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Abstract. Inspired by the trend on unifying theories of programming,
this paper shows how the algebraic treatment of standard data depen-
dency theory equips relational data with functional types and an associ-
ated type system which is useful for type checking database operations
and for query optimization.

Such a typed approach to database programming is then shown to be of
the same family as other programming logics such as eg. Hoare logic or
that of strongest invariant functions which has been used in the analysis
of while statements.

The prospect of using automated deduction systems such as Prover9 for
type-checking and query optimization on top of such an algebraic ap-
proach is considered.
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1 Prelude

In a paper addressing the influence of Alfred Tarski (1901-83) in computer sci-
ence, Solomon Feferman [5] quotes the following statement by his colleague John
Etchemendy: “You see those big shiny Oracle towers on Highway 101? They
would never have been built without Tarski’s work on the recursive definitions of
satisfaction and truth”.

The ‘big shiny Oracle towers’ are nothing but the headquarters of Oracle
Corporation, the giant database software provider sited in the San Francisco
Peninsula. Still Feferman [5]: “Does Larry Ellison know who Tarski is or anything
about his work? [...] I learned subsequently from Jan Van den Bussche that [...]
he marks the reading of Codd’s seminal paper as the starting point leading to the
Oracle Corporation.”

Bussche [4] had in fact devoted attention to relating Codd and Tarski’s work:
“We conclude that Tarksi produced two alternatives for Codd’s relational algebra:
cylindric set algebra, and relational algebra with pairing [...] For example, we can
represent the ternary relation {(a, b, c), (d, e, f)} as {(a, (b, c)), (d, (e, f))}”. Still
[4]:
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“Using such representations, we leave it as an exercise to the reader
to simulate Codd’s relational algebra in RA+ [relational algebra with
pairing]”.

To the best of the author’s knowledge, nobody has thus far addressed this
exercise in a thorough way. Instead, standard relational database theory [11, 1]
includes a well-known relation algebra but this is worked out in set theory and
quantified logic, far from the objectives of Tarski’s life-long pursuit in developing
methods for elimination of quantifiers from logic expressions. An effort which
ultimately lead to his formalization of set theory without variables [17].

The topic has acquired recent interest with the advent of work on imple-
menting extensions of Tarski’s algebra in automated deduction systems such as
Prover9 and the associated counterexample generator Mace4 [10]. This offers a
potential for automation which has not been acknowledged by the database com-
munity. In this context, it is worth mentioning an early concern of the founding
fathers of the standard theory [2]:

“[A] general theory that ties together dependencies, relations and opera-
tions on relations is still lacking”.

More than 30 years later, this concern is still justified, as database programming
standards remain insensitive to techniques such as formal verification and ex-
tended static checking [6] which are more and more regarded essential to ensuring
quality in complex software systems.

In the remainder of this paper we will see how the algebraic treatment of
the standard theory along the exercise proposed by Bussche equips relational
data with functional types and an associated type system which can be used to
type check database operations. Interestingly, such a typed approach to database
programming will be shown to relate to other programming logics such as eg.
Hoare logic [8] or that of strongest invariant functions [12] which has been used
in the analysis of while statements, for instance.

On the whole, the approach has an unifying theories of programming [9]
flavour, even though the exercise is not carried out “avant la lettre” in canonical
UTP. A full account can be found in a technical report [15]. For space constraints,
this paper only covers the first part of the exercise, that of developing a type
system for relational data which stems from functional dependencies.

Paper structure. Section 2 introduces functional dependencies (FD) and shows
how to convert the standard definition into the Tarskian, quantifier-free style.
The parallel between the functions as types approach which emerges from such
a conversion and a similar treatment of Hoare logic is given in section 3. Section
4 shows that, in essence, injectivity is what matters in FDs and gives a corre-
sponding, simpler definition of FD which is used in section 5 to re-factor the
standard theory into a type system of FDs. Section 6 shows how to use this type
system to type check database operations and section 7 shows how to calculate
query optimizations from FDs. The last section gives an account of related work
and concludes with a prospect for future work.
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2 Introducing functional dependencies

In standard relational data processing, real life objects or entities are recorded
by assigning values to their observable properties or attributes. A database file
(vulg. table) is a collection of such attribute assignments, one per object, such
that all values of a particular attribute (say i) are of the same type (say Ai).
For n such attributes, a relational database file T can be regarded as a set of
n-tuples, that is, T ⊆ A1 × . . .×An. A relational database is just a collection of
several such n-ary relations, or tables.

Attribute names normally replace natural numbers in the identification of at-
tributes. The enumeration of all attribute names in a database table, for instance
S = {Pilot,Flight,Date,Departs} concerning the airline scheduling sys-
tem given as example in [11], is a finite set called the table’s scheme. This scheme
captures the syntax of the data. What about semantics? Even non-experts in
airline scheduling will accept “business rules” such as, for instance: a single pilot
is assigned to a given flight, on a given date. This restriction is an example of
a so-called functional dependency (FD) among attributes, which can be stated
more formally by writing “Flight Date → Pilot” to mean that attribute
Pilot is functionally dependent on Flight and Date, or that Flight,Date
functionally determine Pilot.

Data dependencies capture the meaning of relational data. Data dependency
theory involves not only functional dependencies (FD) but also multi-valued
dependencies (MVD). Both are central to the standard theory, where they are
addressed in an axiomatic way. [11] provides the following definition for FD-
satisfiability:

Definition 1. Given subsets x, y ⊆ S of the relation scheme S of a n-ary rela-
tion T , this relation is said to satisfy functional dependency x → y iff all pairs
of tuples t, t′ ∈ T which “agree” on x also “agree” on y, that is,

∀ t, t′ : t, t′ ∈ T ⇒ ( t[x] = t′[x]⇒ t[y] = t′[y] ) (1)

(The notation t[a] in (1) means “the value exhibited by attribute a in tuple t”.)
�

How does one express formula (1) in Tarski’s relation algebra style, getting
way with the two-dimensional universal quantification and logical implications
inside? For so doing we need to settle some notation. To begin with, t[x] is better
written as x(t), where x is identified with the projection function associated to
attribute set x. Regarding x and y in (1) as such functions we write:

∀ t, t′ : t, t′ ∈ T ⇒ (x(t) = x(t′)⇒ y(t) = y(t′) ) (2)

Next, we observe that, given a function f : A → B, the binary relation
R ⊆ A × A which checks whether two values of A have the same image under
f 1 — that is, a′Ra ≡ f(a′) = f(a) — can be written alternatively as a′(f◦ ·f)a.

1 This is known as the nucleous [12] or kernel [14] of a function f .
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Here, f◦ denotes the converse of f (that is, a(f◦)b holds iff b = f a) and the dot
(·) denotes the extension of function composition to binary relations:

b(R · S)c ≡ ∃ a : b R a ∧ a S c (3)

Using converse and composition the rightmost implication of (2) can be
rewritten into t(x◦ · x)t′ ⇒ t(y◦ · y)t′, for all t, t′ ∈ T . Implications such as
this can expressed as relation inclusions, following definition:

R ⊆ S ≡ ∀ b, a : b R a⇒ b S a (4)

However, just stating the inclusion x◦ · x ⊆ y◦ · y would be a gross error, for the
double scope of the quantification (t ∈ T ∧ t′ ∈ T ) would not be taken into
account. To handle this, we first unnest the two implications of (2),

∀ t, t′ : (t ∈ T ∧ t′ ∈ T ∧ t(x◦ · x)t′)⇒ t(y◦ · y)t′

and treat the antecedent t ∈ T ∧ t′ ∈ T ∧ t(x◦ ·x)t′ independently, by replacing
the set of tuples T by the binary relation JT K defined as follows 2:

bJT Ka ≡ b = a ∧ a ∈ T (5)

Note that t ∈ T can be expressed in terms of JT K by ∃ u : u = t ∧ t[[T ]]u and
similarly for t′ ∈ T . Then:

(t ∈ T ∧ t′ ∈ T ∧ t(x◦ · x)t′)

≡ { expansion of t ∈ T and t′ ∈ T }

∃ u, u′ : u = t ∧ u′ = t′ ∧ t[[T ]]u ∧ t′[[T ]]u′ ∧ t(x◦ · x)t′

≡ { ∧ is commutative; equal by equal substitution; converse }

∃ u, u′ : t[[T ]]u ∧ u(x◦ · x)u′ ∧ u′[[T ]]
◦
t′

≡ { composition (3) twice }

t([[T ]] · x◦ · x · [[T ]]
◦
)t′

Finally, by putting this together with t(y◦ · y)t′ we obtain

[[T ]] · x◦ · x · [[T ]]
◦ ⊆ y◦ · y (6)

as a quantifier-free relation algebra expression meaning the same as (1).

2 This is a standard way of encoding a set T as a binary relation JT K known as a
partial identity, since JT K ⊆ id. The set of all such relations forms a Boolean algebra
which reproduces the usual algebra of sets. Moreover, partial identities are symmetric
(JT K◦ = JT K) and such that JSK · JT K = JSK ∩ JT K.
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Generalization. To reassure the reader worried about the doubtful practicality
of derivations such as the above, we would like to say that we don’t need to do it
over and over again: inequality (6), our Tarskian alternative to the original text-
book definition (1), is all we need for calculating with functional dependencies.
Moreover, we can start this by actually expanding the scope of the definition
from sets of tuples JT K and attribute functions (x, y) to arbitrary binary relations
R and suitably typed functions f and g:

R · f◦ · f ·R◦ ⊆ g◦ · g (7)

In this wider setting, R can be regarded not only as a piece of data but also
as the specification of a nondeterministic computation, or even the transition
relation of a finite-state automaton; and f (resp. g) as a function which observes
the input (resp. output) of R. Put back into quantified logic, such a wider notion
of a functional dependency will expand as follows:

∀ a′, a : f(a′) = f(a) ⇒ (∀ b′, b : b′ R a′ ∧ b R a ⇒ g(b′) = g(b)) (8)

In words: inputs a, a′ indistinguishable by f via R can only lead to outputs
indistinguishable by g. Notationally, we will convey this interpretation by writing

R : f → g or f
R // g . We can still say that R satisfies the f → g FD, in

particular wherever R is a piece of data. As can be easily checked, f(a′) = f(a)
is an equivalence relation which, in the wider setting, can be regarded as the
semantics of the datatype which R takes inputs from (think of f : A → B as
a semantic function mapping a syntactic domain A into a semantic domain B),
and similarly for g concerning the output type.

Summing up, the functions f and g in (7) can be regarded as types for
R. Some type assertions of this kind will be very easy to check, for instance
id : f → f , just by replacing R, f, g := id, f, f in (7) and simplifying. But type
inference will be easier to calculate on top of the even simpler (re)statement of
(7) which is given next.

3 Functions as types

Before proceeding let us record two properties of the relational operators con-
verse and composition 3:

(R · S)◦ = S◦ ·R◦ (9)

(R◦)◦ = R (10)

Moreover, it will be convenient to have a name for the relation R◦ ·R which, for
R a function f , is the equivalence relation “indistinguishable by f” seen above.
We define

ker R , R◦ ·R (11)

3 It may help to recall the same properties from elementary linear algebra, once con-
verse is interpreted as matrix transposition and composition as matrix-matrix mul-
tiplication.
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and read ker R as “the kernel of R”. Clearly, a′(ker R)a means ∃ b : b R a′ ∧ b R a
and therefore ker R measures the injectivity of R: the larger it is the larger the
set of inputs which R is unable to distinguish (= the less injective R is).

We capture this by introducing a preorder on relations which compares their
injectivity :

R ≤ S , ker S ⊆ ker R (12)

As an example, take two list functions, elems computing the set of all elements
of a list, and bagify keeping the bag of such elements. The first loses more
information (order and multiplicity) than the latter, which only forgets about
order. Thus elems ≤ bagify . A function f (relation in general) will be injective
iff ker f ⊆ id (id ≤ f), which easily converts to the usual definition: f(a′) =
f(a)⇒ a′ = a.

Summing up: for functions or any totally defined relations R and S 4, R ≤ S
means that R is less injective than S; for possibly partial R and S, it will mean
that R less injective or more defined than S.

Therefore, for total relationsR the preorder is universally bounded, ! ≤ R ≤ id ,
where the infimum is captured by the constant function ! which maps every ar-
gument to a given (predefined) value, the choice of such value being irrelevant 5.
The kernel of ! is therefore the largest possible, denoted by > (for “top”). The
other bound is trivial to check, since ker id = id, this arising from the well-known
fact that id is the unit of composition. In general, id ≤ R means R is injective.

Equipped with this ordering, we may spruce up our relational characteriza-

tion of the f
R // g type assertion, or functional dependency (FD):

f
R // g

≡ { definition (7) }

R · f◦ · f ·R◦ ⊆ g◦ · g
≡ { converses (9,10) ; kernel (11) }

ker (f ·R◦) ⊆ ker g

≡ { (12): g is “less injective than f wrt. R” }

g ≤ f ·R◦

We thus reach a rather elegant formula for expressing functional dependencies,
whose layout invites us to actually swap the direction of the arrow notation (but,
of course, this is just a matter of taste):

Definition 2. Given an arbitrary binary relation R ⊆ A × B and functions

f : B → D and g : A → C, given A, B, ... D, the “type assertion” g f
Roo

4 A relation R is totally defined (or entire) iff id ⊆ ker R.
5 Note that R ≤ S is a preorder, not a partial order, meaning that two relations

indistinguishable with respect to their degree of injectivity can be different.
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meaning that R satisfies FD f → g is given by the equivalence:

g f
Roo ≡ g ≤ f ·R◦ (13)

�

Intuitively, g f
Roo means that g will be blinder (less injective) to the outputs

of R than f is concerning its inputs.
There are two main advantages in definition (13), besides saving ink. The

most important is that it takes advantage of the calculus of injectivity which
will be addressed in the following section. The other is that it makes it easy to
bridge with other programming logics, as is seen next.

Parallel with Hoare logic. As is widely known, Hoare logic is based on triples
of the form {p}R{q}, with the standard interpretation: “if the assertion p is
true before initiation of a program R, then the assertion q will be true on its
completion” [8].

Let program R be identified with the relation which captures its state transi-
tion semantics and predicates p (and q) be identified with s′JpKs ≡ s′ = s ∧ p(s)
(similarly for q) — the same trick we used for converting sets to binary relations
in section 2. (Note how JpK can be regarded as the semantics of a statement which
checks p(s) and does not change state, failing otherwise.) In relation algebra this
is captured by 6

{p}R{q} ≡ rng(R · JpK) ⊆ JqK

meaning that the outputs of R (given by the range operator rng) for inputs
pre-conditioned by p don’t fall outside q; that is, q is weaker than the strongest
post-condition sp(R, p), something we can express by writing

{p}R{q} ≡ q ≤ p ·R◦ (14)

under a suitable preorder ≤ expressing that q is less constrained than p ·R◦ 7.
In spite of the different semantic context, there is a striking formal similarity

between formulas (14) and (13) suggesting that Hoare logic and the logic we
want to build for FDs share the same mathematics once expressed in relation
algebra. Such similarities will become apparent in the sequel, where we are going

to write p
R // q for {p}R{q}, to put the notations closer. Using this notation,

rules such as eg. the rule of composition, {p}R1{q} ∧ {q}R2{r}⇒{p}R1;R2{r}
become 8

p
R1 // q ∧ q

R2 // r ⇒ p
R1;R2 // r (15)

6 See [14] and references there to related work.
7 Details: {p}R{q} is rng(R · JpK) ⊆ JqK, itself the same as dom(JpK · R◦) ⊆ domJqK

since dom (domain) and rng (range) commute with converse and the domain of a
partial identity is itself. The preorder is R ≤ S ≡ dom S ⊆ dom R. Parentheses J K
are dropped to make the formula lighter to read.

8 The arrow notation for Hoare triples, reminiscent of that of labelled transition sys-
tems, is adopted in eg. [14].
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We will check the FD equivalent to (15) shortly.

4 A calculus of injectivity (≤)

One of the advantages of relation algebra is its easy “tuning” to special needs,
which we will illustrate below concerning the algebra of injectivity. We give just
an example, taken from [15]; the reader is referred to this technical report for
the whole story.

We start by considering two rules of relation algebra which prove very useful
in program calculation:

f ·R ⊆ S ≡ R ⊆ f◦ · S (16)

R · f◦ ⊆ S ≡ R ⊆ S · f (17)

In these equivalences 9, which are widely known as shunting rules [3], f is re-
quired to be a (total) function. In essence, they let one trade a function f from
one side to the other of a ⊆-equation just by taking converses. (This is akin to
“changing sign” in trading terms in inequations of elementary algebra.)

It would be useful to have similar rules for the injectivity preorder, which we
have chosen as support for our definition of a FD (13). It turns out that such
rules are quite easy to infer, as is the case of the Galois connection for trading
a function f with respect to the injectivity preorder given by

R · f ≤ S ≡ R ≤ S · f◦ (18)

which takes just three steps to calculate:

R · f ≤ S
≡ { definition (12) ; converses (9,10) ; kernel (11) }

ker S ⊆ f◦ · (ker R) · f

≡ { shunting rules (16,17) }

f · ker S · f◦ ⊆ ker R

≡ { converses, kernel and definition (12) again }

R ≤ S · f◦

Let us put this new rule to work for us in the derivation of a trading-rule
which will enable handling composite antecedent and consequent functions in
FDs:

y x
z·R·k◦oo ≡ y · z x · kRoo (19)

9 Technically, these equivalences should be regarded as (families of) Galois connections
[14].
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Thanks to (18), the calculation of (19) is immediate:

y x
z·R·k◦oo

≡ { definition (13) ; converses }

y ≤ x · k ·R◦ · z◦

≡ { new shunting rule (18) }

y · z ≤ (x · k) ·R◦

≡ { definition (13) }

y · z x · kRoo

Another result which will help in the sequel is

X ≤ R ∪ S ≡ X ≤ R ∧ X ≤ S ∧ R◦ · S ⊆ ker X (20)

where R ∪ S is the union of relations R and S 10. For X := id, (20) tells that
R∪S is injective iff both R and S are injective and don’t “confuse” each other :
wherever bSa and bRc hold, c = a.

5 Building a type system of FDs

The machinery set up in the previous sections is enough for developing a type
system whereby dependencies, relations and operations on relations are tied to-
gether, as [2] envisaged.

Composition rule. FDs on relations which matching antecedent and consequent
functions (as types) compose:

y x
S·Roo ⇐ y z

Soo ∧ z x
Roo (21)

Proof:

h g
Soo ∧ g f

Roo

≡ { (13) twice }

h ≤ g · S◦ ∧ g ≤ f ·R◦

⇒ { ≤-monotonicity of ( · S◦) ; converse (9) }

h ≤ g · S◦ ∧ g · S◦ ≤ f · (S ·R)◦

⇒ { ≤-transitivity }

h ≤ f · (S ·R)◦

10 See [15] for the proof of this and other results of the algebra of injectivity.
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≡ { (13) again }

h f
S·Roo

This rule, which for R and S the same database table subsumes Armstrong
axiom F5 (Transitivity) in the standard FD theory 11, is the FD counterpart of
the rule of composition in Hoare logic (15) for R and S regarded as describing
computations.

Consequence (weakening/strengthening) rule:

k h
Roo ⇐ k ≤ g ∧ g f

Roo ∧ f ≤ h (22)

Proof: See [15], where this rule is shown to subsume and generalize standard
Armstrong axioms F2 (Augmentation) and F4 (Projectivity). In the parallel with
Hoare logic, it corresponds to the two rules of consequence [8] which, put together
and writing triples as arrows, becomes

q′ p′
Poo ⇐ q′⇐ q ∧ q p

Poo ∧ p⇐ p′

for P a program and p, q etc program assertions.

Reflexivity. We have seen already that

f f
idoo (23)

holds trivially. This rule, which corresponds to the “skip” rule of Hoare logic,

p p
skipoo , is easily shown to hold for any set T ,

f f
JT Koo (24)

as FDs are downward closed. Rule (24) is known as Armstrong axiom F1 (Re-
flexivity).

Note in passing that (21) and (23) together define a category whose objects
are functions (types) and whose morphisms (arrows) are FDs.

6 Type checking database operations

Let us proceed to an example of database operation type checking: we want to
know what it means for the merging of two database files to satisfy a particular

11 See [11]. The calculation of this and other similar results stated in this paper can be
found in [15].
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functional dependency f // g . That is, we want to find a sufficient condition

for the union R∪S of two relations R and S to be of type f // g . The algebra
of injectivity does most of the work:

g f
R∪Soo

≡ { definition (13) ; converse distributes by union }

g ≤ f · (R◦ ∪ S◦)

≡ { relational composition distributes through union }

g ≤ f ·R◦ ∪ f · S◦

≡ { algebra of injectivity (20); definition (13) again, twice }

g f
Roo ∧ g f

Soo ∧ R · ker f · S◦ ⊆ ker g

≡ { introduce “mutual dependency” shorthand }

g f
Roo ∧ g f

Soo ∧ g f
R,Soo

The “mutual dependency” shorthand g f
R,Soo introduced in the last step

for R ·ker f ·S◦ ⊆ ker g can be read as a generalization of the standard definition
of a FD to two relations instead of one — just generalize the second R in (8) to
some S. For R and S two sets of tuples, it means that grabbing one tuple from
one set and another tuple from the other set, if they cannot be distinguished by
f then they will remain indistinguishable by g.

It should be stressed that the bottom line of the calculation expresses not

only a sufficient but also a necessary condition for g f
R∪Soo to hold, as all

steps are equivalences.

Type checking other database operations will follow the same scheme. Below
we handle one particular such operation — relational join [11] — in detail. This
is justified not only for its relevance in data processing but also because it brings
about other standard FD rules not yet addressed.

Joining and pairing. Recall from section 1 how [4] explains the relevance of
Tarski’s work on pairing in relation algebra by illustrating how a ternary (in
general, n-ary) relation {(a, b, c), (d, e, f)} gets represented by a binary one,
{(a, (b, c)), (d, (e, f))}.

Pairing is not only useful for ensuring that sets of arbitrarily long (but finite)
tuples are represented by binary relations but also for defining the join operator
(on) on such sets. In fact, this operator is particularly handy to express in case
the two sets of tuples are already represented as binary relations R and S:

(a, b)(R on S)c ≡ a R c ∧ b S c (25)
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Interestingly, relational join behaves as a least upper bound with respect to the
injectivity preorder 12:

R on S ≤ T ≡ R ≤ T ∧ S ≤ T (26)

This combinator turns out to be more general than its use in data pro-
cessing 13. In particular, when R and S are functions f and g, f on g is the
obvious function which pairs the outputs of f and g: (f on g)x = (f x, g x).
Think for instance of the projection function fx (resp. fy) which, in the con-
text of definition 1 yields t[x] (resp. t[y]) when applied to a tuple t. Then
(fx on fy)t = (t[x], t[y]) = t[xy], where xy denotes the union of attributes x
and y [11]. So, attribute union corresponds to joining the corresponding pro-
jection functions. This gives us a quite uniform framework for handling both
relational join and compound attributes. To make notation closer to what is
common in data dependency theory we will abbreviate fx on fy to fxfy and this
even further to xy, identifying (as we did before) each attribute (eg. x) with the
corresponding projection function (eg. fx).

Minding this abbreviation fg of f on g, for functions, from (26) it is easy to
derive facts ! ≤ f ≤ id and f ≤ fg , g ≤ fg . This is consistent with the use
of juxtaposition to denote “sets of attributes”. In this context, ≤ can be regarded
as expressing “attribute inclusion”. In fact, the more attributes one observes the
more injective the projection function corresponding to such attributes is 14.

A first illustration of this unified framework is given below: the (generic)
calculation of the so-called Armstrong axioms F3 (Additivity) and F4 (Projec-
tivity) 15. This is done in one go, for arbitrary (suitably typed) R, f, g, h 16:

gh f
Roo ≡ g f

Roo ∧ h f
Roo (27)

Calculation:

gh f
Roo

≡ { (13) ; expansion of shorthand gh }

g on h ≤ f ·R◦

≡ { universal property of on (26) }

g ≤ f ·R◦ ∧ h ≤ f ·R◦

≡ { (13) twice }

12 Proof in [15].
13 It is termed split in [3] and fork in [7].
14 This parallel between attribute sets ordered by inclusion and projection functions

ordered by injectivity is dealt with in detail in [15]. Note how ! mimics the empty
set and id mimics the whole set of attributes, enabling one to “see the whole thing”
and thus discriminating as much as possible.

15 See [11].
16 In the Hoare logic counterpart of this rule gh will be the conjunction of two assertions.
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g f
Roo ∧ h f

Roo

The type rule for the database join operator (on) is calculated in the same way:

g f
Roo ∧ h f

Soo

⇒ { let π1(y, x) = y and π2(y, x) = x; FDs are downward closed }

g f
π1·(RonS)oo ∧ h f

π2·(RonS)oo

≡ { trading (19) twice }

g · π1 f
RonSoo ∧ h · π2 f

RonSoo

≡ { F3+F4 (27) }

(g · π1) on (h · π2) f
RonSoo

≡ { product of functions: f × g = (f · π1) on (g · π2) }

g × h f
RonSoo

7 Beyond the type system: query optimization

As explained above, FD theory (cf. Hoare logic) can be regarded as a type system
whose rules help in reasoning about data models (cf. programs) without going
into the semantic intricacies of data business rules (cf. program meanings). It
helps because quantified definitions such as definition 1 don’t scale up very well
to large sets of dependencies. In this respect, our quantifier-free equivalent (13)
looks more tractable and is therefore expected to be calculationally effective
where the quantified equivalent is clumsy.

This will be illustrated below with a simple example, taken from [1] and also
addressed by [18]: one wants to optimize the conjunctive query

{(d, a′) | t = t′, (t, d, a) ∈ Movies, (t′, d′, a′) ∈ Movies} (28)

over a database file Movies(Title,Director, Actor) into a query accessing this

file only once, knowing that FD Title // Director holds.
Put in calculational format and abbreviating M for Movies, t for Title, d for

Director and a for Actor, we want to solve for X the equation

d ·M · (ker t) ·M · a◦ = X (29)

whose left hand side is the relational equivalent of (28) 17. Our aim is to obtain
a solution X containing only one instance of M . The equation is solved by

17 As the interested reader may check by introducing the variables back. Note how ker t
expresses t = t′ and projection functions d (for Director) and a (for Actor) work
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taking the FD itself as starting point and trying to re-write it into something
one recognizes as an instance of (29):

d t
Moo

≡ { (13) }

d ≤ t ·M◦

≡ { expanding (11,12); M◦ = M since M is a set }

M · t◦ · t ·M ⊆ d◦ · d
≡ { composition (·M) with a set (partial identity) is a closure operator }

M · t◦ · t ·M ⊆ d◦ · d ·M
⇒ { shunting (16,17); monotonicity of (·a◦); kernel (11) }

d ·M · (ker t) ·M · a◦ ⊆ d ·M · a◦

Thus we find d ·M · a◦ as a candidate solution for X. To obtain X = d ·M · a◦
it remains to check the converse inclusion:

d ·M · a◦ ⊆ d ·M · (ker t) ·M · a◦

⇐ { id ⊆ ker t because kernels are equivalence relations }

d ·M · a◦ ⊆ d ·M ·M · a◦

≡ { M ·M = M ∩M = M because M is a set }

d ·M · a◦ ⊆ d ·M · a◦

Thus X = d ·M · a◦, that is

X = {(d, a′) | (t, d, a′) ∈ Movies}

is a solution to equation (29) which optimizes the given query by only visiting
the movies file once 18.

over tuple (t, d, a) and tuple (t′, d′, a′), respectively. The use of the same letters for
data variables and the corresponding projection functions should help in tallying the
two versions of the query.

18 By the way: symmetry between a and d in calculation step d ·M · t◦ · t ·M · a◦ ⊆
d ·M ·a◦ above immediately tells that FD a t

Moo would also enable the proposed
optimization.
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8 Conclusions and future work

“The great merit of algebra is as a powerful tool for exploring fam-
ily relationships over a wide range of different theories. (...) It is only
their algebraic properties that emphasise the family likenesses (...) Al-
gebraic proofs by term rewriting are the most promising way in which
computers can assist in the process of reliable design.”

[9]

There is growing interest in applying abstract algebra techniques in computer
science as a way to promote calculation in software engineering. Moreover, al-
gebraic structures such as idempotent semirings and Kleene algebras (which
relation algebra is an instance of) have been shown to be amenable to automa-
tion [10]. [13], for instance, encode a database preference theory into idempotent
semiring algebra and show how to use Prover9 to discharge proofs. Model check-
ing in tools such as eg. the Alloy Analyser also blends well with quantifier-free
relational models [16].

Abstract algebra has the power to unify seemingly disparate theories once
they are encoded into the same abstract terms. In the current paper we have
shown how a relational rendering of both Hoare logic and data dependency
theory purports one such unification, in spite of the former being an algorithmic
theory and the latter a data theory, as both algorithms and data structures unify
into binary relations.

Other such unifications could be devised. For instance, [12] reason about
while-loops w = (while t do b) in terms of so-called strongest invariant func-
tions, where invariant functions f , ordered by injectivity, are such that f · JtK =
f · b · JtK holds. A simple argument in relation algebra shows this equivalent to

f · b · JtK ⊆ f , thus entailing FD f f
b·JtKoo .

On a more practical register, our algebraic framework makes it possible to
type-check database operations and optimize queries by calculation once they
are written as Tarskian, quantifier-free formulas. We would like to investigate
this further in connection to [18]’s point-free query compiler.

Back to the opening story, surely Tarski’s work on satisfaction and truth is
relevant to computer science. But Etchemendy’s answer could have been better
tuned to the particular context of database technology suggested by the Oracle
towers landscape:

[...] “They would never have been built without Tarski’s work on the cal-
culus of binary relations.”
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