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The	  Problem	  

•  Formal	  reasoning	  try	  to	  prove	  the	  correctness	  
of	  the	  program	  by	  conver'ng	  the	  program	  to	  
its	  seman'cs.	  

•  Should	  try	  to	  reduce	  the	  size.	  
•  Seman'cs	  concepts	  of	  Object	  Oriented	  
Programming	  introduce	  the	  concepts	  of	  heap,	  
Stacks,	  Array	  etc.	  

•  These	  concepts	  are	  introduced	  to	  solve	  the	  
main	  problem	  of	  references:	  Aliasing	  



Aliasing	  

•  Aliasing	  is	  the	  phenomena	  that	  two	  different	  
names	  refer	  to	  the	  same	  storage	  loca'on.	  By	  
changing	  the	  value	  of	  one	  name,	  the	  other	  
changes	  as	  well.	  So,	  aliasing	  complicates	  the	  
reasoning	  about	  the	  correctness	  of	  a	  program.	  

•  It’s	  a	  well-‐known	  problem	  in	  Object	  Oriented	  
Programming.	  



Aims	  of	  the	  paper	  

•  Develops	  a	  rela+onal	  model	  using	  confined	  
separa+on	  logic	  to	  handle	  the	  problem	  of	  
dangling	  references	  in	  mutable	  structures.	  

•  Separa'on	  logic	  is	  a	  modern	  system	  for	  
reasoning	  about	  the	  correctness	  of	  a	  program.	  

•  Its	  an	  extension	  to	  Hoare	  Logic	  where	  
formulae	  are	  interpreted	  over	  suitable	  model	  
of	  stores	  and	  heaps.	  



PF-‐Transform	  

•  The	  key	  technique	  of	  this	  work	  is	  the	  point-‐
free	  (PF)	  transform.	  

•  This	  means	  to	  convert	  predicate	  logic	  
formulae	  into	  binary	  rela'on	  by	  removing	  
bound	  variables	  and	  quan'fiers.	  

•  This	  technique	  was	  introduced	  in	  the	  19th	  
century	  and	  today	  its	  known	  as	  “algebra	  of	  
programming”.	  



Summary	  of	  PF-‐transforms	  

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.



Binary	  rela'on	  
•  Let	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  denotes	  a	  binary	  rela'on	  from	  A(target)	  
to	  B(Source).	  

•  	  R	  ⊆	  S	  —	  the	  obvious	  “R	  is	  at	  most	  S”	  inclusion	  	  	  	  	  
ordering.	  	  

•  R	  ∪	  S	  denotes	  the	  union	  of	  two	  rela'ons	  and	  ⊤	  is	  
the	  largest	  rela'on	  of	  its	  type.	  Its	  dual	  is	  ⊥,	  the	  
smallest	  such	  rela'on	  (the	  empty	  one).	  

•  b	  R	  a	  —	  “R	  relates	  b	  to	  a”,	  that	  is,	  (b,a)	  ∈	  R.	  	  
•  id	  such	  that	  R	  ·∙	  id	  =	  id	  ·∙	  R	  =	  R	  	  
•  Converse	  of	  R	  —	  R◦	  such	  that	  a(R◦)b	  iff	  b	  R	  a.	  	  
	  	  	  
	  

going references from heaps. In the example above, in fact
we have more information about the relationship between
the two heaps, ie., the original heap and the one where the
new object lives. In particular, we know, that as the object
has just been created, no older one has a reference to it.
Therefore it is safe to put the new object into a protection
domain, and not break confinement.

To express this sort of situations, we propose an ex-
tension to classical separation logic which introduces two
new forms of separating conjunction: a notIn variant, repre-
sented by ¬!, asserting that no outgoing reference from the
part of the heap where the first argument holds points to the
part where the second argument holds, and a In variant !,
which ensures that all outgoing references from the part of
the heap characterised by the first argument converge into
the one where the second argument holds. With this new
form of separating conjunction, the Hoare triple above can
be re-written as

{p} x := new C(. . .) {p ¬! x !→ {. . .}}

The new operator not only warranties heap domain disjoint-
ness, but also enforces the new post-condition.

Report [28] introduces the basic intuitions on such con-

fined separation logic and discusses its application to con-
crete programming problems. It also shows how a number
of formal schemes for confinement in the literature [10, 4,
7, 14], can be unified from a semantic point of view.

This paper goes further in this research direction by in-
troducing a semantic model for this logic which is generic

in the sense that it abstracts away from the specific heap
structure, regarded as a mapping from a type K of refer-
ences to a type parametric construction F(K) on K, for F

a polynomial relator [6]. Typical heap models used in both
classical separation logic [24] and its OO-extensions [21,
13] arise by instantiation. Moreover, instead of the usual
set-theoretic semantics, we propose binary relations be-
tween heaps and stores as semantic domain for predicates.
In this way, well known properties of separating conjunc-
tion (often presented without proof, as for example the ex-
istence of a formal dual implication) can be proved once and
for all in the generic model. In such a setting we give com-
pact and effective proofs of several properties of the logic
connectives of confined separation logic. In particular, all
conjunction variants proposed are shown to be adjoint to
specific forms of implication. Due to space limitations, it is
not possible to put together in a single paper the presenta-
tion of the semantic model and its application to handling
specific confinement problems in object-oriented program-
ming. Therefore, our focus in the sequel will be on formal
semantics, applications being deferred to a follow-up paper
[27].

The key technique in our approach is the so-called point-

free (PF) transform [20], which essentially means the con-

version of predicate logic formulæ into binary relations by
removing bound variables and quantifiers — a technique
which, initiated in the 19c 2, eventually leads to what is
known today as the algebra of programming [6, 2]. Such
technique, which has been found fruitful for “theory refac-
toring” in other domains [19, 20], is based on the principle
that “everything is a binary relation” once logical expres-
sions are PF-transformed. One thereafter resorts to the pow-
erful calculus of binary relations [1, 6] until a solution for
the problem is found, which is mapped back to logics if re-
quired. At this point, another calculus — the Eindhoven
quantifier calculus [2, 3] — is applied. In proceeding this
way, as we expect the reader will appreciate in the sequel,
elegant expressions replace lengthy formulæ and easy-to-
follow calculations replace pointwise proofs with lots of
“· · · ” notation, case analyses and natural language expla-
nations for “obvious” steps.

This paper is structured as follows. After a brief intro-
duction to the relational calculus and the pointfree trans-
form in section 2, section 3 introduces a generic model for
confined separation logic upon which its semantic proper-
ties can be established. This is done in sections 4 and 5.
Conclusions and pointers to future work are discussed in
sections 6 and 7.

2 Relational calculus

This section is a self-contained introduction to the frag-
ment of the relational calculus, and the pointfree transform,
used in the paper. The reader is referred to [6, 2] for a de-
tailed account.

Relations. Let B A
R!! denote a binary relation on

datatypes A (source) and B (target). The underlying partial
order on relations is written R ⊆ S (read: “R is at most

S”), meaning that S is either more defined or less deter-
ministic than R, that is, b R a ⇒ b S a holds, for all a, b.

R ∪ S denotes the union of two relations and & is the
largest relation of its type. Its dual is ⊥, the smallest such
relation (the empty one). Equality on relations is established
by ⊆-antisymmetry.

Relations can be combined by three basic operators:
composition (R · S), converse (R◦) and meet (R ∩ S). R◦,
the converse of R is such that a(R◦)b iff bRa holds. Meet
corresponds to set-theoretical intersection and composition

2The idea of encoding predicates in terms of relations was initiated by
De Morgan in the 1860s and followed by Peirce who, in the 1870s, found
interesting equational laws of the calculus of binary relations [22]. The
pointfree nature of the notation which emerged from this embryonic work
was later further exploited by Tarski and his students [25]. In the 1980’s,
Freyd and Scedrov [11] developed the notion of an allegory (a category
whose morphisms are partially ordered) which finally accommodates the
binary relation calculus as special case.



Separa'on	  logic	  
•  Syntax:	  

	  	  ∗	  :	  separa+ng	  conjunc+on	  	  
−∗	  :	  separa+ng	  implica+on	  

•  	  emp	  :	  The	  heap	  is	  empty.	  
•  P	  ∗	  Q	  :	  The	  heap	  contains	  disjoint	  parts	  such	  that	  P	  
holds	  in	  one	  and	  Q	  	  holds	  in	  the	  other.	  
	  

•  P	  −∗Q	  :	  If	  the	  heap	  were	  extended	  with	  a	  disjoint	  
part	  such	  that	  P	  holds,	  then	  Q	  holds	  for	  the	  new	  
larger	  heap.	  

•  e→	  e:	  Singleton	  Heap	  	  

	  



Confined	  Separa'on	  Logic	  

•  A	  type	  is	  said	  to	  be	  confined	  in	  a	  domain	  if	  and	  
only	  if	  all	  references	  to	  instances	  of	  that	  type	  
originate	  from	  objects	  of	  the	  domain.	  	  

•  For	  confinement,	  the	  paper	  describes	  the	  
following	  variants	  of	  conjunc'on	  to	  handle	  
the	  problem	  of	  dangling	  references.	  

•  The	  In	  variant,	  notIn	  variant,	  and	  inBoth	  
Variant.	  



Confined	  Separa'on	  LOgic	  

•  notIn	  variant	  denoted	  by	  	  	  	  	  	  	  	  	  	  —	  hold	  for	  
disjoint	  parts	  of	  heap	  such	  that	  no	  references	  
of	  the	  first	  point	  to	  the	  other	  	  

•  In	  variant	  denoted	  by	  	  	  	  	  	  	  	  	  	  —	  is	  a	  heap	  disjoint	  
such	  that	  all	  references	  in	  the	  first	  do	  point	  
into	  the	  other	  	  

•  inBoth	  variant	  denoted	  by	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  —	  is	  a	  heap	  
disjoint	  such	  that	  all	  references	  in	  the	  first	  are	  
confined	  to	  both.	  	  

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.

is defined in the usual way: b(R · S)c holds wherever there
exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself

(R · S)◦ = S◦
· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,
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!!! included. (Function ! is the unique function of
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connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
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because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
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b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”
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The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
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exists some mediating a such that bRa ∧ aSc. Converse
commutes both with composition and with itself
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· R◦ and (R◦)◦ = R (1)

Coreflexive relations are fragments of the identity re-
lation which model predicates or sets. The PF-transform
of a (unary) predicate p is the coreflexive Φp such that
b Φpa ≡ (b = a) ∧ (p a) holds, that is, the relation
that maps every a which satisfies p (and only such a) onto
itself. The PF-meaning of a set S is Φλa.(a∈S).

Taxonomy. A taxonomy of binary relations can be de-
fined in terms of the notions of kernel and image of a re-
lation R, resp. ker R = R◦

· R and img R = R · R◦. A
relation R is said to be entire (or total) iff its kernel is reflex-
ive; and simple (or functional) iff its image is coreflexive.
Dually, R is surjective iff R◦ is entire, and R is injective iff
R◦ is simple. Finally, a relation is said to be a function

iff it is both simple and entire. A constant function, always
returning the same value v, is denoted by v.

The interplay between functions and relations is a rich
part of the binary relation calculus. For instance, rule

b(f◦
· R · g)a ≡ (f b)R(g a) (2)

plays a prominent rôle in the PF-transform. For instance,
the pointwise definition of the kernel of a function f ,
b(ker f)a ≡ f b = f a, stems from (2), whereby it is
easy to see that # is the kernel of every constant function,

1 A
!!! included. (Function ! is the unique function of

its type, where 1 denotes the singleton type.)
Given two preorders ≤ and %, one may relate arguments

and results of pairs of functions f and g in, essentially, two
ways:

f · % ⊆ ≤ · g (3)

f◦
· % = ≤ · g (4)

Actually, (3) is equivalent to % ⊆ f◦
· ≤ · g . For

f = g, this establishes % to ≤ monotonicity, thanks to (2).
Both f, g in pattern (4) are monotone and said to be Galois

connected, f (resp. g) being referred to as the lower (resp.
upper) adjoint of the connection. By introducing variables
in both sides of (4) via (2), we obtain (for all a, b)

(f b) % a ≡ b ≤ (g a) (5)

Galois connections in which the two preorders are rela-
tion inclusion (≤,% := ⊆,⊆) are particularly interesting
because the two adjoints are relational combinators and the
connection itself is their universal property. The following
table lists a few examples:

ψ Φψ

〈∀ a, b : : b R a ⇒ b S a〉 R ⊆ S
〈∀ a : : f a = g a〉 f ⊆ g
〈∀ a : : a R a〉 id ⊆ R

〈∃ a : : b R a ∧ a S c〉 b(R · S)c
b R a ∧ b S a b (R ∩ S) a
b R a ∨ b S a b (R ∪ S) a
(f b) R (g a) b(f◦

· R · g)a
TRUE b # a
FALSE b ⊥ a

Figure 1. Sample of PF-transform rules

(f R) ⊆ S ≡ R ⊆ (g S)

Description f g Obs.

Converse ( )◦ ( )◦

Shunting rule (h·) (h◦
·) NB: h is a function

Right-division (·R) ( / R) read “. . . over R”

difference ( − R) (R ∪ )

The main motivation for using Galois connections is
their rich algebra of properties. For instance, the two ad-
joints f and g in a Galois connection are monotonic; lower
adjoint f distributes over join and upper-adjoint g dis-
tributes over meet, wherever these exist; and two cancel-
lation laws hold, on the left and on the right hand side:

b ≤ g(f b) and f (g a) % a (6)

3 A model for confined separation logic

Confined separation logic. In order to capture confine-
ment our proposal adds to standard separation logic the fol-
lowing variants of conjunction to describe the behavior of
dangling references of separated heaps and, therefore, to
help in controlling indirect aliasing:

• The In variant, denoted by p " q, which asserts that p
and q hold for disjoint parts of the heap and all refer-
ences in the first part of the heap (which validates p)
point into the second.

• The ”dual” notIn variant, denoted by p ¬" q, which
asserts that p and q hold for disjoint parts of the heap
and no references from the first point to the second.

• The inBoth variant, written p #" q, which requires that
p and q hold for disjoint parts of the heap and all ref-
erences from the first part are confined to either the
second one or itself.



Generic	  Separa'on	  Logic	  

•  Separa'on	  logic	  is	  typically	  interpreted	  on	  a	  
storage	  model	  coupling	  a	  store	  σ,	  for	  
variables,	  and	  a	  heap	  H	  for	  addresses.	  	  

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2 )a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2 )a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T



Separability	  

•  First	  separability	  rela'on	  is	  defined	  on	  heaps:	  
Eq(1)	  
	  

If	  they	  are	  disjoint	  then:	  
	  
Now	  lets	  try	  to	  solve	  these	  equa'ons	  using	  PF-‐
transform	  

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B,K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2 )a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2 )a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T



Contd…	  

•  ¬⟨∃b,a,k	  ::	  bH1	  k∧aH2	  k⟩	  
≡	  {	  ∃-‐nes'ng	  (Eindhoven	  quan'fier	  calculus)	  }	  	  

•  ¬⟨∃b,a	  ::	  ⟨∃k	  ::	  bH1	  k∧aH2	  k⟩⟩	  
≡	  {	  rela'onal	  converse:	  b	  R◦a	  the	  same	  as	  a	  R	  b	  }	  	  

•  ¬	  ⟨	  ∃	  b	  ,	  a	  :	  :	  ⟨	  ∃	  k	  :	  :	  b	  H	  1	  k	  ∧	  k	  H	  2◦	  a	  ⟩	  ⟩	  
≡	  {	  introduce	  rela'onal	  composi'on	  }	  	  

•  ¬⟨∃b,a	  ::	  b(H1·∙H2◦)a⟩	  
≡	  {	  de	  Morgan	  ;	  nega'on	  }	  	  

•  ⟨∀b,a	  ::	  b(H1·∙H2◦)a⇒False⟩	  	  



Contd..	  

≡	  {	  empty	  rela'on:	  b	  ⊥	  a	  is	  always	  false	  }	  	  	  	  	  	  	  	  	  	  	  
⟨∀b,a	  ::	  b(H1·∙H2◦)a⇒b⊥a⟩	  	  
≡	  {	  drop	  points	  a,b	  }	  	  
H	  1	  ·∙	  H	  2◦	  ⊆	  ⊥	  	  
•  So	  we	  can	  redefine	  	  
eq(2)	  	  	  	  

•  In	  a	  similar	  way,	  we	  can	  write	  for	  dangling	  
references	  i-‐e	  

Finally, connective p asserts that p holds in an environment
in which program variables do not refer to values stored in
the heap where p holds. Note that, if p holds in a heap in-
cluding all confined objects, p expresses that program vari-
ables can not refer to values that are confined.

The syntax of confined separation logic is given by

p ::= e1 = e2 | p ∨ p | p ∧ p | ∀t : T • p | ∃t : T • p

| emp | v %→ e | p ∗ p | p −∗ p

| p ! p | p "! p | | p ¬! p | p

Recall from e.g [24] that singleton assertion e1 = e2

means both expressions have the same value, while v %→ e
is valid in a singleton heap which stores the value of e in
the address referred to by value v. Separating conjunction ∗
and separating implication −∗ are defined as in [24].

A generic storage model. Separation logic is typically in-
terpreted on a storage model coupling a store σ, for vari-
ables, and a heap H , as represented, for example, in the
following diagram:

V ariables
σ !

Aliases = ∈·σ

!

Atom + Address

∈

"!!!!!!!!!!!!!

Address
H

" Atom + Address

(7)

where ∈ is a membership relation which spots addresses
(of type Address) in objects of type Atom+Address. The
logic is, however, independent of the concrete shape either
σ or H may take. This observation entails the generic char-
acterisation represented in the following diagram:

V
σ !"

∈G·σ

##"
"

"
"

"
" G(B, K)

∈G

$!
K

K

∈F·H

%$
#

#
#

#
#

H

! F(A, B, K)

∈F

&%

where V is the type of variable names and K is the type
of references (addresses). As explained in section 1, gener-

icity comes from the use of relators F and G to capture the
shape of both the heap and the store information structures,
respectively. Notice that parameters A,B are the types of

interest. In the diagram σ is defined as a function from vari-
ables to values, whereas a heap H is a simple relation from
addresses to values. Functorial membership relations ∈G,
∈F [12] extract reference information from elements with
parametric types stored in the store and the heap, respec-
tively. Relation ∈F · H , for example, is the (immediate)
reachability relation among references and fact k(∈G · σ)x

asserts that variable x currently holds reference k. The ker-
nel of ∈G · σ expresses the aliasing equivalence relation.
Specific instances of F and G specialise the storage model to
particular classes of problems or programming paradigms.
For example, a storage model for C-like programs, as above,
is obtained by making F (A,B,K) = G(B, K) = B +K
where both variables and heap cells store either primitive
values of type B or addresses in K. This is the model
given in (7), for B = Atom and K = Address. Simi-
larly, object heaps arise by instantiating G as before and F

by F (A,B, K) = A ⇀ (K + B) where A is the set of at-
tribute names and the heap maps references to associations
of attribute names to either values or references.

Separability. On such a generic storage model, our first
step is to characterise a separability relation on heaps: nota-
tion H1 ‖H2 denotes disjointness of H1 and H2. Formally,

H1 ‖ H2

def
= H1 · H◦

2 ⊆⊥ (8)

because, denoting by t H k the fact that “thing t is the
referent of reference k in heap H”, we get

〈∀ b, a : : b(H1 · H◦

2 )a ⇒ FALSE〉

≡ { de Morgan ; negation }

¬〈∃ b, a : : b(H1 · H◦

2 )a〉

≡ { introduce relational composition }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ k H◦

2 a〉〉

≡ { relational converse: b R◦a the same as a R b }

¬〈∃ b, a : : 〈∃ k : : b H1 k ∧ a H2 k〉〉

≡ { ∃-nesting (Eindhoven quantifier calculus) }

¬〈∃ b, a, k : : b H1 k ∧ a H2 k〉

Actually, ‖ can be extended for any pair of (not neces-
sarily simple) relations:

R ‖ S
def
= R · S◦ ⊆⊥ (9)

Properties of ‖ are easily asserted by calculation. For ex-
ample, we have

(R ∪ S) ‖ T ≡ R ‖ T ∧ S ‖ T (10)

since

(R ∪ S) ‖ T

≡ { by (9) }

(R ∪ S) · T ◦ ⊆⊥

≡ { · T ◦ is a lower adjoint (6) }

(R · T ◦) ∪ (S · T ◦) ⊆⊥

≡ { ∪-universal }

R · T ◦ ⊆⊥ ∧ S · T ◦ ⊆⊥

≡ { by (9) }

R ‖ T ∧ S ‖ T



Contd..	  

•  For	  dangling	  references:	  

•  Asserts	  that	  no	  out	  going	  reference	  in	  H1	  goes	  
into	  separated	  H2.	  Back	  to	  pointwise	  nota'on:	  

•  Similarly	  for	  other	  variants:	  

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).
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H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
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used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,
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In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts
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to the separability relation and relational split (defined by
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def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of
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def
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def
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def
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each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:
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def
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2 ·+ (14)
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def
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In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
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so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.
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def
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def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as
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def
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on, we define:
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def
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def
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given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
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Seman'cs	  for	  Separa'onal	  Logic	  

•  The	  preorder	  on	  asser'on	  is	  defined	  by:	  
•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  eq(3)	  
	  	  so	  that	  it	  can	  be	  dis'nguished	  from	  standard	  logic	  	  	  	  
implica'on	  ⇒.	  	  
•  By	  recalling	  composi+on	  and	  spliJng,	  the	  
separa'ng	  conjunc'on	  equa'on	  	  

	  
	  
Becomes:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  eq(4)	  
	  
	  

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,
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·R⇒S).
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def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉
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In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦

1
·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦
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·R⇒S).

Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦
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Finally, we define relation H ∗ (H1,H2) to mean that H
is the union of separated H1 and H2,

H ∗ (H1, H2)
def
= (H1 ‖ H2) ∧ (H = H1 ∪ H2) (11)

from which we immediately infer

H ∗ (H1, H2) = H ∗ (H2, H1) (12)

In a similar way, one may define relations dealing with
properties of dangling references. Such relations will be
used in the sequel to define the new forms of separating
conjunction. Again the definitions are independent of the
concrete shape F of the heap. Thus,

H1 ¬! H2

def
= H1 ‖ H2 ∧ H2 · ∈F · H1 ⊆ ⊥ (13)

asserts that no outgoing reference in H1 goes into separated
H2. Back to pointwise notation, the fact that path H2 · ∈F ·

H1 is empty, corresponds to

¬〈∃ k, k′ : k ∈ δ H1 ∧ k′ ∈ δ H2 : k′ ∈F (H1 k)〉

where δ H
def
= ker H ∩ id is the coreflexive representing

the domain of relation H . Similarly, for the other variants:

H1 ! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ H◦

2 ·+ (14)

H1 #! H2

def
= H1 ‖ H2 ∧ ∈F · H1 ⊆ (H1 ∪ H2)

◦
·+ (15)

In words, H1 " H2 requires all outgoing references of H1

go into separated H2, and H1 #" H2 says that all outgoing
references in H1 are confined either to H2 or itself.

Semantics. Instead of the usual semantics of assertions
in terms of predicates on pairs (σ, H), we resort to binary
relations between heaps and stores. Thus, assertion H[[p]]σ
asserts predicate p holds on state (σ, H). So [[p]] is a binary
relation. The semantics of elementary assertions is given as
follows 3

H[[e1 = e2]]σ
def
= e1(ker σ)e2 (16)

H[[emp]]σ
def
= H ⊆ ⊥ (17)

H[[v ,→ e]]σ
def
= H = σe · σv◦ (18)

Notice that (18) is equivalent, by (1), to H = σ · e · v◦ ·

σ◦. First-order connectives are easy to specify in terms of

relations, for example, [[p ∧ q]]
def
= [[p]] ∩ [[q]] or [[p ∨ q]]

def
=

[[p]] ∪ [[q]]. Preorder → on assertions is defined by

p → q
def
= [[p]] ⊆ [[q]] (19)

so that it can be distinguished from standard logic impli-
cation ⇒. Its anti-symmetric closure will be denoted by
symbol ↔. The definition of separating conjunction resorts

3PF-expression k denotes the (polymorphic) everywhere k constant
function.

to the separability relation and relational split (defined by
(a, b)〈R,S〉c iff aRc and bSc),

[[p ∗ q]]
def
= (∗) · 〈[[p]], [[q]]〉 (20)

which is the PF-transform of

H[[p ∗ q]]σ
def
=

〈∃ H0, H1 : : H ∗ (H0, H1) ∧ H0[[p]]σ ∧ H1[[q]]σ〉

On the other hand, the notIn variant appears as

[[p ¬! q]]
def
= (∗) · Φ¬! · 〈[[p]], [[q]]〉 (21)

(Recall from section 2, that Φ¬! is the coreflexive associ-
ated to predicate ¬" (13) on heap pairs.) A consequence of
Φ¬! being coreflexive is that p¬"q → p∗q holds. Carrying
on, we define:

[[p ! q]]
def
= (∗) · Φ! · 〈[[p]], [[q]]〉 (22)

[[p #! q]]
def
= (∗) · Φ"! · 〈[[p]], [[q]]〉 (23)

Clearly " ⊆ #" and therefore, p " q → p #" q holds.
Moreover, since Φ!,Φ"! are coreflexive, we have p #" q →
p∗q and p"q → p∗q. Finally, the relational semantics of p is

given by [[p]]
def
= NA∩[[p]], where relation H NAσ (read “H

is not accessible from σ”) is H NA σ
def
= H ·∈G · σ ⊆ ⊥.

4 Conjunction and implication

The classical case. In this section we take advantage
of our relational model and establish upper adjoints for
each form of conjunction considered in confined separation
logic. We begin by dealing with the well-known (but usu-
ally stated without a formal proof) fact that (p∗) and (p−∗)
constitute a Galois connection (GC). Our method differs
from the standard practice in that, instead of postulating the
definition of (p−∗) and then verifying that it adjoins with
(p∗), we actually calculate the definition by regarding the
GC itself as an equation whose unknown is the upper ad-
joint. So, our starting point is equation

(p ∗ x) → y ≡ x → (p −∗ y) (24)

where we know everything apart from (p−∗). At PF-level,
the calculation is quite simple and stems from a more basic
GC where relational split performs the role of lower adjoint,

〈R, S〉 ⊆ X ≡ S ⊆ R ! X (25)

The intuition behind relational combinator ! is captured
by its pointwise expansion 4

b(R ! S)a ≡ 〈∀ c : c R a : (c, b) S a〉 (26)

4The quantified expression stems from the pointfree π◦
2
\(π◦
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·R⇒S).

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



Contd…	  
•  For	  pointwise	  meaning,	  we	  resort	  to	  the	  Eindhoven	  

quan'fier:	  

•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
•  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



Advantages	  of	  (*),(−∗	  )	  
•  The	  following	  are	  immediate	  consequences	  of	  the	  
conec'on,	  where	  ↔	  denotes	  the	  an'symmetric	  
closure	  of	  →:	  	  

•  p∗(x1	  ∨x2)	  ↔	  	  (p∗x1)∨(p∗x2)	  	  
•  (x1	  ∨x2)∗p↔	  	  (x1	  ∗p)∨(x2	  ∗p)	  	  
•  	  p−∗(x1	  ∧x2)	  ↔	  	  (p−∗x1)∧(p−∗x2)	  	  
•  and	  monotonicity,	  cancella'ons,	  

x	  →	  (	  p	  −∗	  (	  p	  ∗	  x	  )	  )	  p	  ∗	  (	  p	  −∗	  y	  )	  →	  y	  	  
•  etc.	  and	  some	  others,	  usually	  not	  men'oned	  in	  the	  literature	  	  
•  emp	  →	  p−∗p	  	  
•  p∗x	  ↔	  p∗(p−∗(p∗x))	  	  
•  p−∗x	  ↔	  p−∗(p∗(p−∗x))	  	  



GC	  for	  Confined	  Separa'onal	  Logic	  

•  If	  we	  compare	  eq(5,6,7)	  with	  the	  standard	  
case	  eq(4),	  we	  see	  the	  difference	  resides	  in	  
extra	  coreflexive(	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )media'ng	  
separate	  union	  (*)and	  the	  split	  of	  rela'ons	  
which	  captures	  the	  seman'cs	  of	  p,q.	  	  

•  Just	  s'ck	  the	  relevant	  coreflexive	  (eg.	  ΦIn)	  to	  
separate	  union	  (∗)	  and	  carry	  on:	  

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



Contd..	  

•  So,	  for	  confined	  separa'ng	  conjunc'on,	  this	  
leads	  to	  the	  upper	  adjoint	  of:	  

•  	  	  

•  And	  lower	  adjoint	  of:	  

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

We reason:

(p ∗ x) → y

≡ { (19) }

[[p ∗ x]] ⊆ [[y]]

≡ { (20) following by GC of left division }

〈[[p]], [[x]]〉 ⊆ (∗) \ [[y]]

≡ { (25) }

[[x]] ⊆ [[p]] ! ((∗) \ [[y]])

≡ { introduce p −∗ y st [[p −∗ y]] = [[p]] ! ((∗) \ [[y]]) }

[[x]] ⊆ [[p −∗ y]]

≡ { (19) }

x → (p −∗ y)

To spell out the pointwise meaning of p −∗ y we resort to
the Eindhoven quantifier calculus [2]:

H[[p −∗ y]]σ

≡ { above }

H([[p]] ! ((∗) \ [[y]]))σ

≡ { (26) }

〈∀ H0 : H0[[p]]σ : (H0, H)((∗) \ [[y]])σ〉

≡ { left division (pointwise) }

〈∀ H0 : H0[[p]]σ : 〈∀ H1 : H1 ∗ (H0, H) : H1[[y]])σ〉〉

≡ { nesting: (4.21) of [2] }

〈∀ H0, H1 : H0[[p]]σ ∧ H1 ∗ (H0, H) : H1[[y]])σ〉

≡ { " definition (11) and one-point rule (4.24) of [2] }

〈∀ H0 : H0[[p]]σ ∧ H0 ‖ H : (H0 ∪ H)[[y]])σ〉

≡ { trading: (4.28) of [2] }

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]])σ〉

Summing up, we’ve calculated

H[[p −∗ q]]σ
def
= (27)

〈∀ H0 : H0 ‖ H : H0[[p]]σ ⇒ (H ∪ H0)[[q]]σ〉

which is, in fact, the standard definition in [24]. Once
the Galois connection is established, a number of proper-
ties come for free. First of all, equation (12) leads to

(x ∗ p) → y ≡ x → (p −∗ y) (28)

which, with (24), corresponds to the currying and decurry-
ing rules in [24]. Moreover, being lower adjoints, both (p∗)
or (∗p) are monotonic and distribute over disjunction:

p ∗ (x1 ∨ x2) ↔ (p ∗ x1) ∨ (p ∗ x2) (29)

(x1 ∨ x2) ∗ p ↔ (x1 ∗ p) ∨ (x2 ∗ p) (30)

Similarly, as upper adjoint, p−∗ is monotonic and dis-
tributes over conjunction,

p −∗ (x1 ∧ x2) ↔ (p −∗ x1) ∧ (p −∗ x2) (31)

Cancellation laws such as

x → (p −∗ (p ∗ x)) p ∗ (p −∗ y) → y (32)

hold. On the other hand, monotonicity of (p∗) and (∗p)
entails

p1 → p2 and q1 → q2 ⇒ (p1 ∗ q1 → p2 ∗ q2) (33)

which corresponds to the inference rule showing that sepa-
rating conjunction is monotone with respect to implication
in [24].

The following properties are also direct consequences of
adjointness, which, however, are not usually mentioned in
the literature:

emp → p −∗ p (34)

p ∗ x ↔ p ∗ (p −∗ (p ∗ x)) (35)

p −∗ x ↔ p −∗ (p ∗ (p −∗ x)) (36)

This provides evidence of the usefulness of our approach
to ’discover’ new, underlying laws.

Galois connections for confined separating logic. Simi-
larly, the three forms of separating conjunction for confined
separation logic can be shown to take part in their own Ga-
lois connections. This is where our calculational techniques
pay off. If we compare (21, 22, 23) to the standard case
(20), we realize that the difference resides in an extra core-
flexive (resp. Φ¬!, Φ! and Φ"!) mediating separate union
(∗) and the split of relations which capture the semantics
of arguments p and q. This means that our calculation of
the upper adjoint (p−∗) in the standard case can be re-used
by sticking such a coreflexive to (∗) and carrying on. For
the first form of confined separating conjunction, this leads
immediately to the following upper adjoint for (p¬!):

H[[p −¬# y]]σ
def
= (37)

〈∀ H0 : H0 ¬# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

Expression p −¬! q asserts that, if the current heap is ex-
tended with a disjoint part in which p holds, and dangling
references do not point into the current one, then q will hold
in the whole heap.

Also in a similar way, but now replacing Φ¬! by either
Φ"! or Φ! respectively, we establish "!, ! as lower adjoints
for corresponding forms of implication. Actually one is lead
to the following definitions of p−"!y and p−!y as the upper
adjoints of (p"!) and (p!), respectively.

H[[p −$# y]]σ
def
= (38)

〈∀H0 : H0 $# H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉

H[[p −# y]]σ
def
= (39)

〈∀H0 : H0 # H : H0[[p]]σ ⇒ (H0 ∪ H)[[y]]σ〉



Contd…	  

•  In	  comparison	  with	  the	  standard	  separated	  
implica'on,	  all	  of	  the	  variants	  place	  an	  extra	  
restric'on	  on	  augmented	  heap.	  	  

•  Because	  of	  Galois	  connec'on,	  all	  of	  the	  
proper'es	  derived	  from	  (p*),	  hold	  for	  free	  for	  
all	  of	  its	  variants.	  



Reasoning	  
•  Seman'cs	  of	  confinement	  can	  be	  checked	  against	  eg.	  
what	  happens	  to	  standard	  property	  	  

•  emp∗p	  ↔	  p	  ↔	  p∗emp	  	  
•  arising	  from	  two	  facts	  	  
•  H[emp]S	  ≡	  H=⊥	  	  
•  H∗(Hʹ′,⊥)	  ≡	  H=Hʹ′	  	  
•  In	  the	  confined	  variants,	  seman'cs	  rules	  eventually	  
lead	  us	  eg.	  	  

•  H[p]S	  ∧	  Φα(H,	  ⊥)	  ≡	  H[p]S	  	  	  	  	  or	  	  
•  H[p]S	  ∧	  Φα(⊥,	  H)	  ≡	  H[p]S	  	  
•  where	  α	  ranges	  over	  the	  three	  given	  variants.	  



Conclusion	  

•  This	  paper	  achieves	  two	  goals.	  It	  provides	  a	  
seman'c	  characteriza'on	  of	  a	  new	  extension	  
to	  separa'on	  logic	  design	  to	  reason	  about	  
confinement	  of	  references.	  And	  also	  shows	  
how	  the	  calcula'on	  of	  binary	  rela'ons	  can	  
help	  in	  calcula'ng	  proofs.	  The	  discovery	  of	  
new	  operators	  with	  the	  help	  of	  Galois	  
connec'on	  is	  par'cularly	  useful.	  


