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Abstract

Galculator is the name of the prototype of a proof assistant of
a special brand: it is solely based on the algebra of Galois con-
nections. When combined with the pointfree transform and tactics
such as the indirect equality principle, Galois connections offer a
very powerful, generic device to tackle the complexity of proofs
in program verification. The paper describes the architecture of the
current Galculator prototype, which is implemented in Haskell in
order to steer types as much as possible. The prospect of integrating
the Galculator with other proof assistants such as e.g. Coq is also
discussed.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming

General Terms Verification, Theory, Languages, Design

Keywords Galois connections, Point-free notation, Haskell, GADT,
DSL, Proof Assistant

1. Introduction

Despite significant advances in the field, software correctness is
still an ambitious challenge. Over the years, many techniques have
been developed and applied in order to augment our confidence on
programs we write, ranging from informal techniques and guidance
principles to formal methods. The success of each of these meth-
ods varies greatly but there seems to be evidence that success is
proportional to tool support (Jackson 2006).

Logic based approaches benefit from the help of theorem
provers in the conduction of proofs. Using annotations and tools
such as Why and Caduceus (Filliâtre and Marché 2007), programs
can be verified and formal proof obligations be discharged. Ideally,
all proofs should be fully automated but there are theoretical limits
imposed by the undecidability of general predicate calculus.

It is often the case that practical application of tools is hindered
by the underlying theory itself, whenever this is too “heavy” for the
problem at hands. Let us consider a simple example: we want to
prove the correctness of the following Haskell function1

1 Throughout this text, we use lhs2TeX (Hinze and Löh 2008) for type-
setting symbols and code in Haskell.
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x ‘div ‘ y | x < y = 0
| x ! y = (x − y) ‘div ‘ y + 1

which computes whole division, for non-negative x and positive
y . A standard proof would involve some kind of induction (e.g.
structural induction, fixpoint induction). However, what we have
above is code — where is the specification?

Let us denote such a specification by x ÷ y (over the natural
numbers), for which at least two definitions can be found in maths
books, for y > 0: one implicit 2

c = x ÷ y ⇔ 〈∃ r : 0 " r < y : x = c× y + r〉 (1)

and the other explicit

x ÷ y = 〈
_

z :: z × y " x〉 (2)

where notation
W

means the largest of a set of numbers.
Checking the correctness of the given Haskell code against

implicit definition (1) in the Coq proof assistant (Coquand and
Huet 1988) entails a number of steps which are described in (Bertot
and Castéran 2004; Almeida 2008). Still for the same purpose, one
might dive into real number arithmetics by defining x ÷ y to be
(x − (x mod y))/y, and exploiting the properties of the modulo
operator.

Correctness verification assumes that both specification and im-
plementation are available before proofs take place. A different,
more constructive alternative would be to calculate the implemen-
tation from the specification itself. In the current example, it can
be observed that the following Galois connection (Ore 1944) arises
from (2),

z × y " x ⇔ z " x ÷ y (y > 0) (3)

assuming x, y, z universally quantified over natural numbers. Note
how this property matches with (2): fixing x and y and reading (3)
as an implication from left to right, this already tells us that x ÷ y
is the largest z such that z × y " x holds.

A simple calculation of the given Haskell code can be per-
formed based on two Galois connections: the one just given (which
explains whole division) and the following,

a− b " c ⇔ a " c + b (4)

which explains subtraction over the integers (another operator used
in the algorithm). We can put these two connections together by
restricting (3) to non-negative integers, keeping y '= 0. We reason:

2 We use notation 〈∃ x : R : T 〉 meaning there exists some x in the range
R such that T holds.



z " x ÷ y

⇔ { Galois connection (3) assuming x ! 0, y > 0 }

z × y " x

⇔ { cancellation, thanks to (4) }

z × y − y " x− y

⇔ { distribution law }

(z − 1)× y " x− y

⇔ { (3) again, assuming x ! y }

z − 1 " (x− y) ÷ y

⇔ { (4) again }

z " (x− y) ÷ y + 1

That is, every natural number z which is at most x÷ y (for x ! y)
is also at most (x − y) ÷ y + 1 and vice versa. We conclude that
the two expressions are the same

x ÷ y = (x− y) ÷ y + 1 (5)

thus calculating the second clause of the div function. Concerning
the first, we assume x < y and reason in the same style:

z " x ÷ y

⇔ { (3) and transitivity, since x < y }

z × y " x ∧ z × y < y

⇔ { since y $= 0 }

z × y " x ∧ z " 0

⇔ { z " 0 entails z × y " x, since 0 " x }

z " 0

This time we get x ÷ y = 0 under the same principle which
supported clause (5), which is known as the principle of indirect
equality (Aarts et al. 1992):

a = b ⇔ 〈∀ x :: x " a ⇔ x " b〉 (6)

(The reader unaware of this way of indirectly establishing algebraic
equalities will recognize that the same pattern of indirection is
used when establishing set equality via the membership relation,
cf. A = B ⇔ 〈∀ x :: x ∈ A ⇔ x ∈ B〉 as opposed to, e.g.
circular inclusion: A = B ⇔ A ⊆ B ∧ B ⊆ A.)

This simple (non inductive) proof shows the calculational power
of Galois connections operated via indirect equality, which are ap-
plicable to arbitrarily complex problem domains. References (Aarts
et al. 1992; Backhouse and Backhouse 2004; Backhouse 2004)
provide an expressive account of such applications, ranging over
the predicate calculus, number theory, parametric polymorphism,
strictness analysis and so on.

The appreciation of such wide applicability and potential for
program reasoning has led the authors of the current paper to em-
bark on a project whose main aim is the design and implementation
of a proof assistant — the ‘G’alculator — solely based on Galois
connections, their algebra and associated tactics such as (6) above.

Galculator does not intend to be a classical theorem prover (TP)
because it is not usable in arbitrary proofs: only in those where
adjoint operators of Galois connections participate. However, it can
be very useful when used together with a “host” TP such as e.g.
Coq (Bertot and Castéran 2004).

The prototype of this tool is currently being implemented in
Haskell by resorting to generalized algebraic data types (GADTs).
Elsewhere we have given a brief overview of this tool from a
term rewriting perspective (Silva and Oliveira 2008). In the cur-
rent paper we give a detailed account of the design, which is a
full-fledged example of the use of state-of-the-art Haskell tech-
nology (Peyton Jones 2003), incorporating GADTs, existential
data types, parsing combinators, strategic term rewriting com-
binators and polymorphic type representation. Sources and ex-
amples of application are available from the project’s website
(www.di.uminho.pt/research/galculator).

1.1 Structure of the paper

Section 2 gives a short introduction to the use of the Haskell type
system in the implementation of domain specific languages (DSLs).
Then a brief account of the theory behind the Galculator’s proof
strategies is presented: Galois connections in Section 3 and the
pointfree transform in Section 4. Section 5 describes the imple-
mentation of the Galculator prototype in some detail. Section 6
contains a summary of the related work. Finally, Section 7 con-
cludes and points to future work.

2. Brief overview of Haskell

This section provides a brief introduction to Haskell, ranging from
simple notation conventions to the advanced features of its type sys-
tem that will be mentioned in the rest of this paper. This includes a
brief explanation of the potential of using functional programming
in the implementation of domain specific languages.

2.1 Haskell

Haskell is a purely lazy functional language (Peyton Jones 2003).
It is strongly-typed meaning that programs cannot fail due to run-
time type errors. Type checking is performed statically even if type
declarations are not provided, thanks to type-inference.

The language supports parametric and ad-hoc polymorphism.
In parametric polymorphism type variables can range over the
universe of types. For instance, the identity function is defined in
Haskell as

id :: a → a
id x = x

meaning that it “ignores” the type of its argument. It is parametric
because a will be instantiated with the actual type of the argument
at run-time (for instance, id True will instantiate a to Bool).

Ad-hoc polymorphism, also known as function overloading,
allows for functions to be applied to arguments of different types
which this time behave differently according of the type of their
arguments. In Haskell, ad-hoc polymorphism is implemented using
type classes. For instance, the equality class

class Eq a where
(≡), ( '≡) :: a → a → Bool

defines two class functions: ≡ for equality and '≡ for inequality.
Every instance of the Eq class must provide an implementation
of the two functions (in fact, only one of them is needed because
the other is just its negation). Type classes allow for generic code.
For instance, we can define a generic function which removes
duplicates from a list which works with any type:

nub :: Eq a ⇒ [a ] → [a ]

where Eq a ⇒ . . . indicates that nub uses the equality function
and thus requires instances of Eq .

Algebraic data types (ADTs) are the mechanism used in Haskell
in order to declare new data types. An ADT declaration specifies



how inhabitants of the type can be built, i.e., its constructors, like
in an algebraic definition. ADTs subsume parameterized, union,
enumeration and recursive types in just one device, for instance

data List a = Nil | Cons a (List a)

where Nil is the empty list and Cons the list append constructor
function.

Generalized abstract data types (GADTs) provide an extension
to this device. They extend the capabilities of ADTs by introducing
a new syntax for declarations where constructor types are explicitly
spelt out. For instance, List a will be written

data List a where
Nil :: List a
Cons :: a → List a → List a

using GADTs notation. What is this useful for?
Unlike ADTs, GADTs allow for restricting the result type pa-

rameter of each constructor. A “classical” example of the use
of GADTs is the construction of a type representation mecha-
nism (Baars and Swierstra 2002; Cheney and Hinze 2002):

data Type a where
Int :: Type Int
List :: Type a → Type [a ]
·× · :: Type a → Type b → Type (a, b)
. . .

If ADTs were used, the return type of all the constructors above
would be bound to Type a; with GADTs each such type is re-
stricted to a more precise type. This means that a is no longer para-
metric; it has become an index type which reflects the type of the
term built. Moreover, this example introduces another feature of
GADTs: the use of singleton (or representation) types. As (Sheard
et al. 2005) put it, “every singleton type completely characterizes
the structure of its single inhabitant, and the structure of a value
in a singleton type completely characterizes its type”. As we will
see in the sequel, this property allows for a reflection mechanism
on the Haskell type system, and to introduce dynamic typing in a
static context.

Another important feature of the Haskell type system are exis-
tential types. They allow us to introduce arbitrary types into type
definitions, hiding them from the enclosing context. A traditional
example is the definition of a list with elements of different types.
We can define an existentially quantified type as follows:

data T = ∀a. MkT a

It should be noticed that the quantified variable a only exists in
the context of the quantification, it is not a parameter of the type
T . The Haskell syntax is somewhat misleading since an universal
quantifier is used. However, this definition is isomorphic to

data T = MkT (∃a. a)

written in Haskell pseudo-code. Using the T type a heteroge-
neous list can be built; however, values cannot be taken outside
the constructor because that would break static type safety. More-
over, no operation can be performed because the type is too gen-
eral. However, using type classes the existentially quantified vari-
able can be constrained. For instance, if we restrict the quantified
types to be instances of the Show class (this provides a method
show :: Show a ⇒ a → String for building string representa-
tions) we can define ∀a. Show a ⇒ MkT ′ a . A heterogeneous
list of this type can be traversed in order to obtain string represen-
tations of the elements.

GADTs also subsume the use of existential quantified types.
Variables which appear in the type constructors but do not appear
in their return type are existentially quantified. Thus, type T above

can be defined as follows, giving an explicit signature to its con-
structor:

data T where
MkT :: a → T

2.2 Monads

Pure functional languages have referential transparency and are
side-effect free. How can programming ingredients such as input-
output, state updates etc., that usually do not accommodate very
well in the functional paradigm, be treated in such a side-effect
free way? The concept of monad (arising from category theory and
programming language semantics) (Wadler 1990), has been imple-
mented in Haskell as a mechanism to deal with such computations.
It is available via standard type class

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

where >>= is referred to as bind. Every instance of this class should
obey the monadic laws (Wadler 1990):

return a >>= f = f a
m >>= return = m
(m >>= f ) >>= g = m >>= (λx → f x >>= g)

Although all instances of Monad must instantiate both functions,
very different effects can be achieved by changing the definitions.
Thus, the semantics of the program depends of the underlying
monad. Haskell provides a do notation similar to an imperative
programming style as syntactical sugar for successive binds.

Another advantage of using monads is that computations can be
composed using monad transformers (Jones 1995). For instance,
adding error support to a program that already uses the input-output
monad amounts to combining the two monads with a transformer
and changing the parts of the program where errors are generated
or caught; everything else remains unchanged.

Of special importance in this work is the use of MonadPlus
and MonadOr . Although providing different behaviors they are
many times confused. Currently, only MonadPlus is part of the
Haskell standard libraries but there is a discussion for reformulating
the structure in order to introduce MonadOr . (More details are
available from the Haskell wiki.)

Both of them provide a mzero operator for modeling failure.
However, they handle failure in different ways. MonadPlus uses
mplus operator which obeys the left-distribution law: (s ‘mplus ‘
r)>>=t = (s>>=t)‘mplus‘(r >>=t). This specifies a backtracking
behavior, where all the possible combinations are tried. The Parsec
library of parsing combinators (Leijen and Meijer 2001) to which
we resort in Section 5.5 uses MonadPlus .

MonadOr defines a morelse operator which obeys the left
catch law: return a ‘morelse ‘ r = return a . This specifies a
left biased behavior: the second argument is only tried if the first
one fails.

2.3 GADTs and Domain Specific Languages

Grammars and parsers are central to computer science. Besides
checking for input correctness, a parser for a given grammar returns
a representation where all the syntactical details are omitted, known
as abstract syntax tree (AST).

Functional languages resort to ADTs in order to define ASTs:
from a grammar specification it is straightforward to extract an
ADT which represents the type of the corresponding AST. Con-
versely, every ADT may be seen as a specification of an abstract
language. Polymorphic ADTs define families of abstract languages.



Languages can be catalogued as general-purpose or domain-
specific. The former are suited to solve problems in general while
the latter are tailored to particular, well-defined problem domains.
They tend to be relatively small (although this is not always the
case) and specialized.

The extra cost of developing a domain-specific language (DSL),
due to the need for infrastructures such as compilers, parsers, etc
are trimmed down by embedding the new language into a host
language. Such embedded DSLs (EDSLs) are usually provided in
the form of libraries sharing the host language’s infrastructure.

Functional languages are particularly apt to EDSL development
thanks to their natural support for ADTs and the availability of gen-
eralized algebraic data types (GADTs), which offer new possibili-
ties for EDSL implementation. While ADT data constructors only
keep term information, GADT’s constructors add types to terms.
Moreover, as described earlier on, the type index of a GADT re-
flects the type of the term built. Using this index with a type rep-
resentation such as the one above it is possible to have a reflec-
tion mechanism and to know terms’ types at run-time. This allows
for type-dependent behavior and dynamic typing. In summary, with
GADTs ill-typed terms are simply not possible to build.

3. Galois connections

As already explained, the mathematical concept of a Galois con-
nection is the essence of the Galculator. This section presents an
overview of Galois connections and their algebraic properties. Re-
call the concept of a preorder (reflexive and transitive relation).
Given two preordered sets (A,/A) and (B,/B) and two func-

tions B A
f!! and A B

g!! , the pair (f, g) is a Galois

connection if and only if, for all a ∈ A and b ∈ B:

f a /B b ⇔ a /A g b (7)

Function f (resp. g) is referred to as the lower adjoint (resp. upper
adjoint) of the connection. In this paper we will display Galois
connections using the graphical notation

A

f
""

"A

##
B

g

$$

"B

%%

which we in-line in text by writing (A,/A) (B,/B)
(f,g)

!! .

Both notations always represent the source domain of the lower
adjoint on the left. As we shall see, the arrow notation emphasizes
the categorial structure of Galois connections, which are closed
under composition and exhibit identity.

Galois connections have several important properties which re-
late them to the underlying ordered structures, of which Table 1
gives a summary. (See (Backhouse 2004) for a full account.) The
main advantage of this rich theory is that once a concept is iden-
tified as adjoint of a Galois connection, all generic properties are
inherited, even when the other adjoint is not known. For instance,
every adjoint is monotonic; upper adjoints preserve top elements
while lower adjoints preserve bottom-elements, and so on.

A most useful ingredient of Galois connections lies in the fact
that they build up on top of themselves thanks to a number of com-
binators which enable one to construct (on the fly) new connections
out of existing ones (see details in section 5.3). Let us see some of
these combinators.

The simplest of all Galois connections is the identity,

A
id

""

"A

##
A

id

$$

"A

%%

Property Description

f a /B b⇔ a /A g b “Shunting rule”
g (b 0B b′) = g b 0A g b′ Distributivity (UA over meet)
f (a 1A a′) = f a 1B f a′ Distributivity (LA over join)

a /A g (f a) Lower cancellation
f (g b) /B b Upper cancellation

a /A a′⇒ f a /B f a′ Monotonicity (LA)
b /B b′⇒ g b /A g b′ Monotonicity (UA)

g 2B = 2A Top-preservation (UA)
f ⊥A = ⊥B Bottom-preservation (LA)

Table 1. Properties of Galois connections. Legend: UA — upper
adjoint. LA — lower adjoint. Properties involving meet, join, top
and bottom assume preorders /A and /B form lattice structures.

where id is the polymorphic identity function mentioned in section

2.1. Moreover, two Galois connections (A,/) (B,4)
(f,g)

!! and

(B,4) (C, ")
(h,k)

!! with matching preorders can be composed,

forming Galois connection

A

h◦f
&&

"

##
C

g◦k

$$

"

%%

(Note the reverse composition order in which adjoints compose.)
Composition is an associative operation and the identity Galois
connection is its unit. Thus Galois connections form a category.

The particular case in which both orders are equalities boils
down to both adjoints being isomorphisms (bijections). The con-
verse combinator on Galois connections switches adjoints while in-

verting the orders. That is, from (A,/) (B,4)
(f,g)

!! one builds

the converse connection (B,5) (A,6)
(g,f)

!! .

Moreover, every relator F 3 that distributes through binary inter-
sections preserves Galois connections (Backhouse and Backhouse

2004). Therefore, from (A,/) (B,4)
(f,g)

!! one infers, for ev-

ery such relator, (FA,F /) (FB,F 4)
(Ff,Fg)
!! . This extends to

binary relators such as, for instance, the product A×B which pairs
elements of A with elements of B ordered by the pairwise order-
ings. Products also enable one to express more complex Galois con-

nections such as e.g. (A,/) (A×A,/ × /)
(δ,#)

!! (where δ is

the diagonal function δa = (a, a)) which captures the definition of
greatest lower bounds in partial orders:

a / b ∧ a / c ⇔ a / b 0 c

Back to Section 1, it is easy to see that the two connec-
tions (3,4) involved in our introductory example can be pic-

tured as, respectively, (IN, ") (IN, ")
((×y),(÷y))

!! (for nonzero y) and

(ZZ, ") (ZZ, ")
((−b),(+b))

!! .

Notations (×y), (÷y), etc. call for an explanation: since the
operations in equations (3,4) are binary, in order to form Galois
connections one of their arguments must be fixed, so that they

3 Relators are the relational counterpart of functors. See e.g. (Aarts et al.
1992; Bird and de Moor 1997) for details.



Pointwise Pointfree

〈∃ c :: bRc ∧ cSa〉 b(R ◦ S)a
〈∀ x :: xRb⇒ xSa〉 b(R \ S)a
〈∀ x :: bRx⇒ aSx〉 b(S/R)a

bRa ∧ cSa (b, c)〈R, S〉a
bRa ∧ dSc (b, d)(R× S)(a, c)
bRa ∧ bSa b(R ∩ S)a
bSa ∨ bSa b(R ∪ S)a
(f b)R(g a) b(f ◦

◦ R ◦ g)a
b = a b id a
True b 2 a
False b ⊥ a

〈∀ a, b :: bRa⇒ bSa〉 R ⊆ S
〈∀ a, b :: bRa ⇔ bSa〉 R = S

〈∀ a :: aRa〉 id ⊆ R

Table 2. Sample of PF-transform rules.

become unary functions on the other argument. In general, given
binary operator θ, one defines two unary sections 4 (aθ) and (θb),
for every suitably typed a and b, such that (aθ)x = a θ x and
(θb)y = y θ b, respectively. Thus, instead of having just one Galois
connection, we build a family of Galois connections indexed by the
frozen argument.

4. Pointfree transform

The overall operation of the Galculator is based on transforming
and rewriting terms involving adjoints of Galois connections. As
is well-known in term rewriting, one must be very careful about
variables: free and bound variables make substitutions tricky.

We overcome this complexity by transforming variable-level
logical formulæ into pointfree formulæ involving binary relations
only. In this pointfree transform (PF-transform for short) (Tarski
and Givant 1987; Bird and de Moor 1997; Oliveira and Rodrigues
2004) variables are abstracted from formulæ in the same way
Backus develops his algebra of programs (Backus 1978). The main
difference stays in the fact that we are transforming logical formulæ
while Backus was doing so for functional terms only 5.

Once PF-transformed, formulæ involve binary relations only
(R, S, etc) and relational composition (R ◦ S) becomes the main
“glue” among terms:

b(R ◦ S)c ⇔ 〈∃ a :: b R a ∧ a S c〉 (8)

(Notation b R a means that pair (b, a) is in R.) This means that
variables are only needed in functional sections of shape (aθ) and
(θb), as explained above.

A brief overview of the PF-transform is presented in Table 2.
One particular rule of the PF-transform which is specially helpful
in removing variables from expressions is

(f b) R (g a) ⇔ b(f◦
◦ R ◦ g)a (9)

4 This terminology is taken from functional programming, where sections
are a very popular programming device (Peyton Jones 2003).
5 See (Tarski and Givant 1987) for the theoretical foundations of this trans-
form. The idea of encoding predicates in terms of relations was initiated by
De Morgan in the 1860s and followed by Peirce who, in the 1870s, found
interesting equational laws of the calculus of binary relations (Pratt 1992).
The pointfree nature of the notation which emerged from this embryonic
work was later further exploited by Tarski and his students (Tarski and
Givant 1987). In the 1980’s, Freyd and Ščedrov developed the notion of
an allegory (a category whose morphisms are partially ordered) which fi-
nally accommodates the binary relation calculus as special case (Freyd and
Ščedrov 1990).

where f◦ denotes the converse of f . In general, the converse of
relation R, denoted R◦, is such that a(R◦)b holds iff bRa holds.

It is easy to see that the application of (9) to both sides of (7)
yields, for all suitably typed a, b

a(f◦
◦/B ◦ id)b ⇔ a(id◦

◦/A ◦ g)b

which leads to PF relational equality

f◦
◦/B = /A ◦ g (10)

once variables are removed (and also because the identity function
id is its own converse and the unit of composition). So we can deal
with logical expressions involving adjoints of Galois connections
by equating the corresponding PF-terms without variables.

The indirect equality rule can also be formulated without
variables thanks to the PF-transform. Consider two functions

B A
f!! and B A

g!! , where (B,4) is a partial order.

That

f = g ⇔ 4 ◦ f = 4 ◦ g (11)

(or, equivalently, f = g ⇔ f ◦
◦4 = g◦

◦ 4) instantiates indirect
equality can be easily checked by putting variables back via (9).

Switching to PF-terms makes the operation of the Galculator
a lot easier. In fact, the pointfree representation can be regarded
as an extension to relations of the combinatory logic approach to
functional notation (Turner 1979).

For example, let us see how the calculation in the introduction
is actually performed inside the Galculator: first of all, equations
(3,4) become families of PF-equalities

(×y)◦ ◦ " = " ◦ (÷y) (12)

(−b)◦ ◦ " = " ◦ (+b) (13)

indexed by y (assuming y '= 0) and b, respectively, where (×y),
(÷y), (−b) and (+b) are the right section functions of multiplica-
tion, division, subtraction and addition, respectively. Then the fol-
lowing series of equalities are calculated:

" ◦ (÷y)

= { Galois connection (12) assuming y > 0 }

(×y)◦ ◦ "

= { cancellation, thanks to (13) — steps omitted }

((−y) ◦ (×y))◦ ◦ " ◦ (−y)

= { distribution law }

((×y) ◦ (−1 ))◦ ◦ " ◦ (−y)

= { distribution of converse through composition }

(−1 )◦ ◦ (×y)◦ ◦ " ◦ (−y)

= { (12) again }

(−1 )◦ ◦ " ◦ (÷y) ◦ (−y)

= { (13) again }

" ◦ (+1 ) ◦ (÷y) ◦ (−y)

From this, the Galculator uses tactic (11) to infer equality.

5. Galculator

This section describes the Galculator prototype, starting from its
basic design principles and general architecture and proceeding to
the technical details of the implementation.




























 

Figure 1. Design principles of the Galculator prototype

5.1 Design principles

Galois connections are the Galculator’s main building block. They
are combined as needed, forming arbitrarily complex new connec-
tions from the existing ones. From each Galois connection the Gal-
culator derives its properties as given by Table 1 which, together
with laws from relation algebra (Bird and de Moor 1997) and al-
gebraic properties of the particular domain of the problem being
solved, form the set of laws of the system. In order to represent
all these concepts (Galois connections, relation algebra, particular
theory domains), several embedded DSLs are defined.

Galculator proofs are transformations of the abstract represen-
tation of the equality being proved. These transformations are made
according to the equalities enabled by the laws of the system. How-
ever, laws are objects arising from the theoretical level; they can-
not be applied to representations. Thus, a mechanism is defined for
deriving functional applications of the available laws in the form
of rewrite rules. The application of such rules in performed by a
strategic term rewrite system (TRS).

Basic rewrite strategies can be combined in order to build more
complex ones, according to the complexity of the problem. More-
over, with the same set of rules several different rewrite systems
can be easily built and tried.

A summary of the design principles which guide the Galculator
prototype is given in Figure 1.

5.2 Architecture

The Galculator is divided in several logical modules. Below we
give an overview of the system before presenting a more technical
description.

Interpreter. The command line interpreter provides for interac-
tive user interfacing. Several options are offered: loading modules,
exploiting Galois connection algebra, checking expressions and
doing proofs. Currently, these are performed in interactive proof
mode. At each step, the user can choose a rule derived from the set
of laws available from the system. Rules can be applied using the
strategies built from the combinators provided by the term rewrit-
ing system. The system offers hints about the applicable rules in
the current proof step. At the end, a complete proof log, with all
equational steps and justifications is made available.

Parser. Several domain specific languages (DSL) are available
in order to express the concepts in use: Galois connections, rela-
tions, orders, functions and so on. For each one a parser was imple-
mented using parsing combinators (Leijen and Meijer 2001). This
technique makes it easy to use a DSL inside another simply by

calling the respective parsing combinators. Currently, the syntax
is not much user friendly since it reflects closely the internal rep-
resentation. The choice of a more definitive interface syntax has
been deferred to a later phase in which the Galculator will inter-
face with the Coq (Bertot and Castéran 2004) theorem prover. (See
Section 7.)

Type inference. Types are useful in finding errors, not only in
programs but also in proofs: they give insight in some misleading
details that are often overlooked. The Galculator prototype is a
typed environment with its own type system, based on the Haskell
type system using a type representation. Altogether, the user is
released from having to provide explicit types in expressions.

The Galculator type system supports parametric polymor-
phism. The type representation is extended with support for type
variables. However, it is not possible to rely on the type system
of the host language alone in order to account this addition. Thus
a unification mechanism on type variables has been implemented
based on the Hindley-Milner algorithm (Milner 1978). Polymor-
phism is useful for deriving the so-called free-theorems of func-
tions (Wadler 1989; Backhouse and Backhouse 2004), a kind of
commutative property enjoyed by polymorphic functions solely
inferred from their types.

Term rewriting system. The core of Galculator is its term rewrit-
ing system (TRS), whose rules (derived from the theory explained
in Section 3) are applied to terms in order to build proofs. The sys-
tem uses the flexibility of strategies (Lämmel and Visser 2003) and
their combinatorial properties in order to build more complex proof
strategies. Moreover, since the whole system is typed, the TRS is
also typed, allowing for type directed rewriting rules.

Property inference. Galois connections are specified by their
types (sets on which they are defined), the preorders involved and
the adjoint functions. This component derives the properties stated
in Table 1 from the starting specification and adds them to the
system.

Rule inference. The equational laws expressed in our representa-
tion are purely declarative; they cannot be used in rewriting because
they are not functions. Thus, we developed a rule inference engine
which takes an equational expression and returns a rewrite function
usable by the TRS. This component ensures most of the genericity
of Galculator.

5.3 Representation

The concepts used in the system (relations, functions, orders, Ga-
lois connections) are represented by GADTs. As mentioned in Sec-
tion 2.3, GADTs naturally induce an associated language. Thus, in
fact, we are defining very small DSLs which relate to each other.

Types. The following data type encompasses the most used types
in the domains we want to use our tool:

data Type a where
One :: Type One
Bool :: Type Bool
Char :: Type Char
String :: Type String
Int :: Type Int
Float :: Type Float

List :: Type a → Type [a ]
Set :: Type a → Type (Set a)
Maybe :: Type a → Type (Maybe a)
·× · :: Type a → Type b → Type (a, b)
· + · :: Type a → Type b → Type (a + b)
· ⇀ · :: Type a → Type b → Type (a ⇀ b)



Ord :: Type a → Type (PO a)
Fun :: Type a → Type b → Type (a ← b)
Rel :: Type a → Type b → Type (a ↔ b)
GC :: Type a → Type b → Type (GC a b)

type One = () -- Unitary type
type b ← a = a → b -- Functions
data b ↔ a -- Relations
data PO a -- Pre-orders
data GC b a -- Galois connections

We deviate from the usual Haskell representation for functions (we
use← instead of→) because the right to left arrow is visually more
consistent with function composition which is the main connector
of our pointfree calculus.

This representation works with a closed universe of types. So,
parametric polymorphism is not possible. In type polymorphism
type variables which range over the universe of types are allowed.
In order to deal with parametric polymorphism we must enrich our
type representation with another constructor which represents type
variables:

data Var
type Name = String

data Type a where
. . .
TVar :: Name → Type Var

This means that all type variable representations have the same
type (Var ). Using Type a does not work because it would not be
possible to define a type equality mechanism over it. The drawback
of the use of Var is that Haskell type inference mechanism fails to
unify Var with any type, like it would do with a normal Haskell
type variable. Thus, we cannot solely rely on the Haskell type-
system and thus have to create our own unification mechanism
(Section 5.4).

Combinators. The pointfree calculus presented in Section 4
presents a set of relational combinators. The relation calculus is
the basis of all proofs once Galois connections are encoded in the
pointfree style (recall Equation 10). Thus, we represent the combi-
nators of Table 2 using constructors of a GADT. Here are some of
the defined combinators:

data R r where
·◦ :: R (b ↔ a)→ R (a ↔ b)
· ◦· · :: Type b → R (c ↔ b)→ R (b ↔ a) → R (c ↔ a)
·× · :: R (b ↔ a)→ R (d ↔ c)→ R ((b, d)↔ (a, c))
. . .

Given relations r and s with the right types, r◦ denotes the converse
of r ; r ◦b s denotes the composition of r with s where b is the
common type; r × s denotes the product of two relations. Note the
use of a type annotation Type b in the definition of the composition
operator. This is necessary during traversals of the representation
in order to get the common type back. (This type is existentially
quantified and otherwise it could not be known.)

Type lifting. Functions and orders are particular cases of rela-
tions. Thus, it should be possible to use them wherever a relation
can; however their types do not match. Two embedding are defined
for the purpose:

ωo(·) :: R (PO a) → R (a ↔ a)
ωf (·) :: R (b ← a)→ R (b ↔ a)
. . .

ωo(o) turns order o into a relation; ωf (f ) makes the function f a
relation.

Sections. As explained in Section 3, many adjoints arise as sec-
tions of functions. We provide two sectioning operators:

·::· · :: Type b → R b → R (a ← (b, c)) → R (a ← c)
··::· :: Type c → R c → R (a ← (b, c))→ R (a ← b)
. . .

Given f a function with the right type and v a value with type t ,
v::t f denotes the left section of f ; fv::t denotes the right section
of f . Like in the composition operator, type annotations are again
needed in order to retain existentially quantified types.

Application. Recall from Section 4 that variables are only needed
(at PF-level) to express functional sections of shape (aθ) and (θb).
We introduce them in our representation for this purpose:

· $· · :: Type b → R (a ← b)→ R b → R a
VAL :: Name → Type a → R a
. . .

f $tv denotes the application of function f to a term v of type
t ;VAL a t denotes a variable with name a and type t .

Galois connections. Our representation of Galois connections
collects their adjoint functions and respective preorders. Moreover,
the operations of Galois connection algebra are also provided:

GVar :: Name → R (b ← a) → R (a ← b)
→ R (PO b)→ R (PO a)→ R (GC a b)

GId :: R (GC a a)
GComp :: Type b → R (GC c b)→ R (GC b a)

→ R (GC c a)
GConv :: R (GC b a)→ R (GC a b)
. . .

Given two adjoint functions f and g of a Galois connection and
fo and go their associated preorders, GVar n f g fo go denotes

Galois connection (A, go) (B, fo)
(f,g)

!! with name n; GId rep-

resents the identity Galois connection; GComp g g ′ represents
the composition of Galois connections g and g ′ with appropriated
types; and GConv g represents the converse connection of g .

Theories. Other constructors that represent operators in several
domains (functions, integer arithmetics, real arithmetics and some
other) are also defined. These will not be addressed in this paper
for space economy.

5.4 Type equality and type unification

One advantage of using explicit type representations is that equality
can be computed at run-time, allowing for the introduction of
dynamic typing mechanisms in a static environment (Baars and
Swierstra 2002). For this, a GADT definition is used:

data Equal a b where Eq :: Equal a a

This is called a witness type because it can only be built if the
types are equal. This is ensured by the type checker by analysing
the types of the type indexes. Moreover, thanks to this witness the
type-checking mechanism can recognize values of the two types as
interchangeable.

Given two type representations, the teq function tries to build an
Eq witness of their equality: if the types are equal the witness is re-
turned; otherwise it fails. Using GADTs computing type represen-
tation equality reduces to computing syntactical equality between
data constructors:

teq :: MonadPlus m ⇒ Type a → Type b → m (Equal a b)
teq Int Int = return Eq
teq (a × b) (a ′ × b′) = do



Eq ← teq a a ′

Eq ← teq b b′

return Eq
. . .
teq = mzero

However, implementing type equality over type variable represen-
tation leads to the question: when are two type variables of the same
type? A type variable representation is just a placeholder, it can be
replaced by another type representation. Using polymorphic type
representations we cannot rely on the type checker in order to infer
that types are equal. We have to implement a type unification mech-
anism which helps the type-checker to infer the types correctly.

Type unification can be easily solved with a unification algo-
rithm such as the well-known Hindley-Milner type inference mech-
anism (Milner 1978). The algorithm receives a system of equations
stating the supposed equalities between types. If some of the equal-
ities do not hold, e.g., trying to unify integers with Booleans, the
algorithm fails. Otherwise, a set of substitutions is returned with
mappings from variables into the type which they should be instan-
tiated to. One property of this algorithm is that if it succeeds, it
returns the most general unifier. Function

η :: MonadPlus m ⇒ [Equation ] → m [Substitution ]

implements this algorithm. Equations and substitutions are syn-
onyms for the same type which is just a pair of type representations
existentially quantified:

data Constraint where
Unify :: Type a → Type b → Constraint

type Equation = Constraint
type Substitution = Constraint

5.5 Parsing

Embedded DSLs imply that the user knows how to use the host
language (write modules, compile files and so on). Thus, in or-
der to allow the user to specify expressions in a textual format a
parser was developed using the parsing combinators of the Parsec
library (Leijen and Meijer 2001).

For each constructor of our representation a parsing combinator
is defined. This combinatorial style makes it easy to embed DSLs
inside others: all it is needed is to use the corresponding parser in a
composable approach. While building ASTs using ADTs is almost
straightforward, representations using GADTs pose some problems
because their index type is only known at run-time: it is dependent
of the input. This is circumvented by resorting to an existential data
type to hide the type index

data Covert t = ∀x . Hide (t x)

maintaining static safeness. Covert is a common pattern (Sheard
et al. 2005) where t can be parameterized with the data type we
want to use. For instance, for building type representations:

type TypeBox = Covert Type

This can be manipulated in a type-safe manner provided the encap-
sulated value never escapes the scope of its quantification.

However, when trying to parse relational representations, for
instance, hiding the index type is not enough. If we define a data
type to encapsulate the representation and a parsing combinator,

type RBox = Covert R

parseR :: Parser RBox

when the result of the parsing function is used, for instance, by
another parsing combinator in order to build a more complex term,

the index type escapes from its scope and the compiler cannot
guarantee type safeness of the code.

The solution is to add an explicit type representation sharing
the same index type with the expression representation, changing
the type of parseR accordingly:

data Exists singleton term =
∀t . Exists (singleton t) (term t)

type RType = Exists Type R

parseR :: Parser RType

Although the exact index type is not known, the type-checker
knows that it must reflect the type representation (because it is a
singleton type), being sufficient to ensure the static type safeness.
So, for instance, the parsing combinator for the converse operator:

parseCONV :: Parser RType
parseCONV = do

reserved "CONV"
Exists (Rel t t ′) r ← parseR
return (Exists (Rel t ′ t) (r◦))

Since explicit type annotations are needed, the user has to provide
them or the system has to infer them. Thanks to the unification
mechanism, we just have to generate the equations. Polymorphic
operators need to get fresh variable names in order to denote their
type variable representation; other operators just have to be pro-
vided with the type representation corresponding to their types. An
example of an operator that is polymorphic in its argument, but not
in its result is bang (function that takes any value to the only inhab-
itant of the unitary type):

parseFBang :: Parser RType
parseFBang = do

reserved "FBang"
tid ← getFresh
return (Exists (Fun One (TVar tid)) bang)

getFresh gets always fresh variables names from an infinite stream
of identifiers due to lazy evaluation.

Unification is only needed when parsing relational combinators
in which some variables must be equal. Composition is a good
example of this:

parseCOMP :: Parser RType
parseCOMP = do

reserved "COMP"
Exists (Rel t3 t2 ) r1 ← parseR
Exists (Rel t2b t1 ) r2 ← parseR
constr ← η [Unify t2 t2b ]
Hide t1 ′ ← typeRewrite constr t1
Hide t2 ′ ← typeRewrite constr t2
Hide t3 ′ ← typeRewrite constr t3
r1 ′ ← rCast constr (Rel t3 ′ t2 ′) r1
r2 ′ ← rCast constr (Rel t2 ′ t1 ′) r2
return (Exists (Rel t3 ′ t1 ′) (r1 ′ ◦t2 ′ r2 ′))

After parsing the two relational expressions r1 and r2 we have
to make sure that they have a common type in order to be compos-
able. Thus, a type equation is solved using unification and the set of
substitutions of type variables is applied using typeRewrite (more
details in Section 5.8). Next, the representation must also reflect
type substitutions. Since constructors in GADTs retain the associ-
ated type information, a kind of type-safe “cast” is needed in order
to reflect the new types. rCast is essentially an identity function
where an expression of type r is transformed in an expression of
type t , if types are compatible:



rCast :: MonadPlus m
⇒ [Substitution ]→ Type t → R r → m (R t)

The need for the list of substitutions is justified by the relational
combinators which have type annotations, like composition, where
the substitutions have to be also applied for consistency.

Finally, the parsing function returns the newly built term with
the respective type annotation. Since all computations are per-
formed in a MonadPlus context, if any of them fails, the all whole
parsing function will fail.

5.6 Laws and rules

Recall from Section 5.1 that term Law refers to expressions at the
theoretical level, while term Rule denotes functions applicable by
the rewriting system. We use an equational approach to proofs, in
which laws express equalities (A = B) or inequalities (A ⊆ B )
between expressions. From an equality A = B two rules can be
inferred, one in each direction of rewriting: A → B and B → A.
This corresponds to the application of the Leibniz principle: if two
objects are equal we can interchange them keeping the validity of
the enclosing expression. Inequalities do not obey to this principle;
they are handled by monotonicity: if A ⊆ B , E is an expression
containing A and E ′ is the expression E with B substituted for A,
then E ⊆ E ′ 6. Although two rewrite rules can be inferred from an
inequality (cf. the converse orderings), in order to keep the system
simple we only consider that A ⊆ B induces a rule A → B. The
other direction can be easily achieved by inverting the direction of
the calculus.

One advantage of using equational reasoning is that it is type
preserving, i.e., expressions of both sides of equalities (or inequal-
ities) have the same type. Our representation for laws reflects this
fact, using an existentially quantified index type:

data Law where
EQUIV :: Meta → Type a → R a → R a → Law
IMPL :: Meta → Type a → R a → R a → Law

EQUIV represents equality (A = B) and IMPL represents in-
equality (A ⊆ B ). The Meta argument holds meta-information
about the law: name, kind and possibly other useful information.

Following our design principles, laws can be specified in a
purely declarative level using a textual notation from which the
parser builds corresponding Law representations; which, in turn,
are automatically converted into rewriting rules. A rewriting rule
is defined as a polymorphic function, with type and expression
representations as arguments:

type Rule = ∀a. Type a → R a → Rewrite (R a)

where Rewrite is a monad that deals with effects during rewriting.
(See more details in Section 5.8). The function that, from a law
representation returns a rewriting function (rule), is defined as
follows:

getRule :: Law → Rule
getRule (EQUIV m t1 r1 r2 ) t2 r = do

rcns ← rConstraint r1 r -- 1
cns ← η ([Unify t1 t2 ] ++ rcns) -- 2
Hide t1 ′ ← typeRewrite cns t1 -- 3
r ′ ← rCast cns t1 ′ r -- 4
r1 ′ ← rCast cns t1 ′ r1 -- 4
r2 ′ ← rCast cns t2 r2 -- 5
guard (r1 ′ ≡ r ′) -- 6
successEquiv m t2 r r2 ′ -- 7

6 Note, however, that unrestricted substitutions inside sections of upper-
adjoints may lead to anomalous behaviour due to their antitonicity. How
to restrict such behaviour is subject of on-going research.

The general principle of this function is that given an argument
expression r and its type t2 it will try to match these with the left
hand side of the law r1 and its corresponding type t1 . If they are
compatible the right hand side of the law is returned; otherwise, the
function fails.

Each step of getRule are explained below. It should be noticed
that we are working in the context of MonadPlus , meaning that if
one of the steps fails, getRule also fails.

1. Type equations are generated by the rConstraint function
from comparing the two expressions we are trying to match.
This is necessary in order to ensure that type annotations
inside data constructors are correctly unified. For instance,
when trying to match · ◦(TVar "a") · and · ◦Int ·, an equation
Unify (TVar "a") Int should be generated. In case the two
expressions do not match, rConstraint fails.

2. Type representations of the argument and law are unified, to-
gether with the equations generated in the previous step. The
unification failure means that types are incompatible and no rule
can be derived. Otherwise, a set of substitutions is returned.

3. The substitutions obtained in the previous step are applied to
the type representation of the law.

4. The type-safe cast function is applied to the two expressions we
want to compare. This is needed because these have to be of the
same type.

5. The type-safe cast function is applied to the right hand side of
the law in order to make it possible to return a value with the
right type t2 , since our system is type preserving.

6. The argument expression and left hand side of the law, once
casted, are compared for equality.

7. The successEquiv function deals with the details of the Rewrite
monad (for instance, adds a successful rewriting to a proof log).
Otherwise, it could be just return r2 ′, meaning that it is possi-
ble to rewrite r into r2 ′, both having type t2 .

The implementation for IMPL is completely analogous, the unique
difference being the use of successImpl in the last step. The in-
verse rewrite rule (the right hand side by the left hand side of the
law) is obtained through a similar function getRuleInv , the only
difference being the inversion of variables.

5.7 Galois connections properties

Galculator exploits Galois connection algebra and properties.
These properties are equational laws (Table 1) representable in
our system. What is needed is a way of automatically derive the
properties from the definitions.

For each property, a function is defined, receiving the represen-
tation of a Galois connection together with its type representation.
For instance, the pointfree version of the shunting property is gen-
erated by function:

gcShunting :: Type (GC a b)→ R (GC a b)→ Law
gcShunting (GC a b) (GVar nm ladj uadj lord uord) =

EQUIV meta (Rel a b)
((ωo(uord)) ◦a (ωf (uadj )))
(((ωf (ladj ))◦) ◦b (ωo(lord)))

where
meta = Meta ("Shunting: " ++ nm) (Just SHUNT )

gcShunting (GC a b) GId = . . .

The cancellation laws use the IMPL constructor because they are
not equalities:

gcCancelUpper :: Type (GC a b)→ R (GC a b)→ Law
gcCancelUpper (GC a b) (GVar nm ladj uadj uord) =



Strategy combinator Symbol
Identity rule nop
Sequential composition '
Always failing rule ⊥
Choice (non-deterministic) ⊕
Choice (Left-bias) >
Map on all children all
Map on one child one

Table 3. Strategic combinators implemented in the Galculator
TRS.

IMPL meta (Rel a a)
(ωo(uord))
((ωo(uord)) ◦a ((ωf (uadj )) ◦b (ωf (ladj ))))

where
meta = Meta ("Cancellation: " ++ nm) (Just CANC )

gcCancelUpper (GC a b) GId = . . .

5.8 Term rewriting system

The term rewriting system (TRS) puts the rules derived from Galois
connections to work.. As already mentioned, it is based on strategic
techniques (Visser and Benaissa 1998; Cirstea et al. 2001).

Strategic term rewriting uses simple basic strategies and combi-
nators in order to build arbitrarily complex strategies in a declara-
tive style. Strategies can be reused and combined in different ways
in order to obtain different TRS. In the context of Galculator, the
use of rewrite strategies on proofs can be compared to the use of
tactics on traditional theorem provers.

Our TRS is not only strategic but also typed, allowing for
type-dependent rewriting. The first framework combining strategic
programming and strong typing in the functional paradigm was
Strafunski (Lämmel and Visser 2003).

Two strategic TRS have been implemented: one for expressions
and another for types. Although they use similar strategies, they are
slightly different.

Expressions. The definition of rewriting rules for expressions
was already presented in Section 5.6. In fact, Rule is an instance of
the general type of rewrite strategies

type GenericM m = ∀a. Type a → R a → m (R a)

parameterized by the Rewrite monad which is defined using
monad transformers in order to combine failure, non-determinism
and a proof log. However, GenericM can be instantiated differ-
ently in order to deal with different kinds of effects.

Table 3 summarizes the strategy combinators that are defined.
Except the traversal combinators (all and one), the other are just
renamings for monadic operations (recall Section 2.2). nop and '
are the return and bind operators of the monad class; ⊥ and ⊕
the mzero and mplus operators of MonadPlus; > the morelse
operator of MonadOr .

Special mention should go to the fact that two different choice
operators have been defined: one for left-biased choice and an-
other for non-deterministic choice. The latter (⊕) is based on the
MonadPlus monad, thus obeying the left-distribution law. The use
of non-deterministic choice is important when all different paths
should be tried but it comes with a performance penalty since the
search space expands.

The left-biased choice combinator (>) is based on the MonadOr
and thus obeys the left catch law: the right strategy is only tried if
the first one fails. This provides a mechanism for cutting down
unnecessary cases and restricting the search space.

The cost of traversal operators (all, one) having to deal with
boilerplate code is minimized by using a spine representation in-
spired on (Hinze et al. 2006):

data Typed a where
(: |) :: Type a → R a → Typed (R a)

data Spine a where
Constr :: a → Spine a
(?) :: Spine (a → b) → Typed a → Spine b

fromSpine :: Spine a → a
fromSpine (Constr c) = c
fromSpine (f ? ( : | a)) = (fromSpine f ) a

toSpine :: Type a → R a → Spine (R a)
. . .

The Spine data type is used in order to build a standard representa-
tion for constructors: Constr is used for constructors without argu-
ments, ? is used for constructors with arguments. The fromSpine
function maps the spine representation back to actual expressions;
toSpine builds a spine representation from a given expression (the
corresponding type representation is needed also). Changes in ex-
pression representation thus only affect toSpine .

The implementation of the all and one combinators boils down
to defining how to traverse Constr and ? and use toSpine and
fromSpine to map expressions between representations. This
makes the implementation of the strategies independent of the rep-
resentation and reduces the cost of changing.

More complex strategies have been defined using the basic
combinators

try s = s > nop
many s = (s 'many s) > nop
many1 s = s 'many s
once s = s > one (once s)
topdown s = s ' all (topdown s)
bottomup s = all (bottomup s) ' s
innermost s = all (innermost s) ' try (s ' innermost s)

For instance, if we have a rule that associates any operator to the
left, say assocLeft , and we want to associate an expression to the
left we just have to use innermost assocLeft .

Types. The rewriting system for types uses the same principles
and combinators as the TRS for expressions. However, it is not
type preserving because changing type representations will imply
having a different type in the end.

In order to make the type system consider all rewritings as type
preserving, the new type is hidden using another existential data
type (Cunha et al. 2006):

data View a where
View :: Type b → View (Type a)

Thus, the rewrite rule for type will have the type

type Rule = ∀a. ∀m. MonadPlus m
⇒ Type a → m (View (Type a))

The result of the rewriting is exactly of the same type, but with the
new type hidden inside View . Since it is existentially quantified it
cannot be used outside the scope of the quantification. However,
we can pass it to other existential types, using the Covert pattern:

view2Box :: View (Type a) → TypeBox
view2Box (View t) = Hide t

Now, it can be manipulated providing that the result never falls
outside an existentially quantified type. Using this approach, the
function



typeRewrite :: MonadPlus m
⇒ [Substitution ] → Type t → m TypeBox

receives a list of substitutions to be applied to a type t . Since
substitutions on types are obviously not type-preserving, the result
has to be encapsulated inside a TypeBox .

6. Related work

Galois connections in Coq. Reference (Pichardie 2005) presents
a representation of Galois connections in Coq (Coquand and Huet
1988) developed in the context of work on abstract interpretation.
Adjoints are defined over complete lattices (a stricter requirement
than in the general theory). Proofs of the general properties that
Galois connections enjoy are defined in order to be executed in
Coq. However, Galois connection algebra is not exploited in order
to combine existing connections nor is it applied in proofs.

This work in a sense complements the Galculator approach
since it can discharge proof obligations about adjoints prior to
loading these into our system.

2LT. The core of the Galculator is inspired on the 2LT sys-
tem (Cunha et al. 2006). 2LT is aimed at schema transformation
of both data and migration functions in a type safe manner. Fur-
ther developments deal with calculating data retrieving functions
in the context of data schema evolution (Cunha and Visser 2007)
and invariant preservation through data refinement.

Our representation technique and the rewriting strategies im-
plemented were mostly influenced by this system, although the
rewriting rules of 2LT are defined using functions and therefore
hard-wired into the system. Although 2LT also uses a type rep-
resentation, it does not support polymorphism. Note that 2LT is
not a prover: it calculates data and functional transformations us-
ing a correct-by-construction philosophy. Although 2LT does not
rely on Galois connections explicitly, its underlying theory does
so (Oliveira 2007).

PF-ESC. This tool, which performs pointfree extended static
checking (Necco et al. 2007) and is also inspired on 2LT, uses
the relation calculus to simplify PF-transformed proof obligations.
Galois connections are used implicitly in the underlying calculus.
Although it shares some common concepts with the Galculator,
the two systems are different. The PF-ESC representation uses
properties to classify relations while the Galculator uses the type
representation itself. An advantage of using properties is that the
system is more flexible in so far as allowing for new kinds of re-
lation. Moreover, the type-lifts of our approach are not needed.
However, predicate functions which calculate the properties of ex-
pressions are required in order to apply certain transformations.
This makes the system not extensible because rewrite equations
must be hard-wired into functions. Since the Galculator is based
on types, predicate function are not needed and the rewrite rules
can be purely declarative. Moreover, the representation used in the
Galculator is statically safer, since incorrect constructions are not
allowed.

Proof processor system. The authors of (Bohorquez and Rocha
2005) advocate the use of the calculational approach proposed
by Dijkstra and Scholten in teaching discrete maths. Based on
the E logical calculus, a tool was developed in Haskell to exploit
equational proofs written in the Z notation (Spivey 1989). The
system helps the user by detecting errors in proofs and suggesting
valid deductive steps. Unlike our approach, this system does not
provide type support and does not use Galois connections as a
building block of the calculus implemented.

7. Concluding remarks

The Galculator is a proof assistant which implements an innovative
approach to theorem proving, different from what is traditional in
the field: it is solely based on Galois connections, their algebra and
associated tactics. Thanks to Galois connection algebra, it builds
new connections from old thanks to a number of combinators
enabling such constructions on the fly. It is based on the tactic of
indirect equality, which fits naturally with Galois connections.

This paper gives an account on the development of a prototype
of the tool written in Haskell. Most of the techniques employed are
not new, they are applications of work reported elsewhere in the
literature. Arguably, the extension of the type representation in or-
der to support polymorphic type representations and the support for
unification is new; we are not aware of any other implementation,
although it may exist.

To the best of our knowledge, the Galculator is the first proof
engine ever to combine and calculate directly with PF-transformed
Galois connections. We regard its current prototype as a non-trivial
illustration of the power of functional programming advanced fea-
tures for building prototypes of complex systems. It manages to
combine many often publicized distinctive features of functional
languages: GADTs, existential data types, combinatory approaches
(parsing, rewriting), the support for embedded DSLs, computations
as monads, higher-order functions and some other. Specially, the
use of GADTs and existential data types allows mixing static and
dynamic typing in a powerful way, making it possible to guaran-
tee the static safeness of objects whose type will only be known at
runtime, stepping into the power of dependent typing.

We decided to develop our own rewriting system instead of
using another rewriting engine, e.g. Stratego (Visser 2001) or
Maude (M. Clavel and Meseguer 2000), mainly because the typed
behavior of the system would be lost. Moreover, translating Gal-
culator laws into a foreign rewriting engine would require more
effort than needed to implement the whole rewriting system. Since
it is relies on Haskell monads its implementation is quite simple
and extensible. For instance, state information may be required to
implement some of the future features. This is easily accomplished
by using monad transformers.

The tool is still in the prototype stage, thus many ideas are
still left to be explored as more experimentation takes place. Some
directions of the future work are as follows:

Automated proofs. Currently, the Galculator is used as a proof
assistant where proofs are guided by the user. Some efforts have
been made in order to automate proofs which exhibit recurrent
patterns. However, the developed strategies can only deal with
some of these patterns. More general strategies applicable to a
wider range of problems are needed.

Free-theorems. Exploiting free-theorems with Galois connec-
tions has been one of our objectives since the beginning of the
Galculator project, specially because from (Backhouse and Back-
house 2004) we know how to calculate free-theorems about Galois
connections based on their types. Currently, some work has been
done in this field but it is not fully satisfactory because the ap-
proach is not sufficiently generic, in particular concerning relator
typed representation.

Integration with ‘host’ theorem provers. Galculator is not a
general prover: it works only with well-defined situations involv-
ing Galois connections. Combined with other theorem provers
it can behave like a specialized add-on component able to dis-
charge proofs wherever terms involve adjoints of known connec-
tions. Currently, we are working on integrating the Galculator with
Coq (Silva et al. 2008), either following the believing or the skep-
tical approach, as discussed by (Delahaye and Mayero 2005) in



integrating Coq with Maple. In the first case, Galculator-proven
assertions are added as axioms. In the second, the idea is to define
tactics in Coq which exploit Galois connection properties and in-
voke the Galculator in order to use the built-in strategies to prove
the the correctness of the steps. The resulting proofs are then re-
played using reflection to build trusted proofs in Coq.

The prospect of its integration with other proof assistants is also
open.
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