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The	
  Problem	
  

•  Formal	
  reasoning	
  try	
  to	
  prove	
  the	
  correctness	
  
of	
  the	
  program	
  by	
  conver'ng	
  the	
  program	
  to	
  
its	
  seman'cs.	
  

•  Should	
  try	
  to	
  reduce	
  the	
  size.	
  
•  Seman'cs	
  concepts	
  of	
  Object	
  Oriented	
  
Programming	
  introduce	
  the	
  concepts	
  of	
  heap,	
  
Stacks,	
  Array	
  etc.	
  

•  These	
  concepts	
  are	
  introduced	
  to	
  solve	
  the	
  
main	
  problem	
  of	
  references:	
  Aliasing	
  



Aliasing	
  

•  Aliasing	
  is	
  the	
  phenomena	
  that	
  two	
  different	
  
names	
  refer	
  to	
  the	
  same	
  storage	
  loca'on.	
  By	
  
changing	
  the	
  value	
  of	
  one	
  name,	
  the	
  other	
  
changes	
  as	
  well.	
  So,	
  aliasing	
  complicates	
  the	
  
reasoning	
  about	
  the	
  correctness	
  of	
  a	
  program.	
  

•  It’s	
  a	
  well-­‐known	
  problem	
  in	
  Object	
  Oriented	
  
Programming.	
  



Aims	
  of	
  the	
  paper	
  

•  Develops	
  a	
  rela+onal	
  model	
  using	
  confined	
  
separa+on	
  logic	
  to	
  handle	
  the	
  problem	
  of	
  
dangling	
  references	
  in	
  mutable	
  structures.	
  

•  Separa'on	
  logic	
  is	
  a	
  modern	
  system	
  for	
  
reasoning	
  about	
  the	
  correctness	
  of	
  a	
  program.	
  

•  Its	
  an	
  extension	
  to	
  Hoare	
  Logic	
  where	
  
formulae	
  are	
  interpreted	
  over	
  suitable	
  model	
  
of	
  stores	
  and	
  heaps.	
  



PF-­‐Transform	
  

•  The	
  key	
  technique	
  of	
  this	
  work	
  is	
  the	
  point-­‐
free	
  (PF)	
  transform.	
  

•  This	
  means	
  to	
  convert	
  predicate	
  logic	
  
formulae	
  into	
  binary	
  rela'on	
  by	
  removing	
  
bound	
  variables	
  and	
  quan'fiers.	
  

•  This	
  technique	
  was	
  introduced	
  in	
  the	
  19th	
  
century	
  and	
  today	
  its	
  known	
  as	
  “algebra	
  of	
  
programming”.	
  



Summary	
  of	
  PF-­‐transforms	
  

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.



Binary	
  rela'on	
  
•  Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  denotes	
  a	
  binary	
  rela'on	
  from	
  A(target)	
  
to	
  B(Source).	
  

•  	
  R	
  ⊆	
  S	
  —	
  the	
  obvious	
  “R	
  is	
  at	
  most	
  S”	
  inclusion	
  	
  	
  	
  	
  
ordering.	
  	
  

•  R	
  ∪	
  S	
  denotes	
  the	
  union	
  of	
  two	
  rela'ons	
  and	
  ⊤	
  is	
  
the	
  largest	
  rela'on	
  of	
  its	
  type.	
  Its	
  dual	
  is	
  ⊥,	
  the	
  
smallest	
  such	
  rela'on	
  (the	
  empty	
  one).	
  

•  b	
  R	
  a	
  —	
  “R	
  relates	
  b	
  to	
  a”,	
  that	
  is,	
  (b,a)	
  ∈	
  R.	
  	
  
•  id	
  such	
  that	
  R	
  ·∙	
  id	
  =	
  id	
  ·∙	
  R	
  =	
  R	
  	
  
•  Converse	
  of	
  R	
  —	
  R◦	
  such	
  that	
  a(R◦)b	
  iff	
  b	
  R	
  a.	
  	
  
	
  	
  	
  
	
  

going references from heaps. In the example above, in fact
we have more information about the relationship between
the two heaps, ie., the original heap and the one where the
new object lives. In particular, we know, that as the object
has just been created, no older one has a reference to it.
Therefore it is safe to put the new object into a protection
domain, and not break confinement.

To express this sort of situations, we propose an ex-
tension to classical separation logic which introduces two
new forms of separating conjunction: a notIn variant, repre-
sented by ¬!, asserting that no outgoing reference from the
part of the heap where the first argument holds points to the
part where the second argument holds, and a In variant !,
which ensures that all outgoing references from the part of
the heap characterised by the first argument converge into
the one where the second argument holds. With this new
form of separating conjunction, the Hoare triple above can
be re-written as

{p} x := new C(. . .) {p ¬! x !→ {. . .}}

The new operator not only warranties heap domain disjoint-
ness, but also enforces the new post-condition.

Report [28] introduces the basic intuitions on such con-

fined separation logic and discusses its application to con-
crete programming problems. It also shows how a number
of formal schemes for confinement in the literature [10, 4,
7, 14], can be unified from a semantic point of view.

This paper goes further in this research direction by in-
troducing a semantic model for this logic which is generic

in the sense that it abstracts away from the specific heap
structure, regarded as a mapping from a type K of refer-
ences to a type parametric construction F(K) on K, for F

a polynomial relator [6]. Typical heap models used in both
classical separation logic [24] and its OO-extensions [21,
13] arise by instantiation. Moreover, instead of the usual
set-theoretic semantics, we propose binary relations be-
tween heaps and stores as semantic domain for predicates.
In this way, well known properties of separating conjunc-
tion (often presented without proof, as for example the ex-
istence of a formal dual implication) can be proved once and
for all in the generic model. In such a setting we give com-
pact and effective proofs of several properties of the logic
connectives of confined separation logic. In particular, all
conjunction variants proposed are shown to be adjoint to
specific forms of implication. Due to space limitations, it is
not possible to put together in a single paper the presenta-
tion of the semantic model and its application to handling
specific confinement problems in object-oriented program-
ming. Therefore, our focus in the sequel will be on formal
semantics, applications being deferred to a follow-up paper
[27].

The key technique in our approach is the so-called point-

free (PF) transform [20], which essentially means the con-

version of predicate logic formulæ into binary relations by
removing bound variables and quantifiers — a technique
which, initiated in the 19c 2, eventually leads to what is
known today as the algebra of programming [6, 2]. Such
technique, which has been found fruitful for “theory refac-
toring” in other domains [19, 20], is based on the principle
that “everything is a binary relation” once logical expres-
sions are PF-transformed. One thereafter resorts to the pow-
erful calculus of binary relations [1, 6] until a solution for
the problem is found, which is mapped back to logics if re-
quired. At this point, another calculus — the Eindhoven
quantifier calculus [2, 3] — is applied. In proceeding this
way, as we expect the reader will appreciate in the sequel,
elegant expressions replace lengthy formulæ and easy-to-
follow calculations replace pointwise proofs with lots of
“· · · ” notation, case analyses and natural language expla-
nations for “obvious” steps.

This paper is structured as follows. After a brief intro-
duction to the relational calculus and the pointfree trans-
form in section 2, section 3 introduces a generic model for
confined separation logic upon which its semantic proper-
ties can be established. This is done in sections 4 and 5.
Conclusions and pointers to future work are discussed in
sections 6 and 7.

2 Relational calculus

This section is a self-contained introduction to the frag-
ment of the relational calculus, and the pointfree transform,
used in the paper. The reader is referred to [6, 2] for a de-
tailed account.

Relations. Let B A
R!! denote a binary relation on

datatypes A (source) and B (target). The underlying partial
order on relations is written R ⊆ S (read: “R is at most

S”), meaning that S is either more defined or less deter-
ministic than R, that is, b R a ⇒ b S a holds, for all a, b.

R ∪ S denotes the union of two relations and & is the
largest relation of its type. Its dual is ⊥, the smallest such
relation (the empty one). Equality on relations is established
by ⊆-antisymmetry.

Relations can be combined by three basic operators:
composition (R · S), converse (R◦) and meet (R ∩ S). R◦,
the converse of R is such that a(R◦)b iff bRa holds. Meet
corresponds to set-theoretical intersection and composition

2The idea of encoding predicates in terms of relations was initiated by
De Morgan in the 1860s and followed by Peirce who, in the 1870s, found
interesting equational laws of the calculus of binary relations [22]. The
pointfree nature of the notation which emerged from this embryonic work
was later further exploited by Tarski and his students [25]. In the 1980’s,
Freyd and Scedrov [11] developed the notion of an allegory (a category
whose morphisms are partially ordered) which finally accommodates the
binary relation calculus as special case.



Separa'on	
  logic	
  
•  Syntax:	
  

	
  	
  ∗	
  :	
  separa+ng	
  conjunc+on	
  	
  
−∗	
  :	
  separa+ng	
  implica+on	
  

•  	
  emp	
  :	
  The	
  heap	
  is	
  empty.	
  
•  P	
  ∗	
  Q	
  :	
  The	
  heap	
  contains	
  disjoint	
  parts	
  such	
  that	
  P	
  
holds	
  in	
  one	
  and	
  Q	
  	
  holds	
  in	
  the	
  other.	
  
	
  

•  P	
  −∗Q	
  :	
  If	
  the	
  heap	
  were	
  extended	
  with	
  a	
  disjoint	
  
part	
  such	
  that	
  P	
  holds,	
  then	
  Q	
  holds	
  for	
  the	
  new	
  
larger	
  heap.	
  

•  e→	
  e:	
  Singleton	
  Heap	
  	
  

	
  



Confined	
  Separa'on	
  Logic	
  

•  A	
  type	
  is	
  said	
  to	
  be	
  confined	
  in	
  a	
  domain	
  if	
  and	
  
only	
  if	
  all	
  references	
  to	
  instances	
  of	
  that	
  type	
  
originate	
  from	
  objects	
  of	
  the	
  domain.	
  	
  

•  For	
  confinement,	
  the	
  paper	
  describes	
  the	
  
following	
  variants	
  of	
  conjunc'on	
  to	
  handle	
  
the	
  problem	
  of	
  dangling	
  references.	
  

•  The	
  In	
  variant,	
  notIn	
  variant,	
  and	
  inBoth	
  
Variant.	
  



Confined	
  Separa'on	
  LOgic	
  

•  notIn	
  variant	
  denoted	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  —	
  hold	
  for	
  
disjoint	
  parts	
  of	
  heap	
  such	
  that	
  no	
  references	
  
of	
  the	
  first	
  point	
  to	
  the	
  other	
  	
  

•  In	
  variant	
  denoted	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  —	
  is	
  a	
  heap	
  disjoint	
  
such	
  that	
  all	
  references	
  in	
  the	
  first	
  do	
  point	
  
into	
  the	
  other	
  	
  

•  inBoth	
  variant	
  denoted	
  by	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  —	
  is	
  a	
  heap	
  
disjoint	
  such	
  that	
  all	
  references	
  in	
  the	
  first	
  are	
  
confined	
  to	
  both.	
  	
  

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.
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Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2 )a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2 )a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2 )a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2 )a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T
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Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B, K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2 )a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2 )a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉
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(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).
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from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,
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def
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¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
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In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts
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def
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def
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(p∗), we actually calculate the definition by regarding the
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is the union of separated H1 and H2,
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def
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from which we immediately infer
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In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
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H1 is empty, corresponds to
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where δ H
def
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In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=
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p → q
def
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function.
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def
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is not accessible from σ”) is H NA σ
def
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ally stated without a formal proof) fact that (p∗) and (p−∗)
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(p∗), we actually calculate the definition by regarding the
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
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on, we define:
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def
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def
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given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation
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def
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In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)
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in terms of predicates on pairs (σ, H), we resort to binary
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asserts predicate p holds on state (σ, H). So [[p]] is a binary
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follows 3
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def
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def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉
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We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



Advantages	
  of	
  (*),(−∗	
  )	
  
•  The	
  following	
  are	
  immediate	
  consequences	
  of	
  the	
  
conec'on,	
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  ↔	
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  and	
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  others,	
  usually	
  not	
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  literature	
  	
  
•  emp	
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  p−∗p	
  	
  
•  p∗x	
  ↔	
  p∗(p−∗(p∗x))	
  	
  
•  p−∗x	
  ↔	
  p−∗(p∗(p−∗x))	
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•  If	
  we	
  compare	
  eq(5,6,7)	
  with	
  the	
  standard	
  
case	
  eq(4),	
  we	
  see	
  the	
  difference	
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  in	
  
extra	
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  )media'ng	
  
separate	
  union	
  (*)and	
  the	
  split	
  of	
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•  Just	
  s'ck	
  the	
  relevant	
  coreflexive	
  (eg.	
  ΦIn)	
  to	
  
separate	
  union	
  (∗)	
  and	
  carry	
  on:	
  

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



Contd..	
  

•  So,	
  for	
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  separa'ng	
  conjunc'on,	
  this	
  
leads	
  to	
  the	
  upper	
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  of:	
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•  And	
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  of:	
  

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



Contd…	
  

•  In	
  comparison	
  with	
  the	
  standard	
  separated	
  
implica'on,	
  all	
  of	
  the	
  variants	
  place	
  an	
  extra	
  
restric'on	
  on	
  augmented	
  heap.	
  	
  

•  Because	
  of	
  Galois	
  connec'on,	
  all	
  of	
  the	
  
proper'es	
  derived	
  from	
  (p*),	
  hold	
  for	
  free	
  for	
  
all	
  of	
  its	
  variants.	
  



Reasoning	
  
•  Seman'cs	
  of	
  confinement	
  can	
  be	
  checked	
  against	
  eg.	
  
what	
  happens	
  to	
  standard	
  property	
  	
  

•  emp∗p	
  ↔	
  p	
  ↔	
  p∗emp	
  	
  
•  arising	
  from	
  two	
  facts	
  	
  
•  H[emp]S	
  ≡	
  H=⊥	
  	
  
•  H∗(Hʹ′,⊥)	
  ≡	
  H=Hʹ′	
  	
  
•  In	
  the	
  confined	
  variants,	
  seman'cs	
  rules	
  eventually	
  
lead	
  us	
  eg.	
  	
  

•  H[p]S	
  ∧	
  Φα(H,	
  ⊥)	
  ≡	
  H[p]S	
  	
  	
  	
  	
  or	
  	
  
•  H[p]S	
  ∧	
  Φα(⊥,	
  H)	
  ≡	
  H[p]S	
  	
  
•  where	
  α	
  ranges	
  over	
  the	
  three	
  given	
  variants.	
  



Conclusion	
  

•  This	
  paper	
  achieves	
  two	
  goals.	
  It	
  provides	
  a	
  
seman'c	
  characteriza'on	
  of	
  a	
  new	
  extension	
  
to	
  separa'on	
  logic	
  design	
  to	
  reason	
  about	
  
confinement	
  of	
  references.	
  And	
  also	
  shows	
  
how	
  the	
  calcula'on	
  of	
  binary	
  rela'ons	
  can	
  
help	
  in	
  calcula'ng	
  proofs.	
  The	
  discovery	
  of	
  
new	
  operators	
  with	
  the	
  help	
  of	
  Galois	
  
connec'on	
  is	
  par'cularly	
  useful.	
  


