An Integrated Formal Methods Tool-Chain and
its Application to Verifying a File System Model

From Miguel A. Ferreira and José N. Oliveira
Thematic Seminar - Paper Recitation

July 21, 2012



Skeleton

v

Brief Introduction

Tool-chain Scheme

v

v

Point-free Specification and Allow Mapping
» Execution and proof chain (VDM++ and HOL)

v

Conclusion and discussion



Brief Introduction

The paper proposes a tool-chain and also a short case study for
validation.
The tool-chain has the following requirements:

1. promote incremental development and verification of
specifications;

2. be agile enough to encourage users to verify even the smallest
unit of their specifications;

3. be capable of producing immediate feedback to unveil
problems;

4. be capable of performing fully automated consistency proofs;
5. be amenable to automatic code generation.
In addiction:

> The case study of the formal model for an abstract file system
(following the Intel architecture).



Tool-chain Scheme

I

PF-notation
rchitectural Desigy
Found flaw Architecture defined
d Alloy
Design & Model
"Chacking"
Found flaw Design validated
L 4 vDM
Prototyping & Testing
Requirements
validated
Success
HOL
Proof of correction
Unproved goal

Success
Proof simplification

PF-calculus

Found
flaw

Goal
simplified



Point-free Model - An abstract file system.

table s

FileDescriptor FileHandle
path - l"l’
(fileStore s)° ileT
Path File ﬁ—e>ype FileType
fileStore s
dir Name Ul lid
Path fileStore s File WyFZleType

> Referential integrity: non existing files cannot be handled by
applications.
Vp € Path, th € FileHandle : (3fd € FileDescriptor :
p (path) fd A fd (table s) fh) = (3f € File : p(fileStore s)f)
» Paths closure: parent directories always exist and are indeed
directories.
(fileStore s).Directory .id®.file Type® C dirName.(fileStore s)



Alloy Model

sig System {
fileStore: Path -> lone File,
table: FileHandle -> lone FileDescriptor }
abstract sig Path {dirName: one Path}
sig File {fileType : one FileType}
sig FileDescriptor {path: one Path}
sig FileHandle {}

And the Alloy model can be refined extending the path symbols
and structure...

one sig Root extends Path

sig FileNames extends Path {}

pred ps[] {
Reflexive[id[Root] .dirName, Root]
Acyclic[id[FileNames].dirName, FileNames] }

Lastly, after the model is validated can be translated to ...



VDM-++

What is VDM++-7
» A language and a set of tools that allows proof obligations
generation.

Here we need to refine the path data structure according to
VDM++...

» However, model translation to VDM-+ involves additional
effort and increases the steepness of the learning curve.

» The outcome is a sizeable VDM++ model; the abstraction
level is lowered, in order for the specification to become
executable.



VDM++ to HOL

For each PO arising from the specification, the Overture proof
system can vyield three different results:
» the PO evaluates to true (discharged) — no inconsistency
found;
» the PO evaluates to false — a design inconsistency exists;
» the PO evaluates to an unproven goal — no conclusion from
proof.
In the case that PO cannot be evaluated or is an unproved goal,
we need to apply PF-Calculus techniques manually. This is clearly
an hard step.



Conclusion and discussion

Pros

1. The paper is well structured and presents an ambitious
refinement scheme, using point free specifications.

2. Given a PF-specification, we can convert PF-specifications to
Alloy with a mechanized scheme, however, those refinements
are very far from the first model. The conversion to VDM++
allows the generation of proof obligations to be proved in
HOL. If cannot be proved it can be split in a point free
fashion.

3. Making this steps in an automated way is a possible choice,
and implies error freedom on translation but not on
refinement.

Cons

1. The paper assumes that the reader is very comfortable with
Alloy and VDM++.



