
Google’s MapReduce Programming Model -
Revisited (by Ralf Lammel)

Diogo Pratas

MAPi doctoral program

Towards a Linear Algebra of Programming

Review Article

Thematic Seminar

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 1 / 22

Outline

1 Introduction

2 MapReduce

3 Parallel MapReduce computations

4 Sawzall

5 Summary

6 Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 2 / 22

Outline

1 Introduction

2 MapReduce

3 Parallel MapReduce computations

4 Sawzall

5 Summary

6 Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 3 / 22

Introduction

Google’s MapReduce is a programming model for processing large
data sets in a massively parallel manner.

The model is inspired by the map and reduce functions commonly
used in functional programming.

The authors reverse-engineer the seminal papers on MapReduce
and Sawzall, using the functional programming language Haskell,
specifically:

the basic program skeleton that underlies MapReduce
computations;

the parallelism opportunities executing MapReduce computations;

the fundamental characteristics of Sawzall’s aggregators as an
advancement of the MapReduce approach;

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 4 / 22

Outline

1 Introduction

2 MapReduce

3 Parallel MapReduce computations

4 Sawzall

5 Summary

6 Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 5 / 22

MapReduce

MapReduce “abstraction is inspired by the map and reduce
primitives present in Lisp and many other functional languages”
[2].

MapReduce model is based on the following concepts:

iteration over the input;

computation of key/value pairs from each piece of input;

grouping of all intermediate values by key;

iteration over the resulting groups;

reduction of each group;

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 6 / 22

MapReduce

Map

Perform a function on individual values in a data set to create a
new list of values
Example: square x = x * x
map square [1,2,3,4,5]
returns [1,4,9,16,25]

Reduce

Combine values in a data set to create a new value
Example: sum = (each element in the array, total +=)
reduce [1,2,3,4,5]
returns 15 (the sum of the elements)

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 7 / 22

MapReduce

Find all pages that link to a certain page

Map Function

Outputs <target, source> pairs for each link to a target URL found
in a source page;

For each page we know what pages it links to

Reduce Function

Concatenates the list of all source URLs associated with a given target
URL and emits the pair: <target, list(source)>;

For a given web page, we know what pages link to it.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 8 / 22

MapReduce

The computation takes a set of input key/value pairs, and produces a set
of output key/value pairs. The user of the MapReduce library expresses
the computation as two functions: map and reduce:

Map, written by the user, takes an input pair and produces a set of
intermediate key/value pairs. The MapReduce library groups
together all intermediate values associated with the same
intermediate key I and passes them to the reduce function.

map(inKey, inValue) − > (outKey, intermediateValue) list

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 9 / 22

MapReduce

Reduce, written by the user, accepts an intermediate key I and a set
of values for that key. It merges together these values to form a
possibly smaller set of values. Typically just zero or one output
value is produced per reduce invocation.

The intermediate values are supplied to the user’s reduce function via
an iterator, allowing handle lists of values that are too large to fit in
memory.

reduce(outKey, intermediateValue list) − > outValue list

Formalizing: (|r|).(mapF)

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 10 / 22

Outline

1 Introduction

2 MapReduce

3 Parallel MapReduce computations

4 Sawzall

5 Summary

6 Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 11 / 22

Parallel MapReduce computations

The programming model readily enables parallelism, and the
MapReduce implementation takes care of the complex details of
distribution such as load balancing, network performance and
fault tolerance.

The programmer has to provide parameters for controlling
distribution and parallelism, such as the number of reduce tasks to
be used. Defaults for the control parameters may be inferable.

the next figure presents the strategy for distributed execution...

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 12 / 22

Parallel MapReduce computations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 13 / 22

Outline

1 Introduction

2 MapReduce

3 Parallel MapReduce computations

4 Sawzall

5 Summary

6 Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 14 / 22

Sawzall

Sawzall is a procedural domain-specific programming language,
used by Google to process large numbers of individual log
records.

Built on top of MapReduce.

Sawzall runs in the map phase.

Output of map phase is data items for aggregators.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 15 / 22

Sawzall
Example

count: table sum of int;
total: table sum of float;
sumOfSquares: table sum of float;
x: float = input
emit count < − 1
emit total < − x
emit sumOfSquares < − x ∗ x

Sawzall program will read the input and produce three results: the number
of records, the sum of the values, and the sum of the squares of the
values.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 16 / 22

Sawzall

emit - sends data to external aggregator;

Drawing line between filtering and aggregating enables high degree
of parallelism;

Collection, Sample, Sum, Maximum, Quantile, Top, Unique;

Possible to process data as part of mapping phase (ex sum);

Possible to index aggregators;

Creates a distinct aggregator for each unique value of index;

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 17 / 22

Outline

1 Introduction

2 MapReduce

3 Parallel MapReduce computations

4 Sawzall

5 Summary

6 Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 18 / 22

Summary

MapReduce and Sawzall is one of the best examples of the power of
functional programming, to list processing in particular.

The authors used functional programming language (Haskell) for the
discovery of a rigorous description of the MapReduce programming
model and its advancement as the domain-specific language Sawzall.

The authors have shown the model is stunningly simple, robust, and
effectively supports parallelism.

As a side effect, it was presented general illustration for the utility of
functional programming in a semi-formal approach to design with
excellent support for executable specification.

This illustration may motivate others to deploy functional
programming for their future projects.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 19 / 22

Outline

1 Introduction

2 MapReduce

3 Parallel MapReduce computations

4 Sawzall

5 Summary

6 Final considerations

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 20 / 22

Final considerations
References

1 M.M. Fokkinga. Mapreduce — a two-page explanation for laymen.
Unpublished Technical Report, 2008.

2 J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In OSDI’04, 6th Symposium on Operating Systems
Design and Implementation, Sponsored by USENIX, in cooperation
with ACM SIGOPS, pages 137–150, 2004.

3 R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the
data: Parallel analysis with Sawzall. Scientific Programming, 14,
Sept. 2006. Special Issue: Dynamic Grids and Worldwide Computing.

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 21 / 22

Final considerations

Thank you !

pratas@ua.pt

D. Pratas (IEETA, Univ. Aveiro) Thematic Seminar 22 / 22

	Introduction
	MapReduce
	Parallel MapReduce computations
	Sawzall
	Summary
	Final considerations

