Do the middle letters of "OLAP" stand for Linear Algebra ("LA")?

Speaker: Luís A. Bastião Silva Paper authors: Hugo Daniel Macedo and José Nuno Oliveira Doctoral Program

Summary

- + Motivation
- + Goals
- + Background
- + Cross tabulations in LA
- + Higher-dimensional OLAP
- + Conclusion and future work

Motivation

- Nowadays, companies are creating a huge amount of data
- Big data trend
- They need to access to the information stored in these databases and calculate some metrics
- OLAP (Online Analytical Processing):
 - Summarize huge amount of information
 - Forms of histograms, sub-totals, cross tabulations, roll-up/drill down, data cubes
- Expensive task (computationally)

Motivation

- Perform data mining and online analytical processing (OLAP) in a efficient way
- OLAP is :
 - Resource-demanding
 - Calls for parallelization
- OLAP operations:
 - Pivot
 - Roll-up
 - Cube

Related work

- Ng. et al develop a collection of parallel algorithms to data cube construction in low cost PCs (Clustering)
- PARSIMONY: provides a parallel and scalable infrastructure for multidimensional analyses
- There are commercial solutions like Oracle and IBM that also implement their parallel algorithms
- This paper propose a new direction: OLAP and data mining should rely on Linear Algebra

Cross tabulation

- Provides a **summary** of a data extracted from raw source
- Example:

Model	Year	Color	Sales
Chevy	1990	Red	5
Chevy	1990	Blue	87
Ford	1990	Green	64
Ford	1990	Blue	99
Ford	1991	Red	8
Ford	1991	Blue	7

• How many vehicles sold per colour and model?

Cross tabulation

- How many vehicles sold per colour and model?
- Selected Color and Model as attributes and Sales as a measure
- Answer is:

Sum of Sales	Model		
Color	Chevy	Ford	Grand Total
Blue	87	106	193
Green		64	64
Red	5	8	13
Grand Total	92	178	270

In this paper: solve this problem with Linear Algebra. But how we can parallelize?

OLAP - Cube

- Cross tabulation summaries:
 - Computationally expensive
 - Long time (large datasets)
- OLAP cube compute all dimensions
- Calculate all possible options
- Summarize the table
 - Works like a cache of values
 - Easy to compute and access data in time

			Sales
Chevy	1990	Blue	87
Chevy	1990	Red	- 5
Ford	1990	Blue	99
Ford	1990	Green	64
Ford	1991	Blue	7
Ford	1991	Red	-8
Chevy	1990	ALL	92
Ford	1990	ALL	163
Ford	1991	ALL	15
Chevy	ALL	Blue	87
Chevy	ALL	Red	5
Ford	ALL	Blue	106
Ford	ALL	Green	64
Ford	ALL	Red	8
ALL	1990	Blue	186
ALL.	1990	Green	64
ALL	1990	Red	5
ALL	1991	Blue	7
ALL	1991	Red	8
Chevy	ALL	ALL	92
Ford	ALL	ALL	178
ALL	1990	ALL	255
ALL	1991	ALL	15
ALL	ALL	Blue	193
ALL	ALL	Green	64
ALL	ALL	Red	13
ALL	ALL	ALL	270

Cross tabulation – Linear Algebra

- Three matrices:
 - Two associated with dimensions (attributes) A and B
 - Measure or Metric
- Divide-and-conquer principle, with matrix multiplication:

$$\left[\left. R \right| S \right] \cdot \left[\frac{U}{V} \right] = R \cdot U + S \cdot V$$

- OLAP cross-tabulation can be expressed by: $t_A \cdot [T]_M \cdot t_B^\circ$
- A, B is dimensions and M is the measure

$$t_A(x,r) = \begin{cases} 1 & \text{if } T(A,r) = x \\ 0 & \text{otherwise} \end{cases}$$

Cross tabulation – Linear Algebra

$1\ 2\ 3\ 4\ 5\ 6$	t_{Model}
$Chevy \ 1 \ 1 \ 0 \ 0 \ 0 \ 0$	$ Model \leftarrow n$
$Ford \ 0 \ 0 \ 1 \ 1 \ 1 \ 1$	

$$\begin{array}{c} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ \hline Blue \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\ Green \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ Red \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \end{array}$$

$$|Color| \stackrel{t_{Color}}{\longleftarrow} n$$

$$t_{Color} \cdot t_{Model}^{\circ} = \frac{\begin{array}{c} Chevy \ Ford \\ \hline Blue \ 1 \ 2 \\ Green \ 0 \ 1 \\ Red \ 1 \ 1 \end{array}}{\begin{array}{c} Red \ 1 \ 1 \end{array}}$$

Cross tabulation – Linear Algebra

		(Chevy	Ford
+ [[7]] + ⁰		Blue	87	106
Color · [] Sales · Model	=	Green	0	64
		Red	5	8

$$ctab_{Color,Model;Sales}(T) = \begin{array}{c} Chevy \ Ford \ ALL \\ \hline Blue & 87 & 106 \ 193 \\ Green & 0 & 64 \ 64 \\ Red & 5 & 8 \ 13 \\ ALL & 92 & 178 \ 270 \end{array}$$

Rolling-up on functional dependences

• Rolling-up means replacing a dimension by another which is more general in some sense (eg. grouping, classification, containment).

Model	Year	Color	Sales	Month	Season
Chevy	1990	Red	5	March	Spring
Chevy	1990	Blue	87	April	Spring
Ford	1990	Green	64	August	Summer
Ford	1990	Blue	99	October	Autumn
Ford	1991	Red	8	January	Winter
Ford	1991	Blue	7	January	Winter

Also works for checking functional dependences

Rolling-up on functional dependences

• Rolling-up means replacing a dimension by another which is more general in some sense (eg. grouping, classification, containment).

			January	March	April	August	October
$t_{Season} \cdot t^{\circ}_{Month}$	=	Spring	0	1	1	0	0
		Summer	0	0	0	1	0
		Autumn	0	0	0	0	1
		Winter	2	0	0	0	0

Also works for checking functional dependences

Rolling-up on functional dependences

• Rolling-up means replacing a dimension by another which is more general in some sense (eg. grouping, classification, containment).

		Chevy	Ford	ALL
	Spring	92	0	92
$(t_{\tau}, \dots, \dots, m_{id})$ stable $(T) =$	Summer	0	64	64
$(t_{Season \leftarrow Month} \oplus ia) \cdot ctao_{Month, Model; Sales}(I) = Autv$	Autumn	0	99	99
	Winter	0	15	15
	ALL	92	178	270

Also works for checking functional dependences

Incremental construction

 Cross tabulations defined by Linear Algebra is amenable to incremental constructions

Advantage: is not necessary to build all the CUBE every single day!

Higher dimensionality - OLAP

 Consider n-dimensions: aggregate, group-by, cross tabulations and cube

Generalization based on Khatri-Rao product
 Works like a Cartesian product

+ Khatri-Rao product:

Higher-dimensional OLAP

- All dimensions
- Whole dimension part
- Raw-data table
- The Khatri-Roa of:
 - tModel and tColor

 $\frac{1\ 2\ 3\ 4\ 5\ 6}{Chevy\ 1\ 1\ 0\ 0\ 0\ 0}\\Ford\ 0\ 0\ 1\ 1\ 1\ 1$

 $\begin{array}{r} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ \hline Blue \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \\ Green \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \\ Red \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \end{array}$

$$|Model| \stackrel{t_{Model}}{\lt} n$$

$$|Color| \stackrel{t_{Color}}{\longleftarrow} n$$

123456

 Chevy Blue
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Higher-dimensional OLAP

- All dimensions
- Whole dimension part
- Raw-data table

 $t_{Model imes Year imes Color}$

 $= t_{Model} \odot t_{Year} \odot t_{Color}$

=				1	2	3	4	5	6	
	Chevy	1990	Blue	0	1	0	0	0	0	
	Chevy	1990	Green	0	0	0	0	0	0	
	Chevy	1990	Red	1	0	0	0	0	0	
	Chevy	1991	Blue	0	0	0	0	0	0	
	Chevy	1991	Green	0	0	0	0	0	0	
	Chevy	1991	Red	0	0	0	0	0	0	
	Ford	1990	Blue	0	0	0	1	0	0	
	Ford	1990	Green	0	0	1	0	0	0	
	Ford	1990	Red	0	0	0	0	0	0	
	Ford	1991	Blue	0	0	0	0	0	1	
	Ford	1991	Green	0	0	0	0	0	0	
	Ford	1991	Red	0	0	0	0	1	0	

Higher-dimensional OLAP

- All dimensions
- Whole dimension part

Raw-data table				Sales
	Chevy	1990	Blue	87
	Chevy	1990	Green	0
	Chevy	1990	Red	5
	Chevy	1991	Blue	0
	Chevy	1991	Green	0
$t_{Model \times Year \times Color} \cdot \llbracket T \rrbracket_{Sales} \cdot !^{\circ} =$	Chevy	1991	Red	0
	Ford	1990	Blue	99
	Ford	1990	Green	64
	Ford	1990	Red	0
	Ford	1991	Blue	7
	Ford	1991	Green	0
	Ford	1991	Red	8

Conclusion and future work

- OLAP computationally problematic
- Parallelization is already possible, but not with linear algebra
- Encoding OLAP in concepts of Linear Algebra formal method
- Rely on theory of parallel sparse matrix/matrix multiplication to achieve parallelism
- Cross tabulation is incremental
- Future:
 - Extending LA for other OLAP features
 - Implement in Multi-core and GPU and replace the OpenOffice/ LibreOffice pivot table calculator

Future work (GPGPU)

Questions?