The expression lemma

[Ralph Lämmel, Ondrej Rypacek]

João Vinagre MAPi Thematic Seminar, June 2012

Outline

- 1. Introduction and motivation
- 2. Programming: Functional vs OO
- 3. Simple expression lemma
- 4. Generalized expression lemma
- 5. Related work
- 6. Conclusions and future work

Introduction

Functional vs OO

—— Arithmetic expression forms data Expr = Num Int Add Expr Expr	<pre>public abstract class Expr { public abstract int eval (); public abstract void modn(int v); }</pre>
Evaluate expressions eval :: Expr \rightarrow Int eval (Num i) = i eval (Add I r) = eval I + eval r	<pre>public class Num extends Expr { private int value; public Num(int value) { this.value = value; } public int eval() { return value; } public void modn(int v) { this.value = this.value % v; }</pre>
$\begin{array}{l} \mbox{ Modify literals modulo v} \\ \mbox{modn}:: Expr \rightarrow \mbox{Int} \rightarrow \mbox{Expr} \\ \mbox{modn} (\mbox{Num i}) \ v = \mbox{Num} (i \ \mbox{'mod} \ \ v) \\ \mbox{modn} (\mbox{Add} \ \ \ r) \ v = \mbox{Add} (\mbox{modn} \ \ \ v) (\mbox{modn} \ \ r \ v) \end{array}$	<pre>} public class Add extends Expr { private Expr left, right; public Add(Expr left, Expr right) { this. left = left; this. right = right; } public int eval() { return left.eval() + right.eval(); } public void modn(int v) { left.modn(v); right.modn(v); } }</pre>
Recursive functions on algebraic data type	Recursive methods on object state

We know (by code inspection) that these two are semantically equivalent

But can we prove it? (Mathematically!)

Algebras and coalgebras

- Functional programs:
 - formalized in algebras of functional folds (catamorphisms)
- OO programs:
 - formalized in coalgebras of object unfolds (anamorphisms)
- (Co)algebraic specification example (binary tree with labels):

$$\begin{cases} \begin{array}{ccc} \mathsf{nil:} 1 & \longrightarrow & X \\ \mathsf{node:} X \times A \times X & \longrightarrow & X \\ 1 + (X \times A \times X) \to X \end{array} \qquad \begin{cases} \begin{array}{ccc} \mathsf{leaf:} X & \longrightarrow & A \\ \mathsf{left:} X & \longrightarrow & X \\ \mathsf{right:} X & \longrightarrow & X \\ X \to A \times X \times X \\ \end{cases}$$

Algebras and coalgebras

- Functional programs:
 - formalized in algebras of functional folds (catamorphisms)
- OO programs:
 - formalized in coalgebras of object unfolds (anamorphisms)
- (Co)algebraic specification example (binary tree with labels):

$$\begin{cases} \text{nil: } 1 \longrightarrow X \\ \text{node: } X \times A \times X \longrightarrow X \end{cases} \qquad \begin{cases} \text{leaf: } X \longrightarrow A \\ \text{left: } X \longrightarrow X \\ \text{right: } X \longrightarrow X \end{cases}$$
$$1 + (X \times A \times X) \rightarrow X \qquad \qquad X \rightarrow A \times X \times X \end{cases}$$

The expression lemma

... defines a proper correspondence between anamorphically (and coalgebraically) phrased OO programs and catamorphically phrased functional programs.

Simple expression lemma

Given a distributive law $\lambda : FB \rightarrow BF$, we can define an arrow $\mu F \rightarrow \nu B$ using the derivations:

 $\lambda_{\nu B} \circ F \operatorname{out}_{B} : F \nu B \longrightarrow BF \nu B$ $[(\lambda_{\nu B} \circ F \operatorname{out}_{B})]_{B} : F \nu B \longrightarrow \nu B$ $([(\lambda_{\nu B} \circ F \operatorname{out}_{B})]_{B})_{F} : \mu F \longrightarrow \nu B$

$$\begin{split} Bin_{F} \circ \lambda_{\mu F} : FB\mu F \longrightarrow B\mu F \\ (\|Bin_{F} \circ \lambda_{\mu F}\|)_{F} : \mu F \longrightarrow B\mu F \\ [(\|Bin_{F} \circ \lambda_{\mu F}\|)_{F}]_{B} : \mu F \longrightarrow \nu B \end{split}$$

Generalized expression lemma

- Same reasoning, but lifts to monads and comonads
- Some additional properties need to be met

Given a monad $\langle T, \eta, \mu \rangle$, a comonad $\langle D, \eta, \delta \rangle$ and a distributive law $\Lambda : TD \to DT$ of the monad Tover D:

 $([(\Lambda_{D1} \circ T \delta_1)]_D)_T = [((D \mu_0 \circ \Lambda_{T0})_T]_D]_D$

Related work

- Functional OO programming languages
 - Moby, .NET (C#/VB + LINQ), F#, Scala, OCaml, ...
 - Focus is on extending existing OO languages to support the functional paradigm (or vice-versa)
 - However they do not try to establish a formal correspondence between OO and functional programs
- The expression problem [Wadler]
 - Language code extensibility problem (both term- and operation-wise)
 - Assumes the expression lemma, however with less structure

Related work (continued)

- Operational semantics [Turi and Plotkin]
 - Denotational and operational semantics corresponds to functional and OO, respectively.
- Distributive laws
 - Languages with binders in presheaf category [Fiore, Plotkin and Turi]
 - Recursive constructs [Klin]
 - Modular constructions on distributive laws [Jacobs]
 - Distributive laws for recursion and corecursion [Pardo, Uustalu, Vene et al]

Conclusions

- Given:
 - a recursive functional program expressed in catamorphisms (folds);
 - a recursive OO program expressed in anamorphisms (unfolds);
- we can prove the semantic equivalence between both

(if they are in fact equivalent)

Limitations / Open issues

- Not everything is linearly recursive! → a more general lemma is necessary for many real world problems
- Now that we can establish semantic equivalence, we should take advantage of this (e.g. bidirectional code refactoring) → not trivial

