Google’s MapReduce Programming Model -

Revisited (by Ralf Lammel)

Diogo Pratas

MAPi doctoral program
Towards a Linear Algebra of Programming
Review Article

Thematic Seminar

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 1/22

© Introduction

© MapReduce
a Parallel MapReduce computations

@ Sawzall

© Summary

© Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 2/22

© Introduction

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 3/22

Introduction

@ Google's MapReduce is a programming model for processing large
data sets in a massively parallel manner.

@ The model is inspired by the map and reduce functions commonly
used in functional programming.

@ The authors reverse-engineer the seminal papers on MapReduce
and Sawzall, using the functional programming language Haskell,
specifically:

@ the basic program skeleton that underlies MapReduce
computations;

@ the parallelism opportunities executing MapReduce computations;

e the fundamental characteristics of Sawzall’s aggregators as an
advancement of the MapReduce approach;

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 4/22

© MapReduce

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 5 /22

MapReduce

@ MapReduce “abstraction is inspired by the map and reduce
primitives present in Lisp and many other functional languages”

[2].

@ MapReduce model is based on the following concepts:

]

o

o

iteration over the input;

computation of key/value pairs from each piece of input;
grouping of all intermediate values by key;

iteration over the resulting groups;

reduction of each group;

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 6 /22

MapReduce

@ Map

@ Perform a function on individual values in a data set to create a
new list of values
Example: square x = x * x
map square [1,2,3,4,5]
returns [1,4,9,16,25]

@ Reduce

@ Combine values in a data set to create a new value
Example: sum = (each element in the array, total +=)
reduce [1,2,3,4,5]
returns 15 (the sum of the elements)

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 7/22

MapReduce

@ Find all pages that link to a certain page

@ Map Function

e Outputs <target, source> pairs for each link to a target URL found
in a source page;

@ For each page we know what pages it links to

@ Reduce Function

@ Concatenates the list of all source URLs associated with a given target
URL and emits the pair: <target, list(source)>;

e For a given web page, we know what pages link to it.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 8 /22

MapReduce

The computation takes a set of input key/value pairs, and produces a set
of output key/value pairs. The user of the MapReduce library expresses
the computation as two functions: map and reduce:

@ Map, written by the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups
together all intermediate values associated with the same
intermediate key | and passes them to the reduce function.

@ map(inKey, inValue) — > (outKey, intermediateValue) list

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar

MapReduce

@ Reduce, written by the user, accepts an intermediate key | and a set
of values for that key. It merges together these values to form a
possibly smaller set of values. Typically just zero or one output
value is produced per reduce invocation.

@ The intermediate values are supplied to the user’s reduce function via
an iterator, allowing handle lists of values that are too large to fit in
memory.

@ reduce(outKey, intermediateValue list) — > outValue list

@ Formalizing: (|r]).(mapF)

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 10 / 22

e Parallel MapReduce computations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 11/ 22

Parallel MapReduce computations

@ The programming model readily enables parallelism, and the
MapReduce implementation takes care of the complex details of
distribution such as load balancing, network performance and
fault tolerance.

@ The programmer has to provide parameters for controlling
distribution and parallelism, such as the number of reduce tasks to
be used. Defaults for the control parameters may be inferable.

@ the next figure presents the strategy for distributed execution...

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 12 /22

Parallel MapReduce computations

Input data Intermediate data Output data

partition 1 | ¥2/1v
piece 1 K23
| reduce 1}
|t —_—
1| 1
N 1 1
N
[N 1
[11
| - 1 . 1
| partition R J ¥ !
1 |
! [i 401
: [| 11
[1 Pt (NN
! [1 . 11
! | | = 1
! [[11
L g | Y < [N
| partition | i ar
! 1
| reduce R:
1 - J
1 —
[i

piece Mfr

partition R

D. Pratas (IEETA, Univ. Aveiro) hematic Seminar 13 /22

Outline

@ Sawzall

D. Pratas (IEETA, Univ. Aveiro) Thematic Semi

@ Sawzall is a procedural domain-specific programming language,
used by Google to process large numbers of individual log
records.

@ Built on top of MapReduce.

@ Sawzall runs in the map phase.

@ Output of map phase is data items for aggregators.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar

Sawzall

Example

count: table sum of int;

total: table sum of float;
sumOfSquares: table sum of float;
x: float = input

emit count < — 1

emit total < — x

emit sumOfSquares < — x * x

Sawzall program will read the input and produce three results: the number
of records, the sum of the values, and the sum of the squares of the
values.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 16 / 22

Filters i

Emitted data Sorted results

Raw data

@ emit - sends data to external aggregator;

Drawing line between filtering and aggregating enables high degree
of parallelism;

Collection, Sample, Sum, Maximum, Quantile, Top, Unique;
Possible to process data as part of mapping phase (ex sum);

Possible to index aggregators;

e e e ¢

Creates a distinct aggregator for each unique value of index;

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 17 / 22

Outline

© Summary

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 18 / 22

@ MapReduce and Sawzall is one of the best examples of the power of
functional programming, to list processing in particular.

@ The authors used functional programming language (Haskell) for the
discovery of a rigorous description of the MapReduce programming
model and its advancement as the domain-specific language Sawzall.

@ The authors have shown the model is stunningly simple, robust, and
effectively supports parallelism.

@ As a side effect, it was presented general illustration for the utility of
functional programming in a semi-formal approach to design with
excellent support for executable specification.

@ This illustration may motivate others to deploy functional
programming for their future projects.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 19 / 22

© Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 20 / 22

Final considerations

References

1 M.M. Fokkinga. Mapreduce — a two-page explanation for laymen.
Unpublished Technical Report, 2008.

2 J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In OSDI'04, 6th Symposium on Operating Systems
Design and Implementation, Sponsored by USENIX, in cooperation
with ACM SIGOPS, pages 137-150, 2004.

3 R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, 14,
Sept. 2006. Special Issue: Dynamic Grids and Worldwide Computing.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 21 /22

Final considerations

Thank you !

pratas@ua.pt

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 22 /22

	Introduction
	MapReduce
	Parallel MapReduce computations
	Sawzall
	Summary
	Final considerations

