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Abstract Inspired by pointfree relational data processing, this paper ad-
dresses the foundations of an alternative roadmap for parallel online analytical
processing (OLAP) based on a separation of concerns: rather than depending
on standard database technology and heavy machinery, OLAP operations are
performed by encoding data in matrix format and relying thereupon solely on
LA operations.

The paper investigates, in particular, how the generation of aggregation
operations such as cross tabulations and data cubes in OLAP can be expressed
in terms of matrix multiplication, transposition and the Khatri-Rao variant of
the Kronecker product.

This offers much potential for parallel OLAP, as such matrix operations
have a well-defined parallelization theory. Last but not least, the approach
offers a formal semantics for data aggregation which is useful in reasoning
about OLAP operation as a whole.

Keywords Foundations of decision support systems � Linear algebra �
OLAP � Data cube

1 Introduction

This paper finds its motivation in the need to perform data mining and online
analytical processing (OLAP) [5,25,13] in an efficient way. These techniques
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are very useful for summarizing huge amounts of information in the form of
histograms, sub-totals, cross tabulations (vulg. pivot tables), roll-up/drill down
transformations and data cubes, whereby new trends and relationships hidden
in raw data can be found. The need for this kind of operation concerns not
only large companies generating huge amounts of data every day (the “big
data” trend), which need to be consolidated overnight, but also the laptop
spreadsheet user who wants to make sense of the data stored in a particular
workbook.

OLAP is resource-demanding and calls for parallelization. With the ad-
vent of multi-core personal machines, code parallelization has become a wide
concern, ranging from large main-frames to laptops. Placed at this end of the
spectrum, even the anonymous Microsoft Excel user might in fact legitimately
ask: is the generation of pivot tables in Excel actually taking advantage of the
underlying multi-core hardware? How parallel is such a construction?

There are essentially two ways to reach parallel OLAP. One is the de-
velopment of dedicated systems such as eg. Parsimony [11], which provides
a parallel and scalable infrastructure for multidimensional analysis and data
mining targeting at distributed memory parallel machines such as the IBM SP-
2, for instance. Still in this trend, existing tools intended for other areas (eg.
scientific computing) have been adapted to scalable data cube construction
[35].

The other way proceeds by splitting the problem in two steps: first, one
finds a mathematical framework exhibiting well-known and developed poten-
tial for parallel execution and encodes OLAP operations in such a framework;
second, one relies on such parallelization theories and reuses general purpose
software already available, possibly taken from another application area. This
second approach is beneficial in the sense that there is a separation of concerns
— one does not need to “think parallel” in the first place, parallelism coming
“for free” thanks to the general theory.

A roadmap to parallel OLAP. In this paper we follow the latter strategy, find-
ing inspiration in relatively recent developments in the remote area of digital
signal processing (DSP) which, as is well-known, relies on linear algebra (LA).
Generation of fast (parallel) code for DSP has witnessed great advances in
recent years under the motto “can we teach computers to write fast libraries?”
[26]. Domain specific languages (DSLs) and systems such as (respectively) SPL
and SPIRAL [27], for instance, have shown how automatic generation of high
performance libraries for LA applications relies on very high-level specification
scripts written in index-free matrix algebra, in which matrix multiplication
plays a major role, given its amenability to parallelization via divide-and-
conquer algorithms [32,29].

Our approach is similar: we will show how to translate OLAP into linear
algebra, the benefits being two-fold: not only one is able to reason about
OLAP in this way, thanks to the well-known calculus of matrices, but also
it (indirectly) provides a mainstream way to achieve parallelism in OLAP.
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For easy illustration, the proposed translation is supported by a small set of
combinators extending the widespread Matlab 1 library of matrix operations.

Contribution. The ideas presented in this paper derived from the authors’
work on typing linear algebra [16] which eventually drove them into the pro-
posed synergy between linear algebra and OLAP.

Such a synergy is, to the best of their knowledge, novel in the field. Rather
than relying on standard OLAP state of the art developments, a cross field
perspective is put forward that may open new ways of looking at this body of
knowledge.

Remark concerning terminology: the more widespread acronym OLAP is
preferred to ROLAP (‘relational OLAP”) [25] throughout the paper, even
knowing that ROLAP is most often intended.

2 Background

Parallelism is intimately related to so-called divide and conquer algorithms,
or breakdown-rules [27] which are naturally adapted for execution in multi-
processor machines. It turns out that the construction of such algorithms is the
“natural” way to write programs in the so-called functional programming style
[2,14]. Thus parallelism blends well with this programming discipline, evidence
of this being, for instance, how easily Google’s MapReduce is expressed using
functional combinators [15,7]. Functional programming has witnessed great
advances over the years in many respects, namely in the development of an
algebra of programming (AoP) [2] which puts emphasis on the “type structure”
which is central to modern functional languages such as Haskell, for instance
[14].

The authors have shown in a recent paper [16] how close to the AoP a
“matrices as arrows” typed approach to linear algebra is. This is easy to un-
derstand after all since functions are special cases of binary relations which in
turn are nothing but Boolean matrices 2. Elsewhere, it has been shown how
to take advantage of binary relation algebra in reasoning about data depen-
dencies in databases [20,22] and data transformation in general [21]. Needless
to say, relations play a major role in data processing since Codd’s pioneering
work on the foundations of the relational data model theory [4].

Given this proximity between relation and matrix algebra, the question
arises: how much gain can one expect from translating results from one side to
the other? In this paper we will show how a particular construction in relation
algebra — that of building binary relational projections, used in [20,22] to
reason about functional dependencies in databases — translates into building
cross tabulations (pivot tables) which are central to OLAP and data-mining.

1 Matlab TM is a trademark of The MathWorks R©.
2 Indeed, relation algebra and matrix algebra can be regarded as instances of the allegory

concept [9], the latter under some restrictions on the algebra of matrix elements.
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On the relational side, such projections are always of the form

f �R � g� (1)

where R is the binary relation being projected and f and g are observing
functions, usually associated to attributes. The dot p�q between the symbols
denotes relational composition 3 and p q� expresses the converse operation,
whereby pair pb, aq belongs to relation R� iff pair pa, bq belongs to R.

Pattern (1) turns up very often in relation algebra [2]. In its particular use
to express data dependencies, such projections take the form

fA � JT K � f�B (2)

where T is a database file, or table (set of data records, or tuples), A and B are
attributes of the schema of T , fA (resp. fB) is the function which captures the
semantics of attribute A (resp. B) 4, and JT K captures the semantics of T in
the form of a binary relation known as a coreflexive [2]: JT K � tpt, tq | t P T u.
However strange and redundant this construction may look like, it proves
essential to the reasoning, as shown in [20,22]. Expressed in set-theoretical
notation, projection (2) is set-comprehension

tptrAs, trBsq | t P T u

where trAs (resp. trBs) denotes the value of attribute A (resp. B) in tuple t.
Essential to (2) is its emphasis on the very basic combinators of relation

algebra: composition and converse. These generalize to matrix multiplication
and transposition, respectively, which are easy to parallelize. The following
law of the calculus of (blocked) matrices

�
R S

�
�

�
U
V

�
� R � U � S � V (3)

— where R, S, U , V are matrix-blocks — is given in [16] to capture the essence
of (parallelizable) divide-and-conquer matrix multiplication.

Under this motivation, we will show below that cross tabulations in OLAP
can be expressed by a formula similar to (2),

tA � JT KM � t�B (4)

where M is a measure and A and B are the dimensions chosen for the particu-
lar cross tabulation to build. Notation tA (resp. tB) expresses the membership
matrix of the column addressed by dimension A (resp. B) whose construction
will be explained later. Also explained later, JT KM means the diagonal matrix
capturing column M of T .

The construction of matrices tA, tB and JT KM will be first illustrated with
examples. Cross tabulations will be pictured as displayed by Microsoft Excel.

3 Recall from discrete maths that, given two relations R and S, pair pc, aq will be in the
composition R � S iff there is some b such that pc, bq is in R and pb, aq is in S.

4 That is, given a tuple t P T , fAptq yields the value of attribute A in t, usually denoted
by trAs (similarly for attribute B).
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Structure of the paper. The remainder of this paper is structured as follows.
Section 3 introduces cross tabulations, one of the kernel operations of OLAP.
Section 4 gives a brief overview of the typed linear algebra notation adopted
in the paper, taken from [16]. Section 5 expresses cross tabulations solely in
terms of linear algebra matrix operations. Section 6 builds up on cross-tabbing
and “rolls-up” on functional dependencies, introducing dimension hierarchies
into the game. Section 7 proves that construction of cross-tabulations is incre-
mental. Section 8 goes higher-dimensional into the LA construction of OLAP
cubes. Finally, section 9 reviews related work and Section 10 draws some con-
clusions, giving a prospect of future work.

3 Cross-tabulations

In data processing, a cross tabulation (or pivot table) provides a particular
summary or view of data extracted from a raw data source. As example of
raw data consider the table displayed in Figure 1 where each row records the
number of vehicles of a given model and color sold per year.

Model Year Color Sales
Chevy 1990 Red 5
Chevy 1990 Blue 87
Ford 1990 Green 64
Ford 1990 Blue 99
Ford 1991 Red 8
Ford 1991 Blue 7

Fig. 1 Collection of raw data (adapted from [10]).

In general, the raw-data out of which cross tabulations are calculated is not
normalized and is collected into a central database (termed a data warehouse,
or decision support database) containing huge amounts of information ob-
tained from disparate sources. Such a central warehouse — typically, a table
with an absurd number of lines — is not easy (if at all possible) to manu-
ally inspect and analyse. To obtain useful information from it one needs to
summarize the data by selecting attributes of interest and exhibiting their
inter-relationships.

Different summaries answer to different questions such as, for instance “how
many vehicles were sold per color and model?”, For this particular question,
the attributes Color and Model are selected as dimensions of interest, Sales
is regarded as measure and the corresponding cross tabulation is depicted in
Figure 2, as generated via the pivot table menu in Excel.

Large scale cross tabulation generation is an essential part of OLAP. Broadly
speaking, OLAP refers to the technique of performing sophisticated analysis
over the information stored in a data warehouse, whose complexity is well-
known [24]. As mentioned in [5], numerous SQL extensions are offered by
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Sum of Sales Model
Color Chevy Ford Grand Total
Blue 87 106 193
Green 64 64
Red 5 8 13
Grand Total 92 178 270

Fig. 2 Pivot table in Excel extracted from the data in Figure 1.

many vendors of OLAP products trying to address this problem. The solution
we put forward in this paper does not try to solve it inside the OLAP and
data warehousing technologies, but rather calls for a synergy with the field
of linear algebra application, where satisfactory solutions have been found for
similarly complex operations in other domains such as eg. computer graphics
and DSP [27].

The key resides in expressing OLAP operations in the form of matrix alge-
bra expressions which can be parallelized [1,32]. In the particular case of re-
porting multi-dimensional analyses of data, one should be able to build three
matrices, according to the hint given by formula (4): two associated to the
dimensions (attributes) A and B being analysed and a third recording which
measure or metric attribute is to be considered for consolidation.

This encoding of data into LA is quite smooth if matrix operations are
typed in the way presented in [16]. For self-containedness we give a very brief
overview of such typed LA notation below.

4 Typed linear algebra

Matrices as arrows. A matrix A with n rows and m columns is a function
Apr, cq which tells the value occupying each cell pr, cq, for 1 ¤ r ¤ n, 1 ¤ c ¤ m.

In this paper we will follow the arrow notation of [16] and write n m
Aoo

to denote that matrix A is of type n moo (m columns, n rows). Thus
matrix multiplication can be expressed by arrow composition:

n m
Aoo k

Boo

C�A�B

ff (5)

For every n there is a matrix of type n noo which is the unit of composi-

tion. This is nothing but the identity matrix of size n, denoted by n n
idnoo

or n n
1oo , indistinguishably. Therefore:

idm �A � A � A � idn n

A

��

n
idnoo

A

��A}}
m m

idm

oo

(6)
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Subscripts m and n can be omitted wherever the underlying diagrams are
assumed.

Vectors as arrows. Vectors are special cases of matrices in which one of the
dimensions is 1, for instance

v �

�
��
v1
...
vm

�
�� and w �

�
w1 . . . wn

�

Column vector v is of type m 1oo (m rows, one column) and row vector

w is of type 1 noo (one row, n columns). Our convention is that lower-
case letters (eg. v, w) denote vectors and uppercase letters (eg. A, M) denote
arbitrary matrices.

Types. Matrix types (the end points of arrows) can be generalized to arbitrary
(finite) sets thanks to addition and multiplication being commutative and as-
sociative. This ensures unambiguous definition of matrix composition because
the summation inside the inner product of two vectors can be calculated in
any order. Typewise, our convention is that lowercase letters (eg. n, m) denote
the traditional dimension types (natural numbers), letting uppercase letters
denote other types.

Converse of a matrix. One of the kernel operations of linear algebra is transpo-
sition, whereby a given matrix changes shape by turning its rows into columns

and vice-versa. Given matrix n m
Aoo , notation m n

A�oo denotes its
transpose, or converse. The following idempotence and contravariance laws
hold:

pA�q� � A (7)

pA �Bq� � B� �A� (8)

Block notation. Matrices can be built of other matrices using block notation.
Two basic binary combinators are identified in [16] for building matrices out
of other matrices, say A and B, regarded as blocks, either stacking these

vertically,

�
A
B

�
, or horizontally,

�
A B

�
. Dimensions should agree, as shown

in the diagram below, taken from [16], where m, n, p and t are types:

m

n

R

>>

i1
// n� p

rR S s

OO

π1oo π2 //
p

i2
oo

S

``

t

U

``
�
U

V

�
OO

V

>>
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Special matrices i1, i2, π1 and π2 are fragments of the identity matrix and play
an important role in explaining the semantics of the two combinators. This,
however, can be skipped for the purposes in the current paper. (The interested
reader is referred to [16] for details.)

The exchange law

� �
A B

�
�
C D

�
�
�

��
A
C

� �
B
D

��
�

�
A B
C D

�
(9)

tells the equivalence between row-major and column-major construction of
matrices by blocks. Thus the four-block notation on the right [16].

Direct sums. Given two arbitrary matrices A and B, the direct sum of A and
B is defined as follows, using block notation:

A`B �

�
A 0
0 B

�
(10)

Mind the types (dimensions):

n

A

��

m

B

��

n�m

A`B

��
k j k � j

Direct sum is a standard linear algebra operator enjoying many useful prop-
erties [16]. The following equation, termed the absorption law, specifies how
block operator

� �
absorbs direct sum `, for suitably typed matrices A,B,C

and D:

�
A B

�
� pC `Dq �

�
A � C B �D

�
(11)

Khatri-Rao matrix product. Given matrices n m
Aoo and p m

Boo , the

so-called Khatri-Rao [28] matrix product of A and B, denoted n� p m
AdBoo

is a column-wise Kronecker product,

ud v � ub v�
A1 A2

�
d
�
B1 B2

�
�
�
A1 dB1 A2 dB2

� (12)

where u, v are column-vectors and Ai, Bi are suitably typed matrices. As an
example of operation relying on this product consider row vector

s �
�
5 87 64 99 8 7

�
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of type 1 6
soo , capturing the transposition of the Sales column of Figure

1. Then Khatri-Rao product sd id is the corresponding diagonal matrix:

6 6
sdidoo �

�
�������

5 0 0 0 0 0
0 87 0 0 0 0
0 0 64 0 0 0
0 0 0 99 0 0
0 0 0 0 8 0
0 0 0 0 0 7

�
�������

(13)

This conversion is essential to the LA encoding of cross tabulations, as shown
next.

5 Cross tabulations in LA

Recall that the core of cross tabulation generation is formula (4), which is
the matrix counterpart to relational projection (2). This section explains this
construct starting by showing how the move from relations to matrices is
obtained by encoding functions as matrices.

Building projection functions. Let A be an attribute of raw-data table T and
let n be the number of records in T (vulg. rows, or lines in a spreadsheet). We
write T pAq to denote the column of T identified by attribute A, T pA, yq to
denote the element occupying the y-th position (row) in such a column, and |A|
to denote the range of values which can be found in T pAq. Column T pAq can
be regarded as a function which tells, for each row number 1 ¤ r ¤ n, which
value x of |A| can be found in row r of such a column. Such a function can be

encoded as an elementary matrix of type |A| n
tAoo , defined as follows 5:

tApx, rq �

"
1 if T pA, rq � x
0 otherwise

(14)

In our running example (Figures 1 and 2), n � 6 and we want to build these

matrices for attributes Model and Color. The projection |Model| n
tModeloo

associated to dimension Model is matrix

1 2 3 4 5 6
Chevy 1 1 0 0 0 0
Ford 0 0 1 1 1 1

and projection |Color| n
tColoroo associated to dimension Color is matrix

1 2 3 4 5 6
Blue 0 1 0 1 0 1

Green 0 0 1 0 0 0
Red 1 0 0 0 1 0

5 These projections can be identified with the bitmaps of [34], regarded as matrices.
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Note that, typewise, the composition of matrices tColor and t�Model makes

sense, leading to a matrix of type |Color| |Model|oo ,

tColor � t
�
Model �

Chevy Ford
Blue 1 2

Green 0 1
Red 1 1

(15)

which essentially counts the number of sale records per colour and model. This
situation (counting), which is what Excel outputs wherever the measure at-
tribute chosen in pivot table calculation is not numeric, corresponds to formula
(4) wherever the middle matrix is the identity.

The diagonal construction. In order to sum up the number of vehicles sold
rather than just counting sale records we need to identify a measure attribute,
that is, a numeric attribute of T to be used for consolidation. In the case
of Figure 1 only Sales applies. Because such numeric data have to become
available for both projection matrices, the column chosen is converted into a
diagonal matrix, as already shown as an illustration of Khatri-Rao (13).

Notation JT KM will be used to denote the diagonal matrix representation
of measure attribute M in T . Index-wise, this corresponds to the following
definition:

JT KM pj, iq �
"
T pM, jq if i � j
0 otherwise

LA script for cross tabulation. We are now in position to run formula (4) for
T as in Figure 1, A � Colour and B � Model, obtaining another matrix of

type |Color| |Model|oo :

tColor � JT KSales � t
�
Model �

Chevy Ford
Blue 87 106

Green 0 64
Red 5 8

(16)

If compared to Figure 2, cross tabulation (16) misses the two row and
column grand totals. These are easily obtained via “bang” matrices. Let us
explain what these are and our choice of terminology.

In functional programing, the popular “bang” function, which is of type
1 Ð A and usually denoted by symbol “!”, is a polymorphic constant function
yielding the unique value which inhabits the singleton type 1 6. The encoding

of this function in LA format will be matrix 1 A
!Aoo wholly filled up with

1s — a row vector. For instance, !|Model| will be the row vector with |Model|-

many positions all holding number 1. The Matlab equivalent to 1 n
!noo

is ones(1,n), see Listing 1 in the appendix.

6 See [2]. In Haskell, both this type and its inhabitant are denoted by “()”. For the
purposes in this paper, 1 can be regarded as the singleton set tallu.
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Clearly, the composition of row vector 1 A
!oo with any column vector

of type A 1
voo computes the singleton vector holding the sum of all cells

in v. Thus one can extend formula (4) with bang vectors so as to equip cross
tabulations with grand totals, by defining

ctabA,B;M pT q : |A| � 1 Ð |B| � 1

ctabA,B;M pT q �

�
tA
!

�
� JT KM �

�
tB
!

��
(17)

which computes the cross tabulation of raw data table T with respect to
dimensions A, B and measure M . Note that types (dimensions) have been
added a new entry (1), which can be understood as a singleton type containing
a distinguished element, say all, labelling grand totals. This corresponds,
in our running example, to enriching (16) with the extra row and column
corresponding to the added bang vectors, both labeled with all,

ctabColor,Model;SalespT q �

Chevy Ford all
Blue 87 106 193

Green 0 64 64
Red 5 8 13
all 92 178 270

(18)

finally achieving the effect of Figure 2 with LA operations only. The Matlab
script for formula (17) is given in Listing 1 provided in the appendix.

Among the many properties of “bang” matrices we single out�
! !
�
� ! (19)

and

!dA � A � Ad ! (20)

which tells ! the unit of Khatri-Rao product. Since this is associative too, we
can rely on its extension to n argument matrices Ai (1 ¤ i ¤ n) by writingÄn

i�1Ai or even
ä
iÐs

Ai (21)

where s is a sequence of indices. This extension will be useful in the generation
of data cubes given in Section 8. Prior to this, we address below another
operation central to OLAP: roll-up.

6 “Rolling-up” on functional dependencies

It can be shown via blocked matrix algebra [16] that the matrix composition
of (17) unfolds into four blocks, namely�

tA � JT KM � t�B tA � JT KM � !�

! � JT KM � t�B ! � JT KM � !�

�
(22)
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whose pre- and post-compositions with “bang matrices” can already be re-
garded as examples of the OLAP operation known as roll-up.

Rolling-up means replacing a dimension by another which is more general
in some sense (eg. grouping, classification, containment). The latter is therefore
“higher” in a dimension hierarchy which somehow acts as a classification or
taxonomy of data records.

A simple way of seeing roll-up at work is the acknowledgement of functional
dependencies (FDs) [17] in data. Let us, for instance, augment the raw data of
our running example with two new columns recording the month and season
of each sale, as displayed in Figure 3.

Model Year Color Sales Month Season
Chevy 1990 Red 5 March Spring
Chevy 1990 Blue 87 April Spring
Ford 1990 Green 64 August Summer
Ford 1990 Blue 99 October Autumn
Ford 1991 Red 8 January Winter
Ford 1991 Blue 7 January Winter

Fig. 3 Augmented collection of raw data.

Look, for instance, at the column labelled Season in Figure 3, telling in
which season (Spring, Summer, Autumn or Winter) the particular sales took
place. It is clear that FD SeasonÐMonth holds, as every month belongs to
one and only one season. In other words, Season is higher in the dimension
hierarchy than Month 7.

Roll-up matrices. In general, functional dependency B Ð A will hold in a
table T iff no pair of rows can be found in which the values of attribute A are
the same and those of attribute B differ (“B is determined by A”). That is,
B acts as a classifier for A, meaning that every cross tabulation involving A
can be rolled-up into another (less detailed) involving B instead.

Interestingly, the roll-up matrix |B| |A|
tBÐAoo associated to FD B Ð A

is simply given by

tBÐA � tB � t
�
A (23)

(We hope (23) convinces the reader of the advantage of writing FDs the other
way round, namely B Ð A instead of the more conventional AÑ B [17].) For
instance, the roll-up matrix calculated from FD SeasonÐMonth is:

tSeason � t
�
Month �

January March April August October
Spring 0 1 1 0 0

Summer 0 0 0 1 0
Autumn 0 0 0 0 1
Winter 2 0 0 0 0

(24)

7 The fact that T is not normalized in general reflects the preparation process of merging
into the same data warehouse different tables of a (normalized) database.
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Note how matrix (24) is “functional” in the sense that at most one non-zero
cell can be found in each column.

So, given a cross tabulation matrix |A| � 1 |C| � 1
Xoo , the effect of

rolling it up across a given FD B Ð A is another cross tabulation given by
matrix

ptBÐA ` idq �X

of type |B| � 1 |C| � 1oo . Notice how (` id) handles the tabulation’s

all field not present in the roll-up matrix. Converse (transpose) caters for the
same effect on the right-hand side: rolling X up across another FD C Ð D is
matrix

X � ptDÐC ` idq�

of type |A| � 1 |D| � 1
Xoo . We illustrate this below by instantiating X

with a cross tabulation from Model to Month

ctabMonth,Model;SalespT q �

Chevy Ford all
January 0 15 15
March 5 0 5
April 87 0 87

August 0 64 64
October 0 99 99

all 92 178 270

which, once composed with roll-up matrix (24) extended with totals, yields
the expected rolling up effect:

ptSeasonÐMonth ` idq � ctabMonth,Model;SalespT q �

Chevy Ford all
Spring 92 0 92

Summer 0 64 64
Autumn 0 99 99
Winter 0 15 15

all 92 178 270

Checking for FDs. Construction (23) enables us to check for functional depen-
dencies. In general, FD B Ð A will hold wherever matrix tBÐA is functional,
or simple. This terminology is imported from relational algebra and allegory
theory [9]: a N0-valued matrix S will be said to be simple iff its image S � S�

is diagonal.
It can be checked that the image of roll-up matrix (24) is diagonal

Spring Summer Autumn Winter
Spring 2 0 0 0

Summer 0 1 0 0
Autumn 0 0 1 0
Winter 0 0 0 4

while that of (15)

Blue Green Red
Blue 5 2 3
Green 2 1 1
Red 3 1 2
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is not. Thus, FD Color ÐModel does not hold.
Of course, projections are functional (simple) — in fact, they are matrix

representations of surjections (surjective functions), recall (14). A simple ma-
trix A is said to be a surjection iff the sum of each column of A is 1, in which
case A � A� � id. So, ! matrices are surjections and the following natural law
holds:

! �A � ! ð A is a function (25)

This law is enough to ensure the following property: roll-up preserves cross
tabulation grand totals.

Further developments. The matrix representation of FDs opens further per-
spectives on the roll-up OLAP operation, as the following matrix

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Spring 0 0 0.3 1 1 0.7 0 0 0 0 0 0

Summer 0 0 0 0 0 0.3 1 1 0.7 0 0 0
Autumn 0 0 0 0 0 0 0 0 0.3 1 1 0.7
Winter 1 1 0.7 0 0 0 0 0 0 0 0 0.3

of type Season Monthoo shows. In this case, FD SeasonÐMonth does
not strictly hold, for equinoctial and solsticial months are doubly classified in
the seasons they border, in different proportions (70% for the season which
ends, 30% for the one which starts up).

Perhaps one might say that a “fuzzy” data dependency holds in this situ-
ation. In spite of the possible complexity that this extension of the previous
situation might raise in the traditional OLAP perspective, in our setting it
doesn’t change anything, as such “fuzzy” months-into-seasons roll-up process
would work precisely in the same way, always relying on matrix multiplication
and transposition.

7 Incremental construction

Cross tabulations as defined by formula (17) are amenable to incremental
construction under certain conditions. For instance, suppose one is given yes-
terday’s cross tab and today’s new data. Then today’s cross tab (in matricial
form) will be obtained by adding to the former (matrix-wise) the cross tab of
the latter.

As an illustration of how LA support helps in proving facts about data
mining operations, we give below the proof of incremental cross tabulation
construction. Let T be yesterday’s raw data and T 1 be the new data. Assuming
that T has remained the same (no updates, no deletes), let T 2 � T ;T 1 denote
the append of the two data sources. Then the following facts hold,

t2A �
�
tA t1A

�
(26)

t2B �
�
tB t1B

�
(27)

JT ;T 1KM � JT KM ` JT 1KM (28)
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where ` builds a diagonal matrix by direct sum (10) of two diagonal matrices.
The proof that cross tabulation is incremental

ctabA,B;M pT ;T 1q � ctabA,B;MT � ctabA,B;MT
1 (29)

stems from its definition (17) and follows by simple equational reasoning, using
the laws of matrix algebra:

ctabA,B;M pT ;T 1q

ô t (17) u
�
t2A
!

�
� JT ;T 1KM �

�
t2B
!

��

ô t (26) ; (27) and (28) u
� �
tA t1A

�
!

�
� pJT KM ` JT 1KM q �

� �
tB t1B

�
!

��

ô t (19) twice ; exchange law (9) twice u
��

tA
!

� �
t1A
!

��
� pJT KM ` JT 1KM q �

��
tB
!

� �
t1B
!

���

ô t absorption (11) u

��
tA
!

�
� JT KM

�
t1A
!

�
� JT 1KM

�
�

�
���

�
tB
!

��
�
t1B
!

��
�
���

ô t divide and conquer matrix multiplication (3) u
�
tA
!

�
� JT KM �

�
tB
!

��
�

�
t1A
!

�
� JT 1KM �

�
t1B
!

��

ô t (17) twice u

ctabA,B;MT � ctabA,B;MT
1

In retrospect, this proof establishes ctab as a structure preserving map
between raw data collection and (cross tabulation) matrix addition.

8 Higher-dimensional OLAP

In this section we proceed beyond cross tabulations generation to achieve
higher-dimensionality. The aim is to formulate a general LA theory for n-
dimensional OLAP, dealing with all data summary levels presented in [12],
from 0 to 3-dimensional summaries, respectively: aggregate, group-by, cross-
tab and cube. The approach goes further by allowing any number n of dimen-
sions.
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The proposed generalization depends on the Khatri-Rao product (12) that
works as a Cartesian product operator on the types of the matrix, thus a
Cartesian product of the dimensions. As an illustration, remember the projec-
tions of our running example and apply this product to tModel and tColor. The

outcome is a matrix bearing type |Model � Color| 6oo :

1 2 3 4 5 6
Chevy Blue 0 1 0 0 0 0
Chevy Green 0 0 0 0 0 0
Chevy Red 1 0 0 0 0 0
Ford Blue 0 0 0 1 0 1
Ford Green 0 0 1 0 0 0
Ford Red 0 0 0 0 1 0

It tells in which rows the particular dimension pairs appear, compare with Fig-
ure 1. Put in other words, this matrix is the higher-rank projection tModel�Color

of the Cartesian product of the two dimensions. In general,

tA�B � tA d tB (30)

Thus

tModel�Y ear�Color

� tModel d tY ear d tColor

� 1 2 3 4 5 6
Chevy 1990 Blue 0 1 0 0 0 0
Chevy 1990 Green 0 0 0 0 0 0
Chevy 1990 Red 1 0 0 0 0 0
Chevy 1991 Blue 0 0 0 0 0 0
Chevy 1991 Green 0 0 0 0 0 0
Chevy 1991 Red 0 0 0 0 0 0
Ford 1990 Blue 0 0 0 1 0 0
Ford 1990 Green 0 0 1 0 0 0
Ford 1990 Red 0 0 0 0 0 0
Ford 1991 Blue 0 0 0 0 0 1
Ford 1991 Green 0 0 0 0 0 0
Ford 1991 Red 0 0 0 0 1 0

(31)

is the projection capturing the whole dimensional part of the raw-data table
of Figure 1.

Multidimensional cross tabulations are obtained via the same formula (17)
just by supplying higher-rank projections, for instance

ctabModel�Color,Y ear;SalespT q �

1990 1991 all
Chevy Blue 87 0 87
Chevy Green 0 0 0
Chevy Red 5 0 5
Ford Blue 99 7 106
Ford Green 64 0 64
Ford Red 0 8 8
all 255 15 270

corresponding to A � Model � Color and B � Y ear in (17). Furthermore,
by composing JT KSales with the projection of all dimensions which, as we
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have seen (31), is obtained by the Khatri-Rao product, we obtain the three
dimensional part of the CUBE operator:

tModel�Y ear�Color � JT KSales � !
� �

Sales
Chevy 1990 Blue 87
Chevy 1990 Green 0
Chevy 1990 Red 5
Chevy 1991 Blue 0
Chevy 1991 Green 0
Chevy 1991 Red 0
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1990 Red 0
Ford 1991 Blue 7
Ford 1991 Green 0
Ford 1991 Red 8

A generalization follows from this example. Given an ordered set of dimen-
sions D and a measure M , to calculate the corresponding cube iterate over
the powerset of D and, for each set of dimensions s in the powerset (regarded
as a sequence induced by the predefined order on dimensions) build the corre-
sponding projection using an iteration of (30) over s — recall also (21). Finally,
multiply by the measure and bang converse as presented in:

cubeD;M pT q �
á
sP2D

p
ä
dÐs

tdq � JT KM � !� (32)

Remember that
Á

, the n-ary extension of vertical blocking (recall Section 4),
stacks blocks vertically and is therefore just a glue of the intermediate results
provided by the outermost iteration.

CUBE as a Matlab script. To close the illustration of our approach, we
detail an implementation of formula (32) made available as a Matlab script
Cube.m. The core of our experimental script (see Listing 2 in the appendix)
is a function with the same name which receives as input an array of the
projections for each dimension (proj) and the measure diagonal (dnum). It
then outputs the result of the CUBE operator. It is tuned for the example
in paper [10], and to run it one needs to pass as parameters the projection
matrices as defined in the current paper. By running

>> CleanAndShow(Cube({m,y,c},d))

in Matlab, where variables m,y,c and d respectively hold tModel, tY ear, tColor
and T pSalesq, we will obtain the result displayed below.
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Sales
Chevy 1990 Blue 87
Chevy 1990 Red 5
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1991 Blue 7
Ford 1991 Red 8
Chevy 1990 ALL 92
Ford 1990 ALL 163
Ford 1991 ALL 15
Chevy ALL Blue 87
Chevy ALL Red 5
Ford ALL Blue 106
Ford ALL Green 64
Ford ALL Red 8
ALL 1990 Blue 186
ALL 1990 Green 64
ALL 1990 Red 5
ALL 1991 Blue 7
ALL 1991 Red 8
Chevy ALL ALL 92
Ford ALL ALL 178
ALL 1990 ALL 255
ALL 1991 ALL 15
ALL ALL Blue 193
ALL ALL Green 64
ALL ALL Red 13
ALL ALL ALL 270

Generic Matricial Aggregation. A general formula for calculating aggregations
on a given ordered set D of dimensions and measure M from a database table
T is given by

á
jPFpDq

p
ä
dÐj

tdq � JT KM � !�

where generic set construct FpDq tells how dimensions in D are handled. Dif-
ferent operations are obtained by instantiating FpDq. For instance, by making
FpDq � H one obtains an aggregate [12] ; for FpDq � tDu the result is
a group-by; for FpDq issuing the set of prefixes of D, one gets a roll-up;
finally, for F providing the powerset of D one obtains, as shown in (32), a data
cube.

9 Related Work

An overview of data warehousing and OLAP technology can be found in [3].
Since Gray et al delivered their seminal data cube paper in 1996 [12], most
work in the field has been concerned with techniques for efficient OLAP, given
the small time window (usually at night) when warehouses can go offline for
data refreshing.
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Yang et al [35] focus on the problem of data cube construction and show
how a cluster middleware, called ADR (originally developed for scientific data
intensive applications) can be used for carrying out scalable data cube con-
struction implementation.

Bearing the ideal of making OLAP “truly online”, Ng et al [19] develop a
collection of parallel algorithms directed towards online and offline creation of
data cubes using low cost PC clusters to parallelize computations.

Goil and Choudhary [11] address scalability in multidimensional systems
for OLAP and multidimensional analysis and describe the Parsimony system
providing a parallel and scalable infrastructure for multidimensional online an-
alytical processing, used for both OLAP and data mining. Sparsity of data sets
is handled by using chunks to store data either as a dense block using mul-
tidimensional arrays or as sparse representation using a bit encoded sparse
structure. Parallel algorithms are developed for data mining on the multidi-
mensional cube structure for attribute-oriented association rules and decision-
tree-based classification. Performance results for high dimensional data sets on
a distributed memory parallel machine (IBM SP-2) show good speedup and
scalability.

Recent publications in “end-to-end” system proposals for parallel OLAP
servers are scarce. Sidera [6] is one such proposal, providing OLAP-specific
functionality gathering recent results in a common framework: “the most com-
prehensive OLAP platform described in the current research literature” [6].

Closer to our approach, Sun and others [30,31] introduce a technique based
on the use of tensors in the area of pattern discovery. (Tensors generalize
vectors and matrices, as happens in the mathematical domain, and can be
used to represent data-cubes.) To capture temporal evolution one uses tensor
streams or sequences that are time indexed structures of tensors, the advantage
of this kind of streams being the generalization of traditional streams and
sequences.

On the background stays singular value decomposition (SVD), whose ma-
tricial expression conspicuously resembles our starting point (4) and suggests
a link between the two approaches which we intend to study in the future.

Our work also intersects with the area of index based database query
(response time) optimization, namely in what respects bitmap indices [34].
Clearly, the projection matrices built in the current paper are bitmaps re-
garded as matrices. Bitmaps were first implemented in IBM’s Model 204 [23],
becoming a “de facto” device after compression techniques solved their out-
rageous memory space demands. They are still in use in today’s commercial
database systems, see [34] for details.

Concerning LA kernels for parallel machines, Bell and Garland [1] explore
the design of efficient sparse matrix-vector kernels for throughput oriented
processors and implement these kernels in a parallel computing architecture
developed by NVIDIA. The Optimized Sparse Kernel Interface (OSKI) Li-
brary [32] is a collection of low-level C primitives that provide automatically
tuned computational kernels on sparse matrices, for use in solver libraries and
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applications. OSKI has a BLAS-style interface, providing basic kernels like
sparse matrix-vector multiply and sparse triangular solve, among others.

Last but not least, Yang et al [36] propose architecture-aware optimizations
for sparse matrix multiplication on GPUs and study the impact of their efforts
on graph mining. This work is another piece of evidence suggesting that future
OLAP and data mining should rely on linear algebra.

10 Conclusions and Future Work

This paper proposes a separation of concerns in approaching parallel OLAP.
The strategy consists in first encoding OLAP functionality solely in terms
of LA (matrix) operations, and then relying on the theory of parallel sparse
matrix/matrix and matrix/vector multiplication to achieve parallelism [32].
All operations in the approach, namely

– the conversion of dimension attributes into projection matrices
– the conversion of measure attributes into diagonal matrices
– the calculation of cross tabulations
– the calculation of cubes

are embarassingly parallel [8]. Both projection and diagonal matrices are sparse,
therefore calling for suitably optimization in a parallel environment [32].

The paper focuses on the first part of the approach — something one
might call LAOLAP (for “linear algebra OLAP”) — letting the actual parallel
implementation over multi-core LA kernels for future work, as explained below.
Moreover, it illustrates how the kinship between relation and matrix algebra
suggests how the LA approach to OLAP should proceed. To the best of the
authors’ knowledge this technique is novel in the field and deserves further
attention.

Although the overall strategy can be regarded as a noSQL [18], or “SQL-
free” approach to OLAP data processing, an LA semantics could be developed
for SQL accordingly, think for instance of syntactic constructs such as group
by. Further to these and to the matricial projections dealt with already in
the current paper, the Khatri-Rao product can be used to perform selections
using attribute membership vectors as representations of sets of values.

Future work. Given the two separate steps of our approach, future work will
proceed in two independent directions, one going deeper into the LA encoding
of data mining operations and the other actually implementing the overall
approach and benchmarking it with respect to state-of-the-art parallel OLAP
technology.

On the foundations side, much work has to be carried out, namely in pro-
viding a proper “justification” of the approach. In particular, we have to cross-
check our matrix encoding of OLAP (and FDs) with already existing OLAP
formal models, such as given in [5,24] and likely elsewhere. Mimicking OLAP
algebra (whatever this means) in terms of linear algebra may provide better
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and simpler proofs for existing results and possibly generate new ones, as our
experience in pointfree calculation already shows, in the relational algebra field
[20,22]. And, of course, a closer look at [30] is also in the research agenda.

Extending LA support for other forms of data consolidation such as eg.
averaging is at immediate reach. For instance, averaging rather than summing
up measure vectors is obtained once again via bang matrices, as the following
formula shows,

avg v �
! � v

! � !�

for n 1
voo and 1 n

!oo , reducing v into the scalar which holds its sum.

Averaging holds since (! � !�) is 1 1
noo , also a scalar. This generalizes to

weighted averaging: given two vectors n 1
v,woo where w records weights,

vw �
x

y
where

�
x
y

�
�

�
v�

!

�
� w

Back to our case study, it is easy to see that obtaining cross tabula-
tions consolidated by averaging is a question of augmenting equation (4) with
the (index-wise) division of the cross tabulation matrix by the corresponding
counting matrix:

tA � JT KM � t�B
tA � t�B

Extremes (min and max) are easy to calculate, achievable by changing the
semantics of the multiplication and sum of elements in the matrix. But cal-
culating more exotic data consolidation forms as eg. population’s standard
deviation is a challenge to overcome due to the complexity of the formulas.
We have been able to achieve it with intensive use of Khatri-Rao products and
other non-trivial matrix operations, but further research is needed to evaluate
the practicality of such usage.

On the practical side, our main expectations reside in actually implement-
ing our LA OLAP formulæ over a fast kernel for parallel implementation of
sparse matrix algebra, such as eg. [1,32], and benchmark the overall result with
respect to standard parallel OLAP implementations such as eg. PARSIMONY
[11].

It will be interesting to see how much of current bitmap technology [34]
can be used in our approach to obtain optimal projection function implemen-
tations. We point out that further study of the relationship between bitmap
compression and sparse matrix representation techniques is of interest to the
whole spectrum of this research field.

The prospect of extending such techniques to spreadsheet software running
on multi-core laptops is also of interest 8. We are currently getting involved in

8 See project SSaaPP: Spread Sheets as a Programming Paradigm in the HASLab project
portfolio:

http://wiki.di.uminho.pt/twiki/bin/view/DI/FMHAS/Projects.
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an open source initiative targeting at incorporating our ideas into the calcula-
tion of summary tables in OpenOffice taking advantage of lap-top multi-core
hardware architecture.

Last but not least, it would be interesting to see how much could be gained
from implementing our approach in computational software programs used in
scientific engineering such as eg. Mathematica 9 [33], namely by putting its
matrix tools and support for sparse arrays in the service of packages such as
eg. BEST Viewpoints 7, everything tuned for multi-core platforms.
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A Listings of Matlab scripts

Listing 1 provides both the calculation of cross tabulation for projections A, B and measure
M and the generation of a bang matrix for size r.

function R = bang(r)
R = ones(1,r);

end

function B = ctab(A,M,B)
[m, k] = size(M);
B = [ A ; bang(m) ] ∗ M ∗ [ B ; bang(k)]’;

end

Listing 1 Matlab encodings of bang (!) and cross table calculation (ctab).

The script presented in Listing 2 consists of a loop that builds a row partitioned matrix,
as prescribed by the

Á
operator and its indices. It iterates over the result sets generated by

the powerset construction 2D, corresponding to P pprojq in the script.
We observe that a richer type system along the lines proposed by [16] would be useful by

letting Matlab to infer psizepmeas, 1qq in the penultimate line, or even eliminate its need
if in the construction of the partitioned matrix rC; krppsjqs a bang of size 6 were inferred
as the empty Khatri-Rao matching the type.

The final result relies on a Khatri-Rao product implementation kr made available in the
Matlab Central repository by Laurent Sorber from K.U. Leuven. The script CleanAndShow
removes 0 valued entries and shows the types of the result to increase the visualization of
the result.

Although useful to put our ideas to work and as a validation of our approach, we have
to disclaim and acknowledge the limitations of this script that was handcrafted to capture
this particular example, but easily generalizable. Our intention is to exemplify and make it
a hands-on resource to aid in the understanding of the approach.

The function encoding the powerset construction for the example data cube is presented
in Listing 3. It generates the powerset from the bigger sets with three components to the
smaller ones. The empty set is not included because it is hard coded in the Cube.m script.
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function C = Cube(proj,meas)
C = [];
ps = P(proj);
for j=1:size(ps,2)�1

C = [C ; kr(ps{j})];
end
C = [C; bang(size(meas,1))];
C = C ∗ meas ∗ bang(size(meas,1))’;

end

Listing 2 Matlab encodings of the Cube operator.

function PS = P(set)

length = size(set,2);
PS = cell(1,2ˆlength);

PS = {};
x = 1;
for i=length:�1:0

ind = nchoosek(1:length,i);

for j=1:size(ind,1)
PS{x} = set(ind(j,:));
x=x+1;

end
end

end

Listing 3 Matlab encodings a powerset operator.

Listing 4 gives the script that labels the resulting vector of using Cube.m to the running
example presented. It contains the labels hardcoded, joins them with the resulting vector
and in the end iterates over the result by removing zero sale lines.
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function column = CleanAndShow(totals)

labels = [’Chevy 1990 Blue  ’,
’Chevy 1990 Green ’,
’Chevy 1990 Red   ’,
’Chevy 1991 Blue  ’,
’Chevy 1991 Green ’,
’Chevy 1991 Red   ’,
’Ford  1990 Blue  ’,
’Ford  1990 Green ’,
’Ford  1990 Red   ’,
’Ford  1991 Blue  ’,
’Ford  1991 Green ’,
’Ford  1991 Red   ’,
’Chevy 1990 ALL   ’,
’Chevy 1991 ALL   ’,
’Ford  1990 ALL   ’,
’Ford  1991 ALL   ’,
’Chevy ALL  Blue  ’,
’Chevy ALL  Green ’,
’Chevy ALL  Red   ’,
’Ford  ALL  Blue  ’,
’Ford  ALL  Green ’,
’Ford  ALL  Red   ’,
’ALL   1990 Blue  ’,
’ALL   1990 Green ’,
’ALL   1990 Red   ’,
’ALL   1991 Blue  ’,
’ALL   1991 Green ’,
’ALL   1991 Red   ’,
’Chevy ALL  ALL   ’,
’Ford  ALL  ALL   ’,
’ALL   1990 ALL   ’,
’ALL   1991 ALL   ’,
’ALL   ALL  Blue  ’,
’ALL   ALL  Green ’,
’ALL   ALL  Red   ’,
’ALL   ALL  ALL   ’
];

columnaux = [labels num2str(totals)];

column = [];
for i=1:size(columnaux,1)

if(strcmp(columnaux(i,19:20),’ 0’) == 0)
column = [column; columnaux(i,:)];

end
end

end

Listing 4 Matlab encodings of the CleanAndShow operator.


