
A	
 rela'onal	
 Model	
 for	
 Confined	

Separa'on	
 Logic	
 	

Palwasha	
 Afsar	

MAP-­‐i	
 Doctoral	
 Student	

Outline	

•  The	
 Problem	

•  Aim	
 of	
 the	
 Paper	

•  PF	
 transform	

•  Separa'on	
 Logic	

•  Confined	
 Separa'on	
 logic	

•  Reasoning	

•  Conclusion	

The	
 Problem	

•  Formal	
 reasoning	
 try	
 to	
 prove	
 the	
 correctness	

of	
 the	
 program	
 by	
 conver'ng	
 the	
 program	
 to	

its	
 seman'cs.	

•  Should	
 try	
 to	
 reduce	
 the	
 size.	

•  Seman'cs	
 concepts	
 of	
 Object	
 Oriented	

Programming	
 introduce	
 the	
 concepts	
 of	
 heap,	

Stacks,	
 Array	
 etc.	

•  These	
 concepts	
 are	
 introduced	
 to	
 solve	
 the	

main	
 problem	
 of	
 references:	
 Aliasing	

Aliasing	

•  Aliasing	
 is	
 the	
 phenomena	
 that	
 two	
 different	

names	
 refer	
 to	
 the	
 same	
 storage	
 loca'on.	
 By	

changing	
 the	
 value	
 of	
 one	
 name,	
 the	
 other	

changes	
 as	
 well.	
 So,	
 aliasing	
 complicates	
 the	

reasoning	
 about	
 the	
 correctness	
 of	
 a	
 program.	

•  It’s	
 a	
 well-­‐known	
 problem	
 in	
 Object	
 Oriented	

Programming.	

Aims	
 of	
 the	
 paper	

•  Develops	
 a	
 rela+onal	
 model	
 using	
 confined	

separa+on	
 logic	
 to	
 handle	
 the	
 problem	
 of	

dangling	
 references	
 in	
 mutable	
 structures.	

•  Separa'on	
 logic	
 is	
 a	
 modern	
 system	
 for	

reasoning	
 about	
 the	
 correctness	
 of	
 a	
 program.	

•  Its	
 an	
 extension	
 to	
 Hoare	
 Logic	
 where	

formulae	
 are	
 interpreted	
 over	
 suitable	
 model	

of	
 stores	
 and	
 heaps.	

PF-­‐Transform	

•  The	
 key	
 technique	
 of	
 this	
 work	
 is	
 the	
 point-­‐
free	
 (PF)	
 transform.	

•  This	
 means	
 to	
 convert	
 predicate	
 logic	

formulae	
 into	
 binary	
 rela'on	
 by	
 removing	

bound	
 variables	
 and	
 quan'fiers.	

•  This	
 technique	
 was	
 introduced	
 in	
 the	
 19th	

century	
 and	
 today	
 its	
 known	
 as	
 “algebra	
 of	

programming”.	

Summary	
 of	
 PF-­‐transforms	

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ()◦ ()◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) (/ R) read “. . . over R”

difference (− R) (R ∪)

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

Binary	
 rela'on	

•  Let	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 denotes	
 a	
 binary	
 rela'on	
 from	
 A(target)	

to	
 B(Source).	

•  	
 R	
 ⊆	
 S	
 —	
 the	
 obvious	
 “R	
 is	
 at	
 most	
 S”	
 inclusion	
 	
 	
 	
 	

ordering.	
 	

•  R	
 ∪	
 S	
 denotes	
 the	
 union	
 of	
 two	
 rela'ons	
 and	
 ⊤	
 is	

the	
 largest	
 rela'on	
 of	
 its	
 type.	
 Its	
 dual	
 is	
 ⊥,	
 the	

smallest	
 such	
 rela'on	
 (the	
 empty	
 one).	

•  b	
 R	
 a	
 —	
 “R	
 relates	
 b	
 to	
 a”,	
 that	
 is,	
 (b,a)	
 ∈	
 R.	
 	

•  id	
 such	
 that	
 R	
 ·∙	
 id	
 =	
 id	
 ·∙	
 R	
 =	
 R	
 	

•  Converse	
 of	
 R	
 —	
 R◦	
 such	
 that	
 a(R◦)b	
 iff	
 b	
 R	
 a.	
 	

	
 	
 	

	

going references from heaps. In the example above, in fact
we have more information about the relationship between
the two heaps, ie., the original heap and the one where the
new object lives. In particular, we know, that as the object
has just been created, no older one has a reference to it.
Therefore it is safe to put the new object into a protection
domain, and not break confinement.

To express this sort of situations, we propose an ex-
tension to classical separation logic which introduces two
new forms of separating conjunction: a notIn variant, repre-
sented by ¬!, asserting that no outgoing reference from the
part of the heap where the first argument holds points to the
part where the second argument holds, and a In variant !,
which ensures that all outgoing references from the part of
the heap characterised by the first argument converge into
the one where the second argument holds. With this new
form of separating conjunction, the Hoare triple above can
be re-written as

{p} x := new C(. . .) {p ¬! x !→ {. . .}}

The new operator not only warranties heap domain disjoint-
ness, but also enforces the new post-condition.

Report [28] introduces the basic intuitions on such con-

fined separation logic and discusses its application to con-
crete programming problems. It also shows how a number
of formal schemes for confinement in the literature [10, 4,
7, 14], can be unified from a semantic point of view.

This paper goes further in this research direction by in-
troducing a semantic model for this logic which is generic

in the sense that it abstracts away from the specific heap
structure, regarded as a mapping from a type K of refer-
ences to a type parametric construction F(K) on K, for F

a polynomial relator [6]. Typical heap models used in both
classical separation logic [24] and its OO-extensions [21,
13] arise by instantiation. Moreover, instead of the usual
set-theoretic semantics, we propose binary relations be-
tween heaps and stores as semantic domain for predicates.
In this way, well known properties of separating conjunc-
tion (often presented without proof, as for example the ex-
istence of a formal dual implication) can be proved once and
for all in the generic model. In such a setting we give com-
pact and effective proofs of several properties of the logic
connectives of confined separation logic. In particular, all
conjunction variants proposed are shown to be adjoint to
specific forms of implication. Due to space limitations, it is
not possible to put together in a single paper the presenta-
tion of the semantic model and its application to handling
specific confinement problems in object-oriented program-
ming. Therefore, our focus in the sequel will be on formal
semantics, applications being deferred to a follow-up paper
[27].

The key technique in our approach is the so-called point-

free (PF) transform [20], which essentially means the con-

version of predicate logic formulæ into binary relations by
removing bound variables and quantifiers — a technique
which, initiated in the 19c 2, eventually leads to what is
known today as the algebra of programming [6, 2]. Such
technique, which has been found fruitful for “theory refac-
toring” in other domains [19, 20], is based on the principle
that “everything is a binary relation” once logical expres-
sions are PF-transformed. One thereafter resorts to the pow-
erful calculus of binary relations [1, 6] until a solution for
the problem is found, which is mapped back to logics if re-
quired. At this point, another calculus — the Eindhoven
quantifier calculus [2, 3] — is applied. In proceeding this
way, as we expect the reader will appreciate in the sequel,
elegant expressions replace lengthy formulæ and easy-to-
follow calculations replace pointwise proofs with lots of
“· · · ” notation, case analyses and natural language expla-
nations for “obvious” steps.

This paper is structured as follows. After a brief intro-
duction to the relational calculus and the pointfree trans-
form in section 2, section 3 introduces a generic model for
confined separation logic upon which its semantic proper-
ties can be established. This is done in sections 4 and 5.
Conclusions and pointers to future work are discussed in
sections 6 and 7.

2 Relational calculus

This section is a self-contained introduction to the frag-
ment of the relational calculus, and the pointfree transform,
used in the paper. The reader is referred to [6, 2] for a de-
tailed account.

Relations. Let B A
R!! denote a binary relation on

datatypes A (source) and B (target). The underlying partial
order on relations is written R ⊆ S (read: “R is at most

S”), meaning that S is either more defined or less deter-
ministic than R, that is, b R a ⇒ b S a holds, for all a, b.

R ∪ S denotes the union of two relations and & is the
largest relation of its type. Its dual is ⊥, the smallest such
relation (the empty one). Equality on relations is established
by ⊆-antisymmetry.

Relations can be combined by three basic operators:
composition (R · S), converse (R◦) and meet (R ∩ S). R◦,
the converse of R is such that a(R◦)b iff bRa holds. Meet
corresponds to set-theoretical intersection and composition

2The idea of encoding predicates in terms of relations was initiated by
De Morgan in the 1860s and followed by Peirce who, in the 1870s, found
interesting equational laws of the calculus of binary relations [22]. The
pointfree nature of the notation which emerged from this embryonic work
was later further exploited by Tarski and his students [25]. In the 1980’s,
Freyd and Scedrov [11] developed the notion of an allegory (a category
whose morphisms are partially ordered) which finally accommodates the
binary relation calculus as special case.

Separa'on	
 logic	

•  Syntax:	

	
 	
 ∗	
 :	
 separa+ng	
 conjunc+on	
 	

−∗	
 :	
 separa+ng	
 implica+on	

•  	
 emp	
 :	
 The	
 heap	
 is	
 empty.	

•  P	
 ∗	
 Q	
 :	
 The	
 heap	
 contains	
 disjoint	
 parts	
 such	
 that	
 P	

holds	
 in	
 one	
 and	
 Q	
 	
 holds	
 in	
 the	
 other.	

	

•  P	
 −∗Q	
 :	
 If	
 the	
 heap	
 were	
 extended	
 with	
 a	
 disjoint	

part	
 such	
 that	
 P	
 holds,	
 then	
 Q	
 holds	
 for	
 the	
 new	

larger	
 heap.	

•  e→	
 e:	
 Singleton	
 Heap	
 	

	

Confined	
 Separa'on	
 Logic	

•  A	
 type	
 is	
 said	
 to	
 be	
 confined	
 in	
 a	
 domain	
 if	
 and	

only	
 if	
 all	
 references	
 to	
 instances	
 of	
 that	
 type	

originate	
 from	
 objects	
 of	
 the	
 domain.	
 	

•  For	
 confinement,	
 the	
 paper	
 describes	
 the	

following	
 variants	
 of	
 conjunc'on	
 to	
 handle	

the	
 problem	
 of	
 dangling	
 references.	

•  The	
 In	
 variant,	
 notIn	
 variant,	
 and	
 inBoth	

Variant.	

Confined	
 Separa'on	
 LOgic	

•  notIn	
 variant	
 denoted	
 by	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 —	
 hold	
 for	

disjoint	
 parts	
 of	
 heap	
 such	
 that	
 no	
 references	

of	
 the	
 first	
 point	
 to	
 the	
 other	
 	

•  In	
 variant	
 denoted	
 by	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 —	
 is	
 a	
 heap	
 disjoint	

such	
 that	
 all	
 references	
 in	
 the	
 first	
 do	
 point	

into	
 the	
 other	
 	

•  inBoth	
 variant	
 denoted	
 by	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 —	
 is	
 a	
 heap	

disjoint	
 such	
 that	
 all	
 references	
 in	
 the	
 first	
 are	

confined	
 to	
 both.	
 	

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ()◦ ()◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) (/ R) read “. . . over R”

difference (− R) (R ∪)

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ()◦ ()◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) (/ R) read “. . . over R”

difference (− R) (R ∪)

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ()◦ ()◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) (/ R) read “. . . over R”

difference (− R) (R ∪)

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

Generic	
 Separa'on	
 Logic	

•  Separa'on	
 logic	
 is	
 typically	
 interpreted	
 on	
 a	

storage	
 model	
 coupling	
 a	
 store	
 σ,	
 for	

variables,	
 and	
 a	
 heap	
 H	
 for	
 addresses.	
 	

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2)a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2)a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T

Separability	

•  First	
 separability	
 rela'on	
 is	
 defined	
 on	
 heaps:	

Eq(1)	

	

If	
 they	
 are	
 disjoint	
 then:	

	

Now	
 lets	
 try	
 to	
 solve	
 these	
 equa'ons	
 using	
 PF-­‐
transform	

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2)a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2)a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T

Contd…	

•  ¬⟨∃b,a,k	
 ::	
 bH1	
 k∧aH2	
 k⟩	

≡	
 {	
 ∃-­‐nes'ng	
 (Eindhoven	
 quan'fier	
 calculus)	
 }	
 	

•  ¬⟨∃b,a	
 ::	
 ⟨∃k	
 ::	
 bH1	
 k∧aH2	
 k⟩⟩	

≡	
 {	
 rela'onal	
 converse:	
 b	
 R◦a	
 the	
 same	
 as	
 a	
 R	
 b	
 }	
 	

•  ¬	
 ⟨	
 ∃	
 b	
 ,	
 a	
 :	
 :	
 ⟨	
 ∃	
 k	
 :	
 :	
 b	
 H	
 1	
 k	
 ∧	
 k	
 H	
 2◦	
 a	
 ⟩	
 ⟩	

≡	
 {	
 introduce	
 rela'onal	
 composi'on	
 }	
 	

•  ¬⟨∃b,a	
 ::	
 b(H1·∙H2◦)a⟩	

≡	
 {	
 de	
 Morgan	
 ;	
 nega'on	
 }	
 	

•  ⟨∀b,a	
 ::	
 b(H1·∙H2◦)a⇒False⟩	
 	

Contd..	

≡	
 {	
 empty	
 rela'on:	
 b	
 ⊥	
 a	
 is	
 always	
 false	
 }	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

⟨∀b,a	
 ::	
 b(H1·∙H2◦)a⇒b⊥a⟩	
 	

≡	
 {	
 drop	
 points	
 a,b	
 }	
 	

H	
 1	
 ·∙	
 H	
 2◦	
 ⊆	
 ⊥	
 	

•  So	
 we	
 can	
 redefine	
 	

eq(2)	
 	
 	
 	

•  In	
 a	
 similar	
 way,	
 we	
 can	
 write	
 for	
 dangling	

references	
 i-­‐e	

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B, K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2)a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2)a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T

Contd..	

•  For	
 dangling	
 references:	

•  Asserts	
 that	
 no	
 out	
 going	
 reference	
 in	
 H1	
 goes	

into	
 separated	
 H2.	
 Back	
 to	
 pointwise	
 nota'on:	

•  Similarly	
 for	
 other	
 variants:	

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Seman'cs	
 for	
 Separa'onal	
 Logic	

•  The	
 preorder	
 on	
 asser'on	
 is	
 defined	
 by:	

•  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 eq(3)	

	
 	
 so	
 that	
 it	
 can	
 be	
 dis'nguished	
 from	
 standard	
 logic	
 	
 	
 	

implica'on	
 ⇒.	
 	

•  By	
 recalling	
 composi+on	
 and	
 spliJng,	
 the	

separa'ng	
 conjunc'on	
 equa'on	
 	

	

	

Becomes:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 eq(4)	

	

	

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Contd..	

•  The	
 other	
 variants	
 becomes:	

•  eq(5)	

•  eq(6)	
 	

•  eq(7)	

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Conjunc'on	
 and	
 Implica'on	

•  Beginning	
 by	
 the	
 fact	
 that	
 p∗	
 and	
 p−∗	
 cons'tute	
 Galois	

connec'on.	
 So,	

	

	
 	
 Where	
 we	
 know	
 everything,	
 apart	
 from	
 (p−∗	
)	
 which	
 we	
 want	
 	
 	

to	
 calculate:	

	

	
 	
 	
 	
 	
 	
 	
 	
 two	
 GC	
 in	
 a	
 row	
 	
 	

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Contd…	

•  For	
 pointwise	
 meaning,	
 we	
 resort	
 to	
 the	
 Eindhoven	

quan'fier:	

•  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Advantages	
 of	
 (*),(−∗	
)	

•  The	
 following	
 are	
 immediate	
 consequences	
 of	
 the	

conec'on,	
 where	
 ↔	
 denotes	
 the	
 an'symmetric	

closure	
 of	
 →:	
 	

•  p∗(x1	
 ∨x2)	
 ↔	
 	
 (p∗x1)∨(p∗x2)	
 	

•  (x1	
 ∨x2)∗p↔	
 	
 (x1	
 ∗p)∨(x2	
 ∗p)	
 	

•  	
 p−∗(x1	
 ∧x2)	
 ↔	
 	
 (p−∗x1)∧(p−∗x2)	
 	

•  and	
 monotonicity,	
 cancella'ons,	

x	
 →	
 (
 p	
 −∗	
 (
 p	
 ∗	
 x	
)	
)	
 p	
 ∗	
 (
 p	
 −∗	
 y	
)	
 →	
 y	
 	

•  etc.	
 and	
 some	
 others,	
 usually	
 not	
 men'oned	
 in	
 the	
 literature	
 	

•  emp	
 →	
 p−∗p	
 	

•  p∗x	
 ↔	
 p∗(p−∗(p∗x))	
 	

•  p−∗x	
 ↔	
 p−∗(p∗(p−∗x))	
 	

GC	
 for	
 Confined	
 Separa'onal	
 Logic	

•  If	
 we	
 compare	
 eq(5,6,7)	
 with	
 the	
 standard	

case	
 eq(4),	
 we	
 see	
 the	
 difference	
 resides	
 in	

extra	
 coreflexive(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)media'ng	

separate	
 union	
 (*)and	
 the	
 split	
 of	
 rela'ons	

which	
 captures	
 the	
 seman'cs	
 of	
 p,q.	
 	

•  Just	
 s'ck	
 the	
 relevant	
 coreflexive	
 (eg.	
 ΦIn)	
 to	

separate	
 union	
 (∗)	
 and	
 carry	
 on:	

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Contd..	

•  So,	
 for	
 confined	
 separa'ng	
 conjunc'on,	
 this	

leads	
 to	
 the	
 upper	
 adjoint	
 of:	

•  	
 	

•  And	
 lower	
 adjoint	
 of:	

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Contd…	

•  In	
 comparison	
 with	
 the	
 standard	
 separated	

implica'on,	
 all	
 of	
 the	
 variants	
 place	
 an	
 extra	

restric'on	
 on	
 augmented	
 heap.	
 	

•  Because	
 of	
 Galois	
 connec'on,	
 all	
 of	
 the	

proper'es	
 derived	
 from	
 (p*),	
 hold	
 for	
 free	
 for	

all	
 of	
 its	
 variants.	

Reasoning	

•  Seman'cs	
 of	
 confinement	
 can	
 be	
 checked	
 against	
 eg.	

what	
 happens	
 to	
 standard	
 property	
 	

•  emp∗p	
 ↔	
 p	
 ↔	
 p∗emp	
 	

•  arising	
 from	
 two	
 facts	
 	

•  H[emp]S	
 ≡	
 H=⊥	
 	

•  H∗(Hʹ′,⊥)	
 ≡	
 H=Hʹ′	
 	

•  In	
 the	
 confined	
 variants,	
 seman'cs	
 rules	
 eventually	

lead	
 us	
 eg.	
 	

•  H[p]S	
 ∧	
 Φα(H,	
 ⊥)	
 ≡	
 H[p]S	
 	
 	
 	
 	
 or	
 	

•  H[p]S	
 ∧	
 Φα(⊥,	
 H)	
 ≡	
 H[p]S	
 	

•  where	
 α	
 ranges	
 over	
 the	
 three	
 given	
 variants.	

Conclusion	

•  This	
 paper	
 achieves	
 two	
 goals.	
 It	
 provides	
 a	

seman'c	
 characteriza'on	
 of	
 a	
 new	
 extension	

to	
 separa'on	
 logic	
 design	
 to	
 reason	
 about	

confinement	
 of	
 references.	
 And	
 also	
 shows	

how	
 the	
 calcula'on	
 of	
 binary	
 rela'ons	
 can	

help	
 in	
 calcula'ng	
 proofs.	
 The	
 discovery	
 of	

new	
 operators	
 with	
 the	
 help	
 of	
 Galois	

connec'on	
 is	
 par'cularly	
 useful.	

