
The expression lemma

João Vinagre
MAPi Thematic Seminar, June 2012

[Ralph Lämmel, Ondrej Rypacek]

2

Outline

1. Introduction and motivation

2. Programming: Functional vs OO

3. Simple expression lemma

4. Generalized expression lemma

5. Related work

6. Conclusions and future work

3

Introduction

Problem

Recursive Program

Functional paradigm OO paradigm

4

Functional vs OO

We know (by code inspection) that these two are semantically equivalent

But can we prove it?
(Mathematically!)

Recursive functions on
algebraic data type

Recursive methods on
object state

5

Algebras and coalgebras
● Functional programs:

● formalized in algebras of functional folds (catamorphisms)
● OO programs:

● formalized in coalgebras of object unfolds (anamorphisms)

● (Co)algebraic specification example (binary tree with labels):

6

Algebras and coalgebras
● Functional programs:

● formalized in algebras of functional folds (catamorphisms)
● OO programs:

● formalized in coalgebras of object unfolds (anamorphisms)

● (Co)algebraic specification example (binary tree with labels):

7

The expression lemma

… defines a proper correspondence between
anamorphically (and coalgebraically) phrased
OO programs and catamorphically phrased
functional programs.

8

Simple expression lemma
Given a distributive law λ : FB → BF,
 we can define an arrow μF → νB using the derivations:

9

Generalized expression lemma

● Same reasoning, but lifts to monads and
comonads

● Some additional properties need to be met

Given a monad 〈 T,η,μ 〉 , a comonad 〈 D,η,δ 〉
and a distributive law Λ : TD → DT of the monad T
over D:

10

Related work

● Functional OO programming languages
● Moby, .NET (C#/VB + LINQ), F#, Scala, OCaml, …
● Focus is on extending existing OO languages to support the

functional paradigm (or vice-versa)
● However they do not try to establish a formal correspondence

between OO and functional programs
● The expression problem [Wadler]

● Language code extensibility problem (both term- and
operation-wise)

● Assumes the expression lemma, however with less structure

11

Related work (continued)

● Operational semantics [Turi and Plotkin]
● Denotational and operational semantics corresponds to

functional and OO, respectively.
● Distributive laws

● Languages with binders in presheaf category [Fiore,
Plotkin and Turi]

● Recursive constructs [Klin]
● Modular constructions on distributive laws [Jacobs]
● Distributive laws for recursion and corecursion [Pardo,

Uustalu, Vene et al]

12

Conclusions

● Given:
● a recursive functional program expressed in

catamorphisms (folds);
● a recursive OO program expressed in anamorphisms

(unfolds);
● we can prove the semantic equivalence between

both
(if they are in fact equivalent)

13

Limitations / Open issues

● Not everything is linearly recursive! → a more
general lemma is necessary for many real world
problems

● Now that we can establish semantic
equivalence, we should take advantage of this
(e.g. bidirectional code refactoring) → not trivial

14

●

	Diapositivo 1
	Diapositivo 2
	Diapositivo 3
	Diapositivo 4
	Diapositivo 5
	Diapositivo 6
	Diapositivo 7
	Diapositivo 8
	Diapositivo 9
	Diapositivo 10
	Diapositivo 11
	Diapositivo 12
	Diapositivo 13
	Diapositivo 14

