Theorems for free! (Philip Wadler)

Afonso Arriaga

HASLab - INESC TEC, University of Minho

June 22, 2012

< 日 > < 同 > < 三 > < 三 >

э

Outline

Introduction Basic concepts Examples of theorems from types Generalization of theorems for free Conclusions

- 2 Basic concepts
- 3 Examples of theorems from types
- Generalization of theorems for free

5 Conclusions

< 同 ▶

-

Introduction

"Based on the concept of relational parametricity (Reynolds 1983), Wadler (1989) established so-called 'free theorems', a method for obtaining proofs of program properties from parametrically polymorphic types in purely functional languages."

(Daniel Seidel and Janis Voigtlander, 2011)

A (1) < (1) < (1) </p>

What is a parametrically polymorphic function?

It's a function whose type signature allows various arguments to take on arbitrary types, but the types must be related to each other in some way.

< A >

Why parametric polymorphism?

Because...

- it allows code to be reused.
- we can derive **useful** theorems.
- type-agnostic reasoning is better!

< 同 ▶

Example 1 - Reverse

Let *r* be a function of type: *r* :: forall x. $[x] \rightarrow [x]$

Take any total function $f :: a \rightarrow b$ for concrete types a and b. For example, suppose f = ord. ord :: Char \rightarrow Int f = ord

It is possible to conclude that: $map \ f \ . \ r_{char} \equiv r_{int} \ . \ map \ f$

▲ 同 ▶ → 三 ▶

Example 2 - Head

Let *h* be a function of type: $h :: forall x. [x] \to x$

Take any total function $f :: a \rightarrow b$ for concrete types a and b.

It is possible to conclude that: $map \ f \ . \ h_a \equiv h_b \ . \ map \ f$

Image: A image: A

Example 3 - Zip

Let z be a function of type: z :: forall x, y. $[x] \rightarrow [y] \rightarrow [(x, y)]$

Take any total function $f :: a \to a'$ and $g :: b \to b'$ for concrete types a, a', b and b'.

Commutative diagram:

Generalization of theorems for free

- F and G are functors
- ϕ is a natural transformation from **F** to **G**.

・ 同 ト ・ ヨ ト ・ ヨ ト

Conclusions

For every function $f :: \mathbf{F}a \to \mathbf{F}a$ and for every choice of $g :: x \to y$, with x and y concrete types, it holds that:

$$f_y$$
. Fmap $g \equiv$ Fmap g . f_x

Reading types as relations is the key to derive other theorems from types, such as for higher-order functions **sort** and **fold**.

Automatic generation of free theorems

 http://www-ps.iai.uni-bonn.de/cgi-bin/free-theoremswebui.cgi

・ロト ・同ト ・ヨト ・ヨト

Thank you!

<ロ> <同> <同> < 同> < 同>

æ