On the Design of a Periodic Table of VDM Specifications

Mário Antunes

ATNoG@IT Aveiro

June 22, 2012

On the Design of a Periodic Table of VDM Specifications

1 Motivation

- 2 Divide-and-Conquer pattern
- 3 Relation approach to Divide-and-Conquer
- 4 Example: merge sort

5 Conclusion

- Where is the borderline between invention and sheer routine-work in formal modelling?
- To answer this it is necessary a repository of specifications
- By factoring standard algorithms it is possible to identify elementary algorithm components
- The paper presents a analysis and classification of standard algorithm in a tabular structure (Periodic Table)

Motivation: factorization versus calculation

Consider the following equation

$$x = \frac{756}{792}$$

Solving it by calculation, with a brute force approach, the result is

$$x = \frac{756}{792} = 0.95454545...$$

Instead it is possible to represent each value of the fraction with a prime factorization

$$756 = 2^2 \times 3^3 \times 7$$
$$792 = 2^3 \times 3^2 \times 11$$

Now the equation can be solved

$$x = \frac{756}{792} = \frac{2^2 \times 3^3 \times 7}{2^3 \times 3^2 \times 11} = 2^2 \times 2^{-3} \times 3^3 \times 3^{-2} \times 7 \times 11^{-1} = \frac{21}{22}$$

- Computing is related to problem solving
- General strategy to solve a problem is to divide it into tractable pieces

Merge Sort

```
Insertion Sort
```

```
void mergesort(int low, int high) {
                                        void insertionSort(int[] arr) {
    if (low < high) {
                                            int i, j, newValue;
        int middle = (low + high) / 2;
                                            for (i=1; i < arr.length; i++) {</pre>
        mergesort(low, middle);
                                                newValue = arr[i]:
        mergesort(middle + 1, high);
                                                i = i;
        merge(low, middle, high);
                                                while (j>0 && arr[j - 1]
    }
                                                        > newValue) {
}
                                                    arr[j] = arr[j - 1];
                                                    i--;
                                                }
                                                arr[j] = newValue;
                                            }
                                        }
```

- Computing is related to problem solving
- General strategy to solve a problem is to divide it into tractable pieces

Relation approach to Divide-and-Conquer

• The Divide-and-Conquer pattern can be modelled in relation algebra

- S: divide step
- FX: solve step / atomic solution step

R: conquer step

$$X = R \cdot (FX) \cdot S$$

(1)

Relation approach to Divide-and-Conquer

 $X = R \cdot (FX) \cdot S$

Assuming that the algorithm can be divided into multiple steps

$$X = X1 \cdot X2$$

The model can be expanded with the following algebra

$$C \xleftarrow{T} FC$$

Relation approach to Divide-and-Conquer

S must be "well-founded" and T must be bijective over the data type defined by F

$$C = \mu F$$

 μF is the virtual structure used internally by the algorithm

$$\mu F \xleftarrow{in} F(\mu F)$$

Applying this the solutions in terms of $(R \cdot FX \cdot S)$ is

$$\mu X.(R \cdot FX \cdot S) = (|R|) \cdot (|S^{\circ}|)^{\circ}$$


```
mergeSort : seq of int -> seq of int
mergeSort (1) ==
    cases 1 :
      [] -> 1, -- | not considered in the example
      [e] -> 1, -- | represented by singl
      other \rightarrow let 11 \uparrow 12 in set(1)
                    be st abs(len 11 -len 12) < 2
                    -- | represented by pconc°
                in let l_l = mergeSort(l1)
                       l_r = mergeSort(12)
                   in lmerge (l_l, l_r)
    end;
```

Example: merge sort

Based on the expression $X = R \cdot (FX) \cdot S$ the merge sort algorithm can be defined as:

 $mergeSort = [singl, lmerge \cdot (mergeSort \times mergeSort)] \cdot S$ $mergeSort = [singl, lmerge] \cdot (id + mergeSort \times mergeSort) \cdot S$

Where it is possible to identify

R = [singl, Imerge] $Ff = id + f \times f$ $FX = int + X \times X$ (represents a Leaf Tree)

S is defined by extracting "what remains"

$$S = [singl, pconc]^{\circ}$$

On the Design of a Periodic Table of VDM Specifications

- The paper presents a classification of several standard algorithm based on their implicit virtual structure
- The paper also presents a second table, a formal classification of *divide* and *conquer*

Conclusion

F X	1 + X	$1 + A \times X$	$A + X^2$	$1 + A \times X^2$	$(B \times A + B \times X)^*$	
μF	nat	seq of A	LTree	BTree	HTree	
$In \rightarrow Out$	Specifications					
and sheet	odd					
$nat \rightarrow boot$	even					
$nat \rightarrow nat$		square	fibonnaci			
		factorial	doubleFactorial			
$nat \rightarrow set of nat1$		inseg				
sog of A -> sog of A		insertSort	mergeSort	quickSort		
bequern v bequern		invSeq	magabort			
$seq of A \rightarrow bool$		ordSeq				
$seq of A \rightarrow set of A$		elems				
$seq of A \rightarrow set of nat1$		inds				
$seq of A \rightarrow Bag of A$		seq2bag				
seq of $A \rightarrow nat$		len				
$LTree \rightarrow bool$			balLTree			
$LTree \rightarrow nat$			depthLTree			
$LTree \rightarrow int$			addLTree			
			countLTree			
$LTree \rightarrow seq of A$			tip s			
$LTree \rightarrow LTree$			invLTree			
$BTree \rightarrow hool$				ordBTree		
Dirice = 0001				balBTree		
$BTree \rightarrow nat$				depthBTree		
				preOrder		
$BTree \rightarrow seq of A$				inOrder		
				postOrder		
$BTree \rightarrow seq of seq of A$				traces		
$BTree \rightarrow BTree$				invBTree		
set of $A \rightarrow nat$		card				
set of $A \rightarrow \text{seq of } A$		Set2seq				
$set of bool \rightarrow bool$		A				
		Э				
$\operatorname{set} \operatorname{of} \operatorname{set} \operatorname{of} A \to \operatorname{set} \operatorname{of} A$		dunion				
$map A to B \rightarrow set of A$		dom				
$map A to B \rightarrow set of B$		ran				
set of $(map A \text{ to } B) \rightarrow map A \text{ to } B$		merge				
$PTree \rightarrow Bag of A$					explode	
$FS \rightarrow map String to A$					tar	
(Other)				hanoi		

On the Design of a *Periodic* Table of VDM Specifications

Conclusion

FX	1 + X	$1 + A \times X$	$A + X^2$	$1 + A \times X^2$	$(B \times A + B \times X)^*$				
μF	nat	seq of A	LTree	BTree	HTree				
Carrier	F-(co)algebras								
bool	$[\underline{\mathbf{F}}, \neg]$ $[\underline{\mathbf{T}}, \neg]$	$[\underline{\mathbf{F}}, \vee]$ $[\underline{\mathbf{T}}, \wedge]$	$[\underline{\mathbf{F}}, \vee]$ $[\underline{\mathbf{T}}, \wedge]$						
nat	$[\underline{0}, suc]$	$[\underline{0}, +]$ $odds^{\circ}$ $[\underline{1}, *]$ $nats^{\circ}$	[id, +] [id, *] $[\underline{1}, +]$ $fibd^{\circ}$	[<u>1</u> , bm ul] [<u>0</u> , badd]					
nat * nat			$dfacd^{\circ}$						
$\operatorname{seqof} A$		[[], cons] [[], rcons] [[],^]	[singl,^] [singl,pconc] [singl,lmerge]	[[], inord] [[], pinord] [[], prord] [[], psord]					
LTree			in $in \cdot (id + sw)$						
BTree				in $in \cdot (id + id \times sw)$					
HTree					in				
$\operatorname{set}\operatorname{of} A$		in s pins $[\emptyset, \cup]$ ins $\cdot (id + \pi_1 \times id)$ ins $\cdot (id + \pi_2 \times id)$	$[\lambda x.\{x\}, \cup]$	$[\underline{\emptyset}, bputs]$					
$\operatorname{map} A\operatorname{to} B$		ins pins $[{\mapsto}, munion]$							
PTree					exsplit [°]				
Bag of A					exjoin				
FileS					tsplit°				
$\operatorname{map} String \operatorname{to} A$					tjoin				
(Other)				hsplit [°]					

Questions.