A relational Model for Confined
Separation Logic

Palwasha Afsar
MAP-i Doctoral Student

Outline

The Problem

Aim of the Paper

PF transform

Separation Logic
Confined Separation logic
Reasoning

Conclusion

The Problem

Formal reasoning try to prove the correctness
of the program by converting the program to

Its semantics.
Should try to reduce the size.

Semantics concepts of Object Oriented
Programming introduce the concepts of heap,
Stacks, Array etc.

These concepts are introduced to solve the
main problem of references: Aliasing

Aliasing

e Aliasing is the phenomena that two different
names refer to the same storage location. By
changing the value of one name, the other
changes as well. So, aliasing complicates the
reasoning about the correctness of a program.

* |t's a well-known problem in Object Oriented
Programming.

Aims of the paper

* Develops a relational model using confined
separation logic to handle the problem of
dangling references in mutable structures.

e Separation logic is a modern system for
reasoning about the correctness of a program.

* [ts an extension to Hoare Logic where
formulae are interpreted over suitable model
of stores and heaps.

PF-Transform

* The key technique of this work is the point-
free (PF) transform.

* This means to convert predicate logic
formulae into binary relation by removing
bound variables and quantifiers.

* This technique was introduced in the 19t
century and today its known as “algebra of
programming”.

Summary of PF-transforms

& Ly
Va,b :: bRa=bS a) RCS
Va:: fa=ga) fCy
Va :: aRa) id C R
(da :: bRa AN aSc) b(R-S)c
bRa NbSa b(RNS)a
bRaVbSa b(RUS)a
(fb) R (g a) b(f° - R-g)a
TRUE bTa
FALSE bla

Binary relation

Let 5<% 4 denotes a binary relation from A(target)
to B(Source).

R ©€ S — the obvious “Ris at most S” inclusion
ordering.

R U S denotes the union of two relations and T is
the largest relation of its type. Its dual is L, the
smallest such relation (the empty one).

b Ra— “Rrelates b to a”, that s, (b,a) € R.
id suchthatR-id=id-R=R
Converse of R — Re such that a(Re)b iff b R a.

Separation logic

Syntax:
*: separating conjunction
- : separating implication
emp : The heap is empty.

P Q. : The heap contains disjoint parts such that P
holds in one and Q holds in the other.

P —*Q : If the heap were extended with a disjoint
part such that P holds, then Q holds for the new
larger heap.

e—> e: Singleton Heap

Confined Separation Logic

* Atype is said to be confined in a domain if and
only if all references to instances of that type
originate from objects of the domain.

* For confinement, the paper describes the
following variants of conjunction to handle
the problem of dangling references.

 The /n variant, notln variant, and inBoth
Variant.

Confined Separation LOgic

* notin variant denoted byp > ¢ — hold for
disjoint parts of heap such that no references
of the first point to the other

* /n variant denoted byp > ¢. — is a heap disjoint
such that all references in the first do point
into the other

* inBoth variant denoted by P ¥ % — s a heap
disjoint such that all references in the first are
confined to both.

Generic Separation Logic

e Separation logic is typically interpreted on a
storage model coupling a store g, for
variables, and a heap H for addresses.

o

Variables Atom + Address

-

Address e Atom + Address

Aliases = €-0

Separability

* First separability relation is defined on heaps:

Eq(1)
H % (Hi,Hy) = (Hi| Hs) A (H=HUH,)

If they are disjoint then:
—|<Hb,a,k - lek A CLHQ k>

Now lets try to solve these equations using PF-
transform

Contd...

~(3b,a,k :: bH, k AaH, k>

= { d-nesting (Eindhoven quantifier calculus) }
~(3b,a :: {3k :: bH, k AaH, k)

= { relational converse: b Rca the sameasaRb}
-{(3db,a::{Fk::bH, kAkH,a)>

= { introduce relational composition }

-(3b,a :: b(H,-H,°)a)

= { de Morgan ; negation }

(Vb,a :: b(H,-H,°)a =False)

Contd..

= { empty relation: b L ais always false }
(Vb,a :: b(H,;-H,°)a=b L a)
= { drop points a,b }
H,-HyG&%.L
* So we can redefine
ed(2) m|H. ¥ H .HICL

* |n a similar way, we can write for dangling
references i-e

Contd..

* For dangling references:

Hi—>H, € Hy|Hy A Hy-€p-H; C L

* Asserts that no out going reference in H, goes
into separated H,. Back to pointwise notation:

~3kk : kedH, N K €6Hy: k' €r (H1 k))

* Similarly for other variants:

HivHy € Hy| Hy A €r-Hy C HS-T

Hi <> H, < H, | Ho N €+ Hy C (HiUH2)"-T

Semantics for Separational Logic

 The preorder on assertion is defined by:

def

. p—q = [p] C[d] eq(3)
so that it can be distinguished from standard logic
implication =.
* By recalling composition and splitting, the
separating conjunction equation

Hlp*qlo =
<E| Ho,Hl . H*(Ho,Hl) AN Ho[[p]]()' AN H1[[q]]0'>

Becomes: [p«q] % (+) - ([p]. [q]) eq(4)

Contd..

The other variants becomes:

ed(5) p-vg © -0 (Il [a)
eq(6) [poq) ¥ (- - (o], [a])
eq(7) pwd = () Pa- (], [d])

Conjunction and Implication

* Beginning by the fact that p* and p—* constitute Galois
connection. So,

(prx) —y=x— (p—*y)

Where we know everything, apart from (p—*) which we want

to calculate:

[p*x] € [¥]
{ (20) following by GC of left division }
([p], [=]) < () \ [¥]
{ @25 } twoGCinarow
[z] < [p] » ((+) \ [¥])
{ introduce p — y st [p — y] = [p] » ((x) \ [¥]) }
[x] < [p — vl
{ (a9 }
z — (p = y)

Contd...

* For pointwise meaning, we resort to the Eindhoven

quantifier: Hp —y]o

{ above }
H([p] » ((x)\ [y]))o

{ 26) }
v Ho = Hollplo: (Ho, H)((+) \ [y])o)
° { left division (pointwise) }

<\V/H() : Ho[[p]]O‘: <VH1 : Hl*(Ho,H)Z Hl[[y]])0'>>

nesting: (4.21) of [2] }
<VH(),H1 . Ho[[p]]a VAN H1 *(Ho,H): H1[[y]])0'>

{ * definition (11) and one-point rule (4.24) of [2] }
<VHO . Hoﬂp]]a AN H() ||H (HOUH)|Iy]])O'>
trading: (4.28) of [2] }
<V Hoy : Hp || H Ho[[p]]0'2> (HO UH)IIy]])0>

|l
—~

|l
~

Advantages of (*),(—*)

The following are immediate consequences of the
conection, where <> denotes the antisymmetric
closure of ->:

p*x1 Vx2) & (p*x1) V(p#*x2)

(x1 Vx2)*p&> (x1 *p)V (x2 *p)

p—*(x1 Ax2) & (p—*x1) A(p—-*x2)

and monotonicity, cancellations,
X2>(p=*(p*x))p*(p-*y)->y

etc. and some others, usually not mentioned in the literature
emp = p—*p

pkx & p*(p—*(p*x))

p—kx &> p—*(p*(p—x))

GC for Confined Separational Logic

* |f we compare eq(5,6,7) with the standard
case eq(4), we see the difference resides in
extra coreflexive(-, 8, and &,)Mediating
separate union (*)and the split of relations
which captures the semantics of p,q.

 Just stick the relevant coreflexive (eg. ®ln) to
separate union (*) and carry on:

Contd..

* So, for confined separating conjunction, this
leads to the upper adjoint of:

° Hlp —>ylo =

<VHO : Ho > H : HO[[p]]a:>(H0UH)[[y]]U>

* And lower adjoint of:

Hp <> y]o det

<\V/H0 : Ho <> H HQ[[p]]O' = (Ho U H)[[y]]0'>

Hlp >yle =

<\V/H() - Ho> H : Ho[[p]]0'2> (H() UH)Hy]]O'>

Contd...

* |[n comparison with the standard separated
implication, all of the variants place an extra
restriction on augmented heap.

 Because of Galois connection, all of the
properties derived from (p*), hold for free for
all of its variants.

Reasoning

Semantics of confinement can be checked against eg.
what happens to standard property

empp <> p <> pFemp
arising from two facts
Hlemp]S=H=_1
H*(H’, L) = H=H’

In the confined variants, semantics rules eventually
lead us eg.

H[p]S A ®a(H, L)=H[p]S or
H[p]S A ®a(Ll, H) = H[p]S
where a ranges over the three given variants.

Conclusion

* This paper achieves two goals. It provides a
semantic characterization of a new extension
to separation logic design to reason about
confinement of references. And also shows
how the calculation of binary relations can
help in calculating proofs. The discovery of
new operators with the help of Galois
connection is particularly useful.

