are
“automated” through LA

Another possible theory to adapt is the
Strongest Invariant for loops

