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Abstract

This paper sketches a discipline for reverse engi-
neering which combines formal and semi-formal meth-
ods. Among the former is the algebra of programming,
which we apply in “reverse order” so as to reconstruct
the formal specifications of legacy code. The latter in-
cludes code slicing, used as a means of trimming down
the complezity of handling the formal semantics of all
program variables at the same time.

A strong point of the approach is its construc-
tive style. Reverse calculations go as far as im-
ploding auziliary variables, introducing mutual recur-
sion (if applicable) and transforming semantic func-
tions into well-known generic programming schemata:
cata/paramorphisms.

We illustrate this approach by reversing a piece of
code (from C to HASKELL) already studied in the code-
slicing literature: the WORDCOUNT program.

1 Introduction

This paper describes work in progress on the devel-
opment of a discipline for reverse engineering which
combines formal and semi-formal methods. The for-
mal basis of the approach is the algebra of program-
ming [3] which we intend to apply in “reverse order”
so as to reconstruct the formal specifications of legacy
code. Because of the complexity of reversing formal
semantic descriptions of algorithmic code, we com-
bine reverse algebraic calculation with code slicing [26]
techniques.

This work is a follow up of the KARMA project [14],
which has addressed data reverse engineering (DRE)
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in a similar way. The KARMA tool [14] synthesizes not
only the specification but also the overall abstraction
function of legacy data implicit in its reverse calcula-
tion.

2 Reification versus Reverse Specifica-
tion

Software reification (refinement) is the process of
converting abstract software specifications into real
applications intended to run on some target hardware.
The more colloquial term refinement is often preferred
to “reification”, after “reify”, the process of something
becoming real !. Such a process is synthetic and one-
to-many in the sense that the same specification can
lead to many reifications (implementations) depending
on a myriad of design decisions which include choice
of programming paradigm, selection of a specific lan-
guage and so on. Reification is therefore a form of
forward engineering, understood as the development
of a system by moving from abstract specifications to
detailed implementations [4].

Reverse specification is the opposite of reification.
It is the analytical process of inferring the original
specification (which actually may have never been
written) of some running piece of software. It there-
fore is a a form of reverse engineering, understood as
the analysis of a system in order to identify compo-
nents and intended behaviour in order to create higher
level abstractions of the system [4].

Software refinement is carried out with a variable
concern for formality. If performed on a sound math-

IThese two terms will be used interchangeably in this paper.



ematical basis, it becomes perhaps the most relevant
branch of the formal method which supports it. How-
ever, formal refinement is not widely used due to the
difficulty of scaling up its mathematical reasoning to
real size problems. By contrast, informal refinement
enforces so little discipline in software design that re-
sults are often catastrophic, particularly in the case of
very large applications which have a long life-span. As
a rule, such applications lack in documentation, have
bugs and raise serious maintenance problems. Using
or selling them becomes risky business.

Such bad forward software engineering standards
sooner or later call for reverse software engineering,
understood as the process of constructing descriptions
at a higher level of abstraction of the components of a
(large) software system which is in a “legacy” or “geri-
atric” state, thus facilitating the understanding of the
system [8]. One thus gets into “geriatric” comput-
ing, or “infocare”, a fast growing sector of informa-
tion technology which, according to the terminology
of [4], encompasses not only reverse engineering but
also restructuring (the process of creating a logically
equivalent system at the same level of abstraction, eg.
transforming “spaghetti” code into structured code),
and re-engineering (examination and alteration of a
system to rebuild it in a new form and subsequent
implementation of the new form).

3 Code slicing

Conceptually, reverse software specification is the
converse of forward software reification. So it might
suffice to define a formal semantics of the target lan-
guage, apply it to the legacy code and submit the out-
come to formal reasoning. In real situations, however,
this approach is too naive. In fact, the formal descrip-
tion of a large piece of code produced in an ‘ad hoc’
way (vulg. “spaghetti” code) can be overwhelmingly
complex and counterproductive to inspect 2.

A similar kind of difficulty has been felt in informal
software development and maintenance. Program slic-
ing, introduced by Weiser [26], is known to help pro-
grammers in understanding foreign code and in debug-
ging. A slice captures all computation on a given vari-
able. This gives maintainers a straightforward tech-
nique for determining those statements and variables
that may be modified and those that may not.

Can slicing techniques help in the application of
denotational semantics techniques to formal reverse

2In many situations, the original code may be lost and only
the binary code be available. In this case, the whole process
must be preceded by decompilation [13].

specification by calculation? We believe this is true
and present an example of how it can help. But, before
let us have a look at the foundations of the approach.

4 Denotational semantics vs program
synthesis / analysis

Let P be a piece of algorithmic code and [P] denote
the denotational semantics of P, ie, the input/output
relation which captures the behaviour of P. In many
cases, such a relation is a function which maps the
state of P (ie. the set of all variables which P has
access to) before execution takes place, to the state
after such an execution.

In forward engineering one starts from a specifica-
tion S and rewrites it over and over again,

525’12___25’n:[[P]] (1)
until the semantics S,, of some piece of code P is found.
Structured programming makes it possible to take ad-
vantage of the compositional properties of the avail-
able program combinators, eg. sequential composition

[P; Q] = [Q]-[P]

where “” denotes relational composition. So, if a spec-
ification S is written as S = R -T and we find that
R D [Q] and T D [P] holds, then S D [P;Q] is a
valid refinement step in program synthesis .

By contrast, it seems natural that program analysis
should go the other way round: try and identify se-
quential chunks of code such that their semantics can
be inferred and abstracted upon. There is a fact to
retain, though: in going backwards along the O direc-
tion in (1) one can add arbitrary nondeterminism and
end up in a specification S which is too vague. In the
limit, the universal relation is the reverse specification
if any program, and this is clearly undesirable.

In this paper we deliberately ignore this aspect of
the problem, by deciding to reverse specify a piece of
code P only in terms of its functional specification.
So we shall be dealing with functions and functional
equality (rather than relations and the subset order-
ing) * and will resort to the HASKELL programming
notation [5] to express the semantics of (deterministic)
code.

30Obviously, other combinators such as if-then-else, while
etc. exhibit similar semantic rules.

40f course, we have to restrict ourselves to programs whose
combinators do not involve nondeterminism.



5 Loop inter-combination, code fusion
and slicing

When writing code, programmers tend to combine
into a single programming construct (eg. a loop) two
or more logically independent computations. This
“trick” for efficiency can be expressed informally as
follows,

loop(f - g) preferred to (loop f) - (loop g) (2)

cf. the following drawing:

loop g

loop(f - 9)

loop f

Programmers always rush for efficiency and so the
same procedure is likely to be again applied to f - g
itself, and so and so on.

In other situations the idea in the programmer’s
mind is to perform the computation of several (out-
put, possibly independent) variables in the same loop,
all sharing the same visit to the input data structure.
This is depicted (for two such variables) in the follow-
ing drawing,

loop(f, g)

loop f loop g

— €.
loop(f,g) = (loop f,loop g) (3)

— where the angle brackets in (f, g) denote the “paral-
lel” execution of computations f and g. Should these
computations on the right be independent, the loop-
body on the left can become really inscrutable if the

programmer doesn’t bother to interleave the state-
ments of f with the statements of g in an arbitrary,
not obvious way. This is where code slicing proves
really useful in debugging practice.

6 Algebra of programming

Such a systematic obsession for efficiency of the av-
erage programmer is not only error-prone but also (al-
ways) has the negative impact of obfuscating the orig-
inal program plan, making it harder and harder to
understand by others. However, such intuitions are
correct and are actually validated by algebra of pro-
gramming laws [3] which programmers (may) ignore
but feel obvious about the semantics of the underly-
ing programming language °.

For instance, programming “trick” (2) is an in-
stance of a class of formal program transformations
known as fusion laws: two sequential computations of
the same kind — in this case, loop f and loop g —
are merged together (ie. “fused”) in a single computa-
tion of the same kind — loop(f - g) in this case. Recall
that we have decided to restrict ourselves to functional
code blocks, ie., pieces of code whose semantics can be
expressed by functions f, g etc. So “-” in f - g denotes
function composition

B<—c , c<2-a
; P —
such that
(f-9)a = flga) (4)

On the other hand, programming ¢rick (3) has to
do with “fusing” two “parallel” computations into a
single one and affiliates to another group of laws hav-
ing to do with mutual recursion. These involve the
“angle bracket” combinator of (3), which we will refer
to as the “split” combinator:

(f,9) A——=BxC
5
(fg)z € (fz,g2) ®)

This is Backus [2] construction operator, which can be
directly implemented in a high-level declarative lan-
guage such as HASKELL,

split :: (a => b) -> (a -> ¢) -> a -> (b,c)
split £ g x = (f x, g x)

5Side comment: what becomes far less obvious (to others) is
their use in an in-discriminated and undocumented way!



where (b,c) means B x C.
These combinators are rich in algebraic properties.
For instance, the Xx-fusion law

expresses “distribution” of composition of over split, a
law in which two “parallel” consumer functions g and
h fuse with another, producer function f. This law is
expressively depicted in a diagram,

B<_Bx(C-2=C

Nﬁ /
of T hef

f
D

where projections m, and 75 are as follows ©:

m(a,b) Y a | m(a,b) o (7)

Already known since Backus’ algebra of programs ",

this fusion-law and many others form today a solid
calculus which has reached the textbook format in [3].

7 Owur work-plan

It is appealing to use all such laws — in the op-
posite direction, of course — to synthesize abstract
specifications of (“spaghetti”) code — that is, to re-
construct the original program plan. This is what mo-
tivates the present paper, in which code slicing plays
the pragmatic role of unraveling independent parallel
computations — as it is the case in debugging.

In fact, the lesson learnt from the code slicing com-
munity points to a clear direction in program un-
derstanding and debugging: instead of working with
a monolithic state vector involving n state variables
(v1,...,0p) V (for V.= Vi x ... xV,, where
V; are available datatypes) and expressing all se-
mantic rules in terms of state-vector transformations
f @ V=——1V, one can “split” the effect on the
state vector in terms of n independent computations
fin Vi=——V sothat f ={(f1,..., fn). Each indi-
vidual f; is self-sufficient and smaller than the original
code, therefore easier to reverse calculate.

61n HASKELL, 71 is written £fst and 7> is written snd.

7John Backus [2] was among the first to alert computer pro-
grammers that computer languages alone are insufficient, and
that only languages which exhibit an algebra for reasoning about
the objects they purport to describe will be useful in the long
run.

A formal way to obtain this “splitting” effect is
based on the mutual recursion law, a standard result
in the algebra of programming which expresses the
fact that a function delivering a vector of n results
can always be transformed into a “split” of n mutu-
ally dependent functions 8. So — in a sense — reverse
specification in this context means re-introduction of
mutual recursion.

Of course, the more elaborate the function of un-
ravel the harder to perform the calculation. The idea
of using slicing is that of “shortcutting” part of this
work via the syntactic separation of the program in its
constituent slices. However, how sound is this strat-
egy? How do we guarantee that, altogether, the slices’
semantics “re-constitute” the whole program seman-
tics? We have to formulate the following conjecture:

Conjecture: Let P be a program exhibiting
n output variables, and let Py, ..., P, be the
corresponding slices. Then the semantics of
P can be recovered by combining these and
only these slices, ie.

[P]=(~],-- -, [Pu])

In other words, slicing is a semantically
sound code-decomposition technique.

The relevance of this conjecture can only be appreci-
ated in a formal context. In fact, most slicing tech-
niques reported in the literature are “syntactic” in na-
ture and/or rely on auxiliary data-flow analysis. We
will rely on this conjecture, but its proof — which can
only be carried out if the slicing technique is formally
specified on a denotational semantics framework — is
outside of the scope of this paper.

In general, the semantics of a program block P in-
volving while, for or do statements and recursion will
have the be inductively defined over some input type
T, eg. a finite list, an array, a tree. So this type should
be singled out from the space vector:

[Pl V=—TxV
Slicing will supply us with a collection of slices P;
[P]:: Vi=——T xV; (8)

which we want to abstract into inductive functions
with shape
fi Vi=—T 9)

8With no loss in generality, this law will be presented, for
n = 2, later on (section 8).




The transformation from (9) to (8) is a well-known
technique for improving the efficiency of functional
programs called accumulation parameter introduc-
tion .

Here we shall be interested in the reverse applica-
tion of this rule, ie. we want to remove accumulations.
Before presenting an example of such reverse trans-
formations we need to dwell for a brief while on the
algebra of inductive programming.

8 Algebra of programming (continued)

Inductive datatypes have a rich algebra which can-
not be covered in this paper. With no loss in gen-
erality, we will focus on the datatype of finite lists
(which is the one present in our illustration later on)
and mention only the laws which are relevant for our
calculations 0.

Consider the following inductive definition (in
HASKELL) of the function which computes the sum
of a list of elements of some numeric type a:

sum :: Num a => [a] -> a
sum [] =0
sum (a:1l) = a + sum 1

In general, any list processing function with signature

B S A* can be written according to the following

recursive scheme, in HASKELL:

(10)

for some k € B and B<2— Ax B. For instance,
k=0 and g(a,b) =a+ b in sum.

A standard result in inductive datatype theory tells
us that each instance of f is uniquely determined by
the pair (k,g). Pairs of this kind are called algebras
(= collections of functions) and can be described in
a compact way by resorting to a combinator which
dualizes split:

[f,gl + A+B——=C -
def r=i1a = fa 11
fale {0200 30

9See eg. exercise 3.45 in [3].
OFor a comprehensive account see reference [3] or, for an
introduction, reference [15].

cf. diagram

A—>A44B<2p (12)
C

where A + B denotes the disjoint union of A and B
which, in HASKELL, is supported directly via

data Either a b = Left a | Right b

(So the injections iy and iy become constructors Left
and Right, respectively.)

Split and its dual are related to each other by the
following exchange law, which enables us to express
every function of type B x D <=—— A + C' in two al-
ternative ways:

[(F:9),(K)] = ([f,hl; g, k]) (13)

' 4, B<—C

given functions B A, D

and D<2— (.

Thanks to this new combinator one can record the
whole information about algebra (k,g) above into a
single arrow

BEY 4 AxB (14)
where 1 denotes HASKELL’s singleton type () and k
denotes the “everywhere k” constant function. Go-
ing further in the same direction, we can let arrow
(14) participate in a larger diagram which records the
whole information about f (10):

A* <14 A x A* (15)

fl lid+id><f

B<=——1+AxB
[k,g]

In this diagram: A* denotes the HASKELL type of fi-
nite lists [Al; in is the algebra [[ ], (:)] which builds
A*-lists ''; id is the identity function such that f-id =
id - f = f for every f; the “recursive call” id + id x f
involves the “product” combinator,

fxg = (fmgem) (16)
and its dual, the “sum” combinator:
f+g € [i-fiz-g) (17)

HWith some abuse of notation, though: in HASKELL, con-
structor (:) is provided in curried form.



Diagram (15) expresses an equation about f
fein =k gl (id+idx f)
which we re-write into
f-in=a-Ff (18)

by introducing o = [k,¢] and F f = id+id x f. In
fact, this equation is all we need to know to define f
— provided we instantiate «, ie. k and g. To express
this uniqueness of f, dependent on «, we write (a|) —
read “a-catamorphism” — instead of f:

(af) -in = a-F (a) (19)

As an exercise, the reader can recover our starting
definition for f (10) from this equation by applying
standard laws of the algebra of programming known
as +-fusion,

and +-absorption

among others.

We close this (very sketchy) account of the algebra
of programming by presenting a law which will play
a major role in the example to follow: the mutual-
recursion law, also called “Fokkinga law”:

{ frin="h-F(fg)
g-in=k-F(fg)

c¢f. diagrams

= (f,9) = ((h, k) (22)

~ " FT ~ " FT

T T
fl lF (f,9) gl lF (f.9)
A

T—" FT

<frg>l l/F (f.9)

This law provides us with a very useful tool for “par-
allel loop” inter-combination.

9 Example — The WordCount Pro-
gram

This example is taken from [6]. The starting point
is the following source code:

1 #define YES 1

2 #define NO O

3 main()

4 {

5 int c, nl, nw, nc, inword ;
6 inword = NO ;

7 nl = 0;

8 nw = 0;

9 nc = 0;

10 ¢ = getchar();

11 while ( ¢ !'= EOF ) {

12 nc = nc + 1;

13 if ( ¢ == ’\n’)

14 nl = nl + 1;

15 if (c==""7 || c="\n" || c =="\t?)
16 inword = NO;

17 else if (inword == NO) {
18 inword = YES ;
19 nw = nw + 1;

20 }

21 c = getchar();

22 }

23 printf("%d",nl);
24 printf ("%d",nw);
25 printf("%d",nc);
26 }

This can be recognized as a simplified version of the
Unix we command, which prints the number of bytes,
words, and lines in files.

The HASKELL programming language [5] will be
adopted to express the functional semantics of the
slices of this piece of code. For space economy we will
rely on the reader’s intuition, rather than presenting
the (somewhat) tedious process of synthesizing such
semantics from the code itself. (See eg. [17] for a for-
mal semantics of while-loops.)

9.1 Slicing

Gallagher and Lyle [6] identify the following slice
decomposition lattice for this program:

S(nc) S(nl)

AN

S(nw)
—
S(inword)

S(e)



Clearly, there are 3 maximal slices to be extracted:

S(nc), S(nl) and S(nw). Slices S(c) and S(inword)

are simpler, auxiliary slices which we analyse first.
The “bottom” slice is S(c):

3 main()

4 {

5 int c ;

10 ¢ = getchar();

11 while ( ¢ !'= EOF ) {
21 c = getchar();
22 }

26 }

Because ¢ is not an output variable, this slice will not
become apparent in the specification to be inferred.
Its major role is to unveil the underlying inductive
type upon which the whole program is structured.
Deliberately omitting the intricacies of the physical
i/o instructions, one can infer that input is a finite
sequence of characters. So we shall be dealing with
catamorphisms over type Char*, all sharing inductive
structure (15).
Next, slice S(inword) is as follows:

1 #define YES 1

2 #define NO O

3 main()

4 {

5 int c, inword ;

6 inword = NO ;

10 ¢ = getchar();

11 while ( ¢ !'= EOF ) {

15 if (c==" 71|l c=="\n" || c =="\t?)
16 inword = NO;

17 else if (inword == NO) {

18 inword = YES ;

20 }

21 c = getchar();

22 }

26 }

Variable inword supports the computation of nw but
is not an output variable. Like ¢, it will not survive in
the final specification. See below how we calculate its
impact onto the semantics of S(nw).

We proceed to extracting the semantics of the 3
maximal slices S(nc), S(nl) and S(nw). Our conven-
tion is to denote the semantics of slice S(v) of variable
v by function v involving input list /, the one of which
c is reading a value at time.

For S(nc),

3 main()

4 {

5 int c, nc ;

9 nc = 0;

10 ¢ = getchar();

11 while ( ¢ '= EOF ) {

12 nc = nc + 1;
20 }

21 c = getchar();
22 }

25 printf("%d",nc);

26 }

we infer the following semantics in HASKELL:

nc 1 = snd(nc_loop(1,0))

nc_loop ([1,nc) = ([],nc)
nc_loop (c:1l,nc) = nc_loop(l,nc + 1)

Next, slice S(nl)

3 main()

4 {

5 int c, nl ;

7 nl = 0;

10 ¢ = getchar();

11 while ( ¢ !'= EOF ) {
13 if ( ¢ == ’\n?)
14 nl = nl + 1;
21 ¢ = getchar();
22 }

23 printf("%d",nl);

26 }

will exhibit the following semantics:

nl 1 = snd(nl_loop(1,0))

nl_loop ([1,nl) = ([],nl)
nl_loop (c:1,nl)
nl_loop(l, nl_aux(c,nl))
where nl_aux(c,nl) | ¢ == ’\n’ = nl + 1
| otherwise = nl

Finally, the semantics of S(nw),

1 #define YES 1

2 #define NO O

3 main()

4 {

5 int c, nw, inword ;

6 inword = NO ;

8 nw = 0;

10 ¢ = getchar();

11 while ( ¢ !'= EOF ) {
15 if (c==""7 || c="\n’ || c =="\t?)
16 inword = NO;



17 else if (inword == NO) {
18 inword = YES ;

19 nw = nw + 1;

20 }

21 c = getchar();

22 }

24 printf ("%d",nw);

26 }

is somewhat more elaborate:

nw 1 = trd(aw_loop(l,False,0))
where trd(_,_,x)=x
nw_loop ([],inword,nw) = ([1,inword,nw)
nw_loop (c:1l,inword,nw) =
if (c=="" ]l c=="\n" || c==\t?)
then nw_loop (1,False,nw)
else if not inword
then nw_loop (1, True, nw + 1)
else nw_loop (1, inword,nw)

According to the conjecture of section 7, the whole
program semantics is captured by

split3 nl nw nc
— ie. (nl,nw,nc) — where
split3 f gh x = (f x, g x, h x)

extends the split combinator (5) to three arguments.

9.2 Removing the accumulation parame-
ters

For the technique of accumulation parameter intro-
duction see eg. exercise 3.45 in [3]. Next we shall be
interested in the reverse application of this rule. So
our first task is to remove the accumulators (ie. the
non-inductive parameters) of functions ne, nl and nw.

Concerning nc, we obtain

nc [1] =0
nc (c:1) = (succ . nc) 1
where succn = n + 1. This can be recognized as

HASKELL’s length function

length = ([0, succ - m2]))

available from the language’s Standard Prelude [5].
Next, nl is re-written into

nl []

=0
nl (c:1) =

if ¢ == ’\n’
then (n1 1) + 1
else (nl 1)

which can at once be identified as list catamorphism
([0, (= “\n') - m; — succ - w2, m])

where we use the McCarthy’s conditional combinator
defined by

p—=gh E (g k] p? (23)
where
o _ pa = iia
oe = { pu T ne e

Finally, slice S(nw) will require some preliminary
work. First, an application of the nestr isomorphism

nestr(a,b,c) = (a,(b,c))
to the state space will isolate the accumulation param-
eter pair,

nw 1 = (snd . snd . nw_loop) (1,(False,0))
nw_loop ([1, p) = ([1,p)
nw_loop (c:1,p) = nw_loop(l, nw_aux(c,p))

where

nw_aux(c, (inword, nw)) =
if sep c
then (False,nw)

else if not inword then (True,nw+1)
else (inword,nw)

and
sepc=(Cc=="7" || c=="\n" || c=="\t?)
Then we are ready to remove the accumulator:

nw = snd . nw_rec

where nw_rec []
nw_rec (c:1)

(False,0)
nw_aux(c,nw_rec 1)

Although better than its previous version based on
nw_loop, nw is still defined in terms of an auxiliary
function nw_rec. Our final calculations will take care
of removing the inword parameter of nw_auxr — the
remaining evidence that our reverse specification is not
yet sufficiently abstract.

9.3 Introduction of mutual recursion

Let us focus on function Bool x Int <= Char* ,

which can be expressed as list catamorphism
([{FALSE, 0), nw_aux]|). Because it delivers a pair of
outputs, function nw-aux can be decomposed (after
some if-then-else playing around) into a split,

nw_auxr = (nw_auzl,nw_aur)

where



nw_auxl(c, (inword, nw)) not (sep c)

and

nw_aux2(c, (inword, nw))

if sep ¢ || inword then nw else nw + 1
Then we get:
nw_rec = ([(FALSE,0), (nw_auxl, nw_aux2)]|

= { exchange law (13)}
(([FALSE, nw_auz1], [0, nw_auz2])|
So nw_recis in the situation of being handled by the

mutual-recursion law (22), for h = [FALSE, nw_auz1]
and k = [0, nw_auz2]. We will obtain

£ [ = False

f (c:1) = not (sep c)

g [ =0

g (c:1) = if (sep c || £ 1)
then g 1
else gl + 1

Note that nw = 72 - nw_rec = w2 - (f,g9) = g. So
we rename g to nw, and — for improved readability
— introduce lookahead_sep = = - f ie.

lookahead_sep [] = True
lookahead_sep (c:1) = sep c

which enables us to swap the if-then-else and get
a more intuitive reading of the final outcome of our
reverse calculation:

nw []
nw (c:1)

0
if not (sep c) && lookahead_sep 1
then nw 1 + 1 else nw 1

As anticipated earlier on, variable inword has disap-
peared throughout this calculation. In fact, it can be
regarded as a state “flag” implementing the “separator
lookahead” of function lookahead_sep.

Function nw is now a proper inductive function: it
belongs to the class of so-called paramorphisms [12],
which are very common in formal specification (eg.
the usual definition of the factorial function n! is a
paramorphism). We can stop and feel happy about
the level of abstraction of the outcome of the whole
exercise.

10 Summary

We have combined a formal method — algebra of
programming [3] — with a semi-formal one — code
slicing [26] — in order to perform the reverse specifi-
cation of a little program already studied in the code
slicing literature: the WORDCOUNT program of [6].
We claim that we have gone deeper than [6] in under-
standing this piece of code.

A strong point of our approach is its constructive
style, based on powerful algebraic laws of program-
ming. This can go as far as imploding auxiliary vari-
ables and introducing mutual recursion, a specifica-
tion mechanism which programmers never make ex-
plicit because they fear lacking efficiency. Our exam-
ple is interesting also because it transforms all the se-
mantic functions into well-known inductive schemata:
cata/paramorphisms.

Slicing helps in trimming down the complexity of
handling all program variables at the same time. In
fact, the mutual-recursion law (22) could have been
applied to the whole program — rather than to its
slices — at the sacrifice of a lot more reasoning show-
ing eventually that the three slices are independent of
each other: a result known as the banana-split law,

(2D, (4D = (@@ x 5) - (F m1, F ma)) (25)

which is a special case of (22).

However, the application of slicing in this context
is still dependent on its correctness, which should be
properly dealt with on a denotational semantics set-
ting.

11 Related work

In this section we briefly frame our work into on-
going research in this area.

References [4, 7, 8, 9] base their strategies for the
(re)construction of specifications from legacy code on
pre-/post-conditions.

In [11] the source code is translated into an interme-
diate language (UNIFORM), from which equational
descriptions of the functionality are calculated. These
are then expressed in an intermediate functional lan-
guage. Finally, the objects sketched at the first stage
are completed with the functional descriptions that
define their operational behaviour.

In [25] the source code is reconstructed until a re-
cursive version is reached, upon which properties of
the program can be deduced which allow one to per-
form reductions. Data structures are treated until the



references to concrete variables disappear. The out-
come is an abstract program that can still be made
simpler by means of transformations, until a high level
abstract specification of is reached. (Our work clearly
affiliates to this approach.)

Reference [14] shows how formalisms similar to
those that we are trying to apply in this paper to the
algorithmic code, have already been successfully ap-
plied to “data understanding” and the improvement
of the quality of the data, c¢f. formal DRE (data re-
verse engineering).

The repertoire of formal techniques for reverse en-
gineering further includes “type inference” [19, 10, 20,
21] and concept/cluster analysis [18]. These are ap-
plicable mainly to the detection of objects and can
also be combined with techniques proposed in this pa-
per. Likewise, semi-formal techniques [22, 23] for the
detection of recurrent algorithmic structures can also
contribute to the identification — and later to the for-
malization — of program patterns.

12 Future work

As pointed out in the introduction, the develop-
ment of the technique for reverse engineering reported
in this paper is work in progress and some of its prob-
lems are still open. At the heart of these we place the
conjecture of section 7, whose proof (in a denotational
semantics setting) is required before we regard slic-
ing as a semantically sound code-decomposition tech-
nique.

A forthcoming master thesis [24] is expected to
present several exercises such as WORDCOUNT which
will let us to know more about which laws of program-
ming are relevant in this context and to improve the
interplay between the code slicing and the algebra of
programming techniques.

It is our current belief that the slice decomposition
lattices of [6] will play a significant role in structuring
the overall method, as can already be seen in section
9.

On the formal side of the approach there is a lot to
be done. In particular, many program structures will
require laws more powerful than those which we have
been thinking of — for instance, comonadic calcula-
tions [16]. For the moment, we are thinking in terms
of examples which we can interpret functionally. By
moving to relation algebra [1, 3] we expect to gener-
alize our reverse calculations to any sliceable program
P.
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