
7th International Workshop on

Model-based Methodologies for

Pervasive and Embedded Software

(MOMPES 2010)

Goetz Botterweck, Lúıs Lamb, João M. Fernandes (eds.)

20 September 2010

The Association for Computing Machinery
2 Penn Plaza, Suite 701
New York New York 10121-0701

ACM COPYRIGHT NOTICE. Copyright c© 2010 by the Association for
Computing Machinery, Inc. Permission to make digital or hard copies of
part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.

For other copying of articles that carry a code at the bottom of the first
or last page, copying is permitted provided that the per-copy fee indicated
in the code is paid through the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, +1-978-750-8400, +1-978-750-4470 (fax).

Notice to Past Authors of ACM-Published Articles: ACM intends to create
a complete electronic archive of all articles and/or other material previously
published by ACM. If you have written a work that was previously published
by ACM in any journal or conference proceedings prior to 1978, or any SIG
Newsletter at any time, and you do NOT want this work to appear in the
ACM Digital Library, please inform permissions@acm.org, stating the title
of the work, the author(s), and where and when published.

ACM ISBN: 978-1-4503-0123-7

Preface

Software systems development demands sound methodologies, models, prin-
ciples and appropriate tools. The MOMPES workshops focus on the the-
oretical and practical aspects related to the adoption of Model-based De-
velopment (MBD) methodologies for supporting the construction of soft-
ware for pervasive and embedded systems. This International Workshop on
Model-based Methodologies for Pervasive and Embedded Software (MOM-
PES 2010) is the 7th edition of this workshop series. Over the years, the
workshops have always contained a mix of industry and academic research
papers, fostering productive collaboration amongst the two communities.

Since its first edition in 2004, the workshop has been co-located with pres-
tigious international scientific conferences: ACSD 2004, ACSD 2005, ECBS
2006, ETAPS 2007, ETAPS 2008 and ICSE 2009. In 2010, MOMPES is
co-located with the The 25th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2010), one of the leading conferences
on Software Engineering.

This book compiles the proceedings of the workshop held on 20 September
2010 in Antwerp, Belgium in conjunction with ASE 2010. Out of 14 sub-
missions, 9 were selected for inclusion in the proceedings and presentation
at the workshop. Each submission was reviewed by at least three program
committee members.

The papers cover a large spectrum of topics including such model-driven
engineering, model-based testing, variability modeling, modeling of avionic
systems, design space exploration, domain-specific modeling, application of
model transformations, specification of test oracles, wireless sensor networks,
and Simulink-based analysis of systems.

iii

iv

We hope that you find this program interesting and thought-provoking and
that the workshop provided you with a valuable opportunity to share ideas
with other researchers and practitioners from around the world.

September 2010
Lúıs Lamb, João M. Fernandes, and Goetz Botterweck

Organisation

Program Committee

Ebrahim Bagheri, Athabasca University (CA)
Goetz Botterweck, Lero (IE), co-chair
Jordi Cabot, INRIA (FR)
Gaälle Calvary, U Joseph Fourier (FR)
Dionisio de Niz, CMU (US)
João M. Fernandes, U Minho (PT); co-chair
Robert France, Colorado State University (US)
Artur d’Avila Garcez, City U London (UK)
Lúıs Gomes, UN Lisboa (PT)
Hans-Gerhard Gross, TU Delft (NL)
Chris Hankin, Imperial College (UK)
Stefan Kowalewski, RWTH Aachen (DE)
Lúıs Lamb, UFRGS (BR); co-chair
Stephen J. Mellor, Mentor Graphics (US)
Dirk Muthig, Lufthansa Systems (DE)
Isabelle Perseil, TELECOM Paristech (FR)
Iris Reinhartz-Berger, University of Haifa (IL)
Pablo Sánchez, University Cantabria (ES)
João P. Sousa, George Mason University (US)

v

vi

Reviewers

David Ameller
Eva Beckschulze
Joerg Brauer

Steering Committee

Ricardo J. Machado (chair), Universidade do Minho
Dov Dori, Technion
João M. Fernandes, Universidade do Minho
Mike Hinchey, Lero – The Irish Software Engineering Research Centre
Flávio R. Wagner, UFRGS

Acknowledgments

MOMPES 2010 was co-organised by Universidade Federal do Rio Grande
do Sul (UFRGS), Universidade do Minho, and Lero – The Irish Software
Engineering Research Centre, Limerick, Ireland.

This work was partly supported by Science Foundation Ireland grant
03/CE2/I303 1 to Lero – the Irish Software Engineering Research Centre,
http://www.lero.ie/.

We, the workshop organisers, are grateful to the members of the program
committee and the reviewers. We also would like to thank the organisers of
ASE 2010, in particular Tom Mens and Tevfik Bultan, the workshop chairs,
for their support and the opportunity to hold MOMPES 2010 in conjunction
with this well-known conference.

Contents

Support for Variability in Use Case Modeling with Refinement,
Sofia Azevedo, Ricardo J. Machado, Alexandre Bragança, and
Hugo Ribeiro . 1

Automating Test Cases Generation: From xtUML System
Models to QML Test Models,

Federico Ciccozzi, Antonio Cicchetti, Tony Siljamäki, and
Jenis Kavadiya . 9

A New Modeling Approach for IMA Platform Early Validation,
Michaël Lafaye and David Faura . 17

Modular Synthesis of Mobile Device Applications from
Domain-Specific Models,

Raphael Mannadiar and Hans Vangheluwe . 21

Design Space Abstraction and Metamodeling for Embedded
Systems Design Space Exploration,

Marcio F. S. Oliveira, Francisco A. Nascimento,
Wolfgang Mueller, and Flávio R. Wagner . 29

View-Supported Rollout and Evolution of Model-Based ECU
Applications,

Daniel Merschen, Daniel Merschen, Jacques Thomas,
Bernd Hedenetz, Goetz Botterweck, and Stefan Kowalewski 37

vii

viii

Assertion-Based Test Oracles for Home Automation
Systems,

Ajitha Rajan, Lydie du Bousquet, Yves Ledru, German Vega,
and Jean-Luc Richier . 45

PicOS Tuples: Easing Event Based Programming in
Tiny Pervasive Systems,

Benny Shimony, Ioanis Nikolaidis, Pawel Gburzynski, and
Eleni Stroulia . 53

Simulink Analysis of Component-Based Embedded Applications,
Feng Zhou, Soren Top, Krzysztof Sierszecki, and
Christo Angelov . 61

Support for Variability in Use Case Modeling with
Refinement

Sofia Azevedo, Ricardo J. Machado
Universidade do Minho

Dep. de Sistemas de Informação
Guimarães, Portugal
+351 253 510 319

{sofia.azevedo,rmac}@dsi.uminho.pt

Alexandre Bragança
ISEP

Dep. de Eng. Informática
Porto, Portugal

+351 22 834 05 24

alex@dei.isep.ipp.pt

Hugo Ribeiro
Primavera BSS

Rua Cidade do Porto, 79
Braga, Portugal

+351 253 309 900

hugo.ribeiro@primaverabss.com

ABSTRACT
The development of software product lines with model-driven
approaches involves dealing with diverse modeling artifacts such
as use case diagrams, component diagrams, class diagrams,
activity diagrams, sequence diagrams and others. In this paper we
focus on use cases for product line development and we analyze
them from the perspective of variability. In that context we
explore the UML (Unified Modeling Language) «extend»
relationship. We also explore the functional refinement of use
cases with «extend» relationships between them. This work allows
understanding the activities of use case modeling with support for
variability and of use case modeling with functional refinement
when variability is present.

Keywords
Use case, software product line, variability, «extend», alternative,
option, specialization, refinement.

1. INTRODUCTION
Use case diagrams are one of the modeling artifacts modelers have
to deal with when developing product lines with model-driven
approaches. This paper envisions use cases according to the
perspective of variability. The «extend» relationship plays a vital
role in variability modeling in the context of use cases and allows
for the use case modeling activity to be applicable to the product
line software development approach. That is possible by
determining the locations in use case diagrams where variation
will occur when instantiating the product line. This paper’s
contribution is on the formalization and understanding of the use
case modeling activity with support for variability. We will
illustrate our approach with the Fraunhofer IESE’s GoPhone case
study [1], which presents a series of use cases for a part of a
mobile phone product line particularly concerning the interaction
between the user and the mobile phone software. We propose an
extension to the UML (Unified Modeling Language) metamodel
[2] in order to formally provide for both the concrete and abstract

syntaxes to represent different types of variability in use case
diagrams. We consider use cases in different abstraction levels to
elaborate on the (functional) refinement of use cases with
«extend» relationships between them. In this paper we focus on
the variability support as well as on the process point of view with
regards to the use case modeling activity.

The paper is structured as follows. Section 2 elaborates on the
differences between others’ approaches and this paper’s approach.
Section 3 elaborates on the different types of variability we
propose to be used in the context of use case modeling. Section 4
provides for the analysis of the UML «extend» relationship in
contexts of variability and also for the extension we propose to the
UML metamodel to support the different variability types. Section
5 analyzes the process of handling variability in use case diagrams
in the context of the functional refinement of use cases. Section 6
illustrates our approach with the GoPhone case study. Finally
Section 7 affords some concluding remarks.

2. RELATED WORK
Despite use cases being sometimes used as drafts during the
process of developing software and not as modeling artifacts that
actively contribute to the development of software, use cases shall
have mechanisms to deal with variability in order for them to have
the ability to actively contribute to the process of developing
product lines. For instance, modeling variability in use case
diagrams is important to later model variability in activity
diagrams [3].

This paper’s work is inspired on the approach of Bragança and
Machado to variability modeling in use case diagrams [4].
Bragança and Machado represent variation points explicitly in use
case diagrams through extension points. Their approach consists
of commenting «extend» relationships with the name of the
products from the product line on which the extension point shall
be present. Their approach to product line modeling is bottom-up
(rather than top-down), which means that all the product line’s
products are known a priori. A top-down approach would
consider that the product line would support as many products as
possible within the given domain. In [5] John and Muthig refer to
required and anticipated variations as well as to a planned set of
products for the product line, which indicates that their approach
to product line modeling is bottom-up. The approach in this paper
adopts the top-down approach for product line modeling,
therefore discarding the comments to the «extend» relationships.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MOMPES’10, September 20, 2010, Antwerp, Belgium.
Copyright 2010 ACM 978-1-4503-0123-7/10/09…$10.00.

1

In [5] John and Muthig refer the benefits of representing
variability in use cases. Although we totally agree with the
position of these authors towards those benefits, we cannot agree
when they state that information on whether certain use cases are
optional or alternatives to other use cases shall only be in decision
models as it would overload use case diagrams and make them
less readable. Our position is that features as well as use cases
shall be suited for treating variability in its different types. If a use
case is an alternative to another use case, then both use cases shall
be modeled in the use case diagram, otherwise the use case
diagram will only show a part of the possibilities of the possible
products John and Muthig mention in [5].

Gomaa and Shin [6] analyze variability in different modeling
views of product lines. They mention that the «extend»
relationship models a variation of requirements through
alternatives. They also model options in use case diagrams by
using the stereotype «optional» in use cases. We adopt these
approaches to alternatives and options but we elaborate on
another form of variability (specializations, which we consider to
be a special kind of alternatives). Gomaa and Shin refer
specialization as a means to express variability in [6]. Besides
alternative and optional use cases, Gomaa and Shin consider
kernel use cases (use cases common to all product line members).
Gomaa models in [7] kernel and optional use cases both with the
«extend» as well as with the «include» relationships (our
approach is towards modeling kernel and optional use cases
independently of their involvement in either «extend» or
«include» relationships and with a stereotype in the use cases).

Halmans and Pohl propose in [8] use cases as the means to
communicate variability relevant to the customer and they also
propose extensions to use case diagrams to represent variability
relevant to the customer. Halmans and Pohl consider that
generalizations between use cases are adequate to represent use
cases’ variants. This is not our position. We recommend using the
«extend» relationship instead of the generalization relationship.
Halmans and Pohl consider that modeling mandatory and optional
use cases with stereotypes in use cases is not adequate because the
same use case can be mandatory for one use case and optional for
another. Again this is not our position. We also consider that a
mandatory use case is not mandatory with regards to another use
case, rather it is mandatory for all product line members. We also
consider that an optional use case is optional with regards to one
or more product line members. Halmans and Pohl end up by
introducing additional graphical elements to use case diagrams to
represent variation points and variability cardinality explicitly in
use case diagrams. We do not agree with this approach since it
introduces more complexity to use case diagrams than modeling
variability with stereotypes and use case relationships as well as it
introduces a reasoning about variability that should be present in
decision models (the selection of the variants to be present in the
system and the system/product to which that selection applies
according to the features).

Maßen and Lichter talk about three types of variability in [9]:
optional, alternative and optional alternative (as opposite to
alternatives that represent a “1 from n choice”, optional
alternatives represent a “0 or 1 from n choice”). In this context
they propose to extend the UML metamodel to incorporate two
new relationships for connecting use cases. Our approach
considers options and alternatives as well but we introduce these
concepts into the UML metamodel through stereotypes (we

consider that the «extend» relationship is adequate for modeling
alternatives and a stereotype applicable to use cases for modeling
options).

According to Gomaa [7], and John and Muthig [5], use cases can
be tagged with some stereotypes concerning variability. Table 1
shows the applicability of those stereotypes in our approach.

Table 1. Some use case stereotypes concerned with variability.

Stereotype Applicability

«kernel» Use cases in general

«alternative» «extend» relationships

«optional» Use cases in general

«variant» Use cases in general

Some examples of approaches to functional decomposition of
software systems are the 4SRS (Four Step Rule Set) method [10],
KobrA or RSEB (Reuse-Driven Software Engineering Business)
[11, 12]. However neither KobrA nor RSEB clearly contemplate a
technique for refining use cases like the 4SRS method does.

Greenfield and Short [13] refer to refinement as the inverse of
abstraction or the process of turning a description more complex
by adding information to it. They refer to the process of
developing software through refinement as progressive
refinement. The process starts with requirements and ends up with
the more concrete description of the software (the executable).
They consider refinement as a concatenation of interrelated
transformations mapping a problem to a solution. The goal of
refinement is to smoothly decrease the abstraction levels that
separate the problem from the solution. In general terms,
Greenfield and Short talk about refinement as the stepwise
decomposition of features’ granularity. In the context of use cases,
refinement is their detailing. However we defend that use cases
can themselves be refined in order to facilitate the transformation
of a problem (which can be modeled with use cases) to a solution
(which shall be modeled with design artifacts e.g. logical
architectures).

Gomaa [7] explored refinement in the context of feature
modeling, where a feature can be a refinement of another. But in
order to get to the features, use cases have to be modeled and
mapped to features. Our approach eliminates this mapping
activity. To Gomaa the refinement is expressed through «extend»
relationships in the context of use cases. To us the refinement
shall be expressed through the «refine» relationship we proposed
in [14].

Cherfi, et al. [15] (in their work on quality-based use case
modeling with refinement) describe the refinement process as the
application of a set of decomposition and restructuring rules to the
initial use case diagram. Their approach is iterative and
incremental. It consists of decomposing the initial use case
diagram into smaller and more cohesive ones to decrease the
complexity of the diagram and increase its cohesion. In the
approach of Cherfi, et al. to refinement, use cases are not actually
detailed (like in ours), rather they are decomposed without detail
being added to the description of those use cases.

2

Figure 1. The use case variability types.

3. HANDLING VARIABILITY IN USE
CASE MODELING
Figure 1 illustrates the variability types we consider and propose
to be applicable in the context of use cases [16]. Use cases can be
non-option or option. Non-option use cases are present in all
product line members. Option use cases can be present in one
product of the product line and not in another. It is not mandatory
that option use cases are present in all products of the product
line. Non-variant use cases are use cases that do not support
variability. Variant use cases are use cases that support variability.
This means that different products will support different
alternatives for performing the same functionality or that different
products will support different specializations of the same
functionality. Later on during the modeling activity variant use
cases are realized into alternatives or specializations respectively.
Alternative use cases represent alternatives for performing the
same system’s use in mutually exclusive products or sets of
products from the product line. Specialization use cases represent
a special kind of alternatives. A specialization use case is a
specialization of another use case. Specialization use cases that
specialize the same use case represent alternatives for performing
the same system’s use in mutually exclusive products or sets of
products from the product line. Option, alternative and
specialization use cases are the representation of the three
variability types that will be translated into stereotypes to be
applicable to use cases. The use cases that do not represent
options and are not variant (later alternatives or specializations)
are non-option and non-variant, and shall not be marked with any
stereotype. Non-option and option use cases are mutually
exclusive as well as non-variant and variant use cases. Figure 1
represents the activity of classifying use cases with variability
types: either non-option and non-variant or option and non-
variant or non-option and variant or option and variant. These
last two variability types can be realized into the alternative or the
specialization variability types (as already explained). The activity
of classifying use cases with the variability types is important for
applying the corresponding stereotypes to the use cases (except
for the non-option and non-variant variability type, which shall
not be marked with any stereotype). The conditions of the
decision nodes express the semantics of each one of the variability
types. We would like to give emphasis to a particular variability

type: the option and variant variability type. This variability type
is applicable to a use case that is not present in all product line
members but the different members in which it is present support
different alternatives for performing that use case’s functionality
or different specializations of that use case’s functionality. Option
and non-variant use cases shall be marked as option use cases;
non-option and variant as variant use cases; and option and
variant use cases as both option and variant use cases.

4. THE «extend» RELATIONSHIP
The «extend» relationship allows modeling alternative and
specialization use cases in use case diagrams.

Consider that an extending use case is a use case that extends
another use case and that an extended use case is a use case that is
extended by other use cases. As any other use case, an extending
use case represents a given use of the system by a given actor or
actors.

In the context of alternatives [16] both extending and extended
use cases represent supplementary functionality since both
represent alternatives, which are not essential for a product
without variability to function. It shall be noted that alternatives
are no longer supplementary when product line members are
instantiated from the product line. Alternatives can be modeled
with the generalization relationship in use case diagrams, but we
recommend to model alternatives with the «extend» relationship
in order to evidence their supplementary character according to
the UML semantics.

If the intention is to use differential specification, specializations
[16] shall be modeled with the «extend» relationship, otherwise
they shall be modeled with the generalization relationship.
Differential specification of specializations means that
specialization use cases represent supplementary functionality
regarding the use case they specialize, therefore a product without
variability does not require the specialization use cases to
function.

Options [16] represent functionality that is only essential for a
product with variability to function, therefore options represent
supplementary functionality. However we do not recommend
modeling options with the «extend» relationship because if the
stereotype was on the relationship, the relationship itself would be
optional and that is not the case (the use case is not optional with
regards to any other use case, rather it is optional by itself).

3

Figure 2. The specialization of the variant use case Borrow
Book with a single actor.

Figure 3. The specialization of the use case Borrow Book with
two different actors.

Figure 4. The specialization of the variant use case Borrow
Book with two different actors.

Figure 5. The specialization of the variant use case Borrow
Object.

Options shall be modeled with a stereotype in use cases. The
involvement of an option use case in either «extend» or «include»
relationships, or even in none of those does not imply the
presence of that use case in all product line members (which
makes of it optional).

In principle an extending use case is a use case that extends
another use case both in the case of alternatives and in the case of
specializations. In the case of specializations we consider that
there is no multiple inheritance, therefore it is impossible for an
extending use case to extend more than one use case. If we have
more than one alternative use case for the same functionality, one
of those use cases shall be the alternative to all the others and
extended by them. That use case is the one to be present in the
products less robust in terms of functionality. The extended use
case is not aware of the functionality described in the extending
use case.

As previously mentioned if the intention is not to use differential
specification, generalization relationships shall be used because
specializations are complementary under those circumstances.
However we may argue in a different way that the generalization
relationship shall not be used to represent specializations in
contexts of variability. Consider the examples depicted in figures
2 through 5 Figure 2. The example is an exception in terms of the
(GoPhone) case study we will use further on in this paper. The
figure shows that the use case Borrow Book can be specialized
into Borrow Book to Student and Borrow Book to Teacher. If the
actor is the same (the Librarian, who registers the borrowing),
then the use cases that specialize the Borrow Book use case are
alternatives to borrowing a book as both can be performed by the
same actor. If the actor is not the same (the Student in the case of
the Borrow Book to Student and the Teacher in the case of the
Borrow Book to Teacher), then the use cases that specialize the

Borrow Book use case are not alternatives to borrowing a book as
both cannot be performed by the same actor (the same actor does
not have an alternative way of borrowing a book). In this case in
order for the generalization to be considered as variability, the
actor of Borrow Book has to be the Library User (connected to
Borrow Book) specialized into the Student (connected to Borrow
Book to Student) and into the Teacher (connected to Borrow Book
to Teacher). Another example: the use case Borrow Object can be
specialized into Borrow Book and Borrow CD. In this case the
actor can be the same for all of the use cases (the Student OR the
Teacher). In order to support all the actors at the same time (the
Student AND the Teacher), the Library User has to be specialized
into them (the Student and the Teacher) and connected to the
Borrow Object use case. This way the same actor (the Library
User) can borrow an object (a Book) or alternatively another (a
CD).

Figure 6 depicts the extension we propose to the UML metamodel
concerning the «extend» relationship and use cases. We have
added the stereotypes «alternative», «specialization» and
«option» to the standard UML stereotypes in order to distinguish
the three variability types that were to be translated into
stereotypes to be applicable to use cases. We have also added the
stereotype «variant» to the standard UML stereotypes in order to
mark use cases at higher levels of abstraction before they are
realized into alternatives or specializations. We propose the
stereotype «option» to be applicable to use cases that represent
options. We also propose the stereotypes «alternative» and
«specialization» to be applicable to the «extend» relationship for
modeling alternatives and specializations respectively. Extending
use cases involved in «alternative» relationships do not need to be
marked with the stereotype «alternative» to evidence them as
alternatives since they do not make sense without being involved

4

in that kind of relationships (an alternative use case is always
alternative to another use case). The same happens with the
stereotype «specialization» (a use case involved in a
specialization relationship always specializes another use case).
Regarding Figure 6 and the Extend metamodel element, as far as
the unidirectional association is concerned, the end named
extendedCase references the use case that is being extended (the
extended use case) and the association means that many (zero or
more) «extend» relationships refer to one extended use case.
Regarding the aggregation, the end named extend references the
«extend» relationships owned by the use case, and the end named
extension references the use case that represents the extension (the
extending use case) and owns the «extend» relationship. The
metamodel means that one «extend» relationship is owned by one
extending use case. Summarily a use case can be extended by
many use cases and a use case can extend another use case. There
can be zero or more alternatives («alternative» relationships) to a
use case. There can also be zero or more specializations
(«specialization» relationships) for a use case. Although it can be
argued that specializations are only worth the effort when there
are two or more specialization use cases, we do not want to take
freedom away from the modeler.

From now on we either use the «extend» relationship without
stereotypes or with one of the two stereotypes applicable to this
relationship from the proposed extension to the UML metamodel
(depending on whether we are modeling alternatives or
specializations).

Figure 6. The proposed extension to the UML metamodel for
modeling variability in use case diagrams.

It is important to distinguish alternatives from generalizations in
contexts of variability. In the case of alternatives the extending
use case is an alternative to the extended use case. In the case of
specializations the extending use cases are alternatives to each
other. Figure 7 shows the specialization of two alternative use
cases from the GoPhone case study: Insert Picture and Insert
Picture or Draft Text. It is possible to transform alternatives into
specializations and the other way around. Again we are not
restrictive on this since we do not want to take freedom away from
the modeler.

5. HANDLING VARIABILITY IN USE
CASE MODELING WITH REFINEMENT
Use cases can be decomposed with or without detailing their non-
stepwise textual descriptions. Without detailing those descriptions
we propose to represent the decomposition of use cases in use
case diagrams with the «include» relationship. This
decomposition suits the purpose of e.g. modeling later on an
alternative to a part of the decomposed use case or modeling a
part of the decomposed use case that is an optional part).

Figure 7. The specialization of Insert Picture and Insert Picture
or Draft Text.

We consider that refining means decomposing and simultaneously
detailing use cases. By refining use cases, the artifacts resulting
from the refinement process (the refining use cases) are situated in
lower abstraction levels comparatively to the refined use cases
(the use cases that were submitted to the refinement process). In
order to represent in the use case diagram this decrease in the
abstraction level when refining use cases, we proposed in [14] to
use the «refine» relationship (as a sort of traceability between use
cases at different levels of detail).

In this section of the paper we depict in Figure 8 use cases
according to the perspectives of detail*variability to illustrate in
abstract terms our approach to use case modeling with support for
variability. The detail perspective is intimately related to the
activity of use case refinement. In this sense use cases can be
more detailed if they are refined. The variability perspective is
associated with the modeling of variability for product line
support. The two perspectives (detail and variability) have been
converted into axes of the illustrated space: y=detail and
z=variability. Each level of the z axis corresponds to a (parallel)
plan, which means that we position use cases in variability plans.
Thus variability plans are plans that contain use cases representing
variability in the three different types that have been translated
into stereotypes to be applicable to use cases. The plan z=0
contains none of these use cases that represent variability.

Figure 8. Use cases positioned according to the perspectives of
detail*variability.

5

Use case name: Send Message

Use case description: The mobile user writes the message in a text editor. The GoPhone connects to the network to send the

message. In order for the GoPhone to show an acknowledgement to the mobile user (stating that the message was successfully

sent), it receives an acknowledgement from the network. Upon request from the GoPhone, the mobile user chooses to save

the message into the sent messages folder.

Alternatives: The mobile user sends some different kinds of messages through the GoPhone.

 The mobile user inserts objects into a message.

 The mobile user attaches objects to a message.

 The mobile user chooses the recipient’s contact.

Specializations: -

Options: When writing the message, the mobile user activates letter combination (T9).

Use case name: Compose Message

Use case description: The mobile user writes the message in a text editor.

Alternatives: The mobile user sends some different kinds of messages through the GoPhone.

 The mobile user inserts objects into a message.

 The mobile user attaches objects to a message.

Specializations: -

Options: When writing the message, the mobile user activates letter combination (T9).

Use case name: Archive Message by Request

Use case description: Upon request from the GoPhone, the mobile user chooses to save the message into the sent messages

folder.

Alternatives: The GoPhone automatically archives the message

Specializations: -

Options: -

Use case name: Automatically Archive Message

Use case description: The GoPhone saves the message into the sent messages folder and notifies the mobile user on the

successful message saving into that folder.

Alternatives: -

Specializations: -

Options: -

Figure 9. Non-stepwise textual descriptions from the GoPhone use case Send Message and some of its related use cases.

The figure clarifies that the «refine» relationships imply
increasing the detail level, whereas the «extend» relationships do
not imply increasing the detail level but rather changing from one
variability plan (z plan) to another. Extending use cases represent
alternative or specialization use cases, therefore they must be
situated at the same level of detail but in different variability plans
(z plans). Variabilities do not imply adding detail to the non-
stepwise textual descriptions of the use cases, like refinements do.

The figure shows the general case of the refinement of two use
cases connected through an «extend» relationship. The refinement
of a use case stereotyped as «option» is not relevant here, since it
is not the case of an «extend» relationship connecting two use
cases. The figure evidences that the refinement of two use cases
connected through an «extend» relationship originates more
detailed use cases organized in two packages that have also an
«extend» relationship connecting them. That is not always the
case. It is possible to have two use cases connected through a
«specialization» relationship, which produces «specialization»
relationships connecting more detailed individual use cases (and
not packages) in different variability plans (an example of such
case is in the next section of this paper).

6. THE VARIABILITY IN THE GoPhone
CASE STUDY
The non-stepwise textual descriptions in Figure 9 were elaborated
based on the functional requirements for the GoPhone. We rely on
non-stepwise textual descriptions of use cases (the opposite of
stepwise textual descriptions of use cases) to model variability in

use case diagrams. Stepwise textual descriptions are structured
textual descriptions in natural language that provide for a stepwise
view of the use case as a sequence of steps, alert for the decisions
that have to be made by the user and evidence the notion of use
case actions temporarily dependent on each other. Stepwise
descriptions shall be treated after modeling the use cases.

The «include» relationship involves two types of use cases: the
including use case (the use case that includes other use cases) and
the included use case (the use case that is included by other use
cases). In the context of the «include» relationship the UML
Superstructure states that the including use case depends on the
addition of the included use cases to be complete. Nevertheless in
our opinion the functionality of the included use cases shall be
described in the including use case. Since we rely on non-stepwise
textual descriptions of use cases to determine the «include»
relationships, the including use case has to contain the description
of the included use cases so that the modeler is able to define the
parts that compose the including use case in order to decompose
that use case (e.g. as can be seen from Figure 9 the functionality
of the Compose Message use case is described in the Send
Message use case).

In the context of the «extend» relationship the UML
Superstructure states that an extending use case consists of one or
more behavior fragment descriptions to be inserted into the
appropriate spots of the extended use case. This means that the
functionality of the extending use case is not described in the

6

Figure 11. An example of refinement of the specialization type of variability from the GoPhone.

extended use case. The extended use case is not aware of the
functionality described in the extending use case (e.g. as can be
seen from Figure 9 the functionality of the Automatically Archive
Message use case is not described in the Archive Message by
Request use case). As Figure 10 depicts, the use case
Automatically Archive Message is an alternative to the use case
Archive Message by Request (they are connected through a kind
of «extend» relationship, tagged with the stereotype «alternative»
in order to evidence that the use case Automatically Archive
Message is an alternative to the use case Archive Message by
Request). It must be noticed that Archive Message by Request is
an (included) use case included by the including use case Send
Message, which means that the functionality of the use case
Archive Message by Request is described in the Send Message use
case. For this reason we could have extended the Send Message
use case with the use case Automatically Archive Message, but
then we would not be evidencing to which part of the
functionality of the Send Message use case the use case
Automatically Archive Message is an alternative to. Figure 10 also
depicts that the Browse Directory of Pictures use case is a
specialization of the use case Browse Repository (they are
connected through another kind of «extend» relationship, tagged
with the stereotype «specialization» in order to evidence that the
use case Browse Directory of Pictures is a specialization of the
use case Browse Repository).

Figure 10. Some examples of variability modeled for the
GoPhone use case Send Message.

6.1 Refinement of Specializations and
Alternatives
Figure 11 shows the refinement of the specialization type of
variability. The figure shows that both the use case that has been
specialized (the Browse Repository use case) and the
specialization use cases (the Browse Directory and Browse List
use cases) were refined. Some use cases that refine the
specialization use cases are specializations of the use cases that
refine the use case that has been specialized (e.g. the View Picture
use case is a specialization of the View Object use case). The use
case Open Folder represents functionality that is not common to
both specialization use cases since it is only applicable to one of
the objects the specialization use cases refer to (the Directory of
Pictures). Having in mind that specializations are a special kind of
alternatives, specialization use cases are alternatives to each other.
Figure 11 illustrates that the use cases that refine the
specialization use cases are alternatives to each other as packages.

Figure 12 depicts that the use cases that refine two use cases
connected through an «alternative» relationship are alternatives to
each other as packages.

7. CONCLUSIONS
This paper has elaborated on the representation of variability in
use case diagrams. It began by providing an in depth analysis of
the state-of-the-art concerned with this topic. Based on our
position towards the related work we proposed an extension to the
UML metamodel to represent the three types of variability we
have synthesized: alternatives, specializations and options. We
concluded that alternatives and specializations shall be adequately
modeled with the «extend» relationship, and that options shall be
adequately modeled with a stereotype on use cases. This
conclusion was based on the UML metamodel’s semantics
associated with the relationships for connecting use cases in use
case diagrams: alternatives, specializations and options represent
supplementary functionality. Although not being the core of this
paper’s contribute, we have also introduced the functional
refinement of use cases connected through «extend» relationships
due to its pertinence in large-scale product line contexts.

7

Figure 12. An example of refinement of alternative variability from the GoPhone.

8. REFERENCES
[1] Muthig, D., John, I., Anastasopoulos, M., Forster, T., Dörr,

J. and Schmid, K. GoPhone - A Software Product Line in
the Mobile Phone Domain. IESE-Report No. 025.04/E,
Fraunhofer IESE, 2004.

[2] OMG Unified Modeling Language: Superstructure -
version 2.2. Object Management Group, 2009.

[3] Bragança, A. and Machado, R. J. Extending UML 2.0
Metamodel for Complementary Usages of the «extend»
Relationship within Use Case Variability Specification. In
Proceedings of the SPLC 2006 (Baltimore, Maryland, USA,
August 21-24, 2006). IEEE Computer Society, 2006.

[4] Bragança, A. and Machado, R. J. Deriving Software Product
Line's Architectural Requirements from Use Cases: An
Experimental Approach. In Proceedings of the MOMPES
2005 (Rennes, France, June 6, 2005). TUCS General
Publications, 2005.

[5] John, I. and Muthig, D. Product Line Modeling with
Generic Use Cases. In Proceedings of the Workshop on
Techniques for Exploiting Commonality Through
Variability Management (San Diego, California, USA,
August 19, 2002). Springer-Verlag, 2002.

[6] Gomaa, H. and Shin, M. E. Multiple-View Modelling and
Meta-Modelling of Software Product Lines. Institution of
Engineering and Technology Software, 2, 2 2008), 94-122.

[7] Gomaa, H. Designing Software Product Lines with UML:
From Use Cases to Pattern-Based Software Architectures.
Addison-Wesley, Upper Saddle River, New Jersey, 2004.

[8] Halmans, G. and Pohl, K. Communicating the Variability of
a Software-Product Family to Customers. Software and
Systems Modeling, 2, 1 2003), 15-36.

[9] Maßen, T. v. d. and Lichter, H. Modeling Variability by
UML Use Case Diagrams. In Proceedings of the REPL
2002 (Essen, Germany, 2002). Avaya Labs, 2002.

[10] Machado, R. J., Fernandes, J. M., Monteiro, P. and
Rodrigues, H. Transformation of UML Models for Service-
Oriented Software Architectures. In Proceedings of the
ECBS 2005 (Greenbelt, Maryland, USA, April 4-7, 2005).
IEEE Computer Society, 2005.

[11] Atkinson, C., Bayer, J. and Muthig, D. Component-Based
Product Line Development: The KobrA Approach. In
Proceedings of the SPLC 2000 (Denver, Colorado, USA,
August 28-31, 2000). Kluwer Academic Publishers, 2000.

[12] Jacobson, I., Griss, M. and Jonsson, P. Software Reuse:
Architecture, Process and Organization for Business
Success. Addison-Wesley, Upper Saddle River, New Jersey,
1997.

[13] Greenfield, J. and Short, K. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and
Tools. Wiley, Hoboken, New Jersey, 2004.

[14] Azevedo, S., Machado, R. J., Bragança, A. and Ribeiro, H.
The UML «include» Relationship and the Functional
Refinement of Use Cases. In Proceedings of the SEAA 2010
(Lille, France, September 1-3, 2010). IEEE Computer
Society, 2010 (accepted for publication).

[15] Cherfi, S. S.-s., Akoka, J. and Comyn-Wattiau, I. Use Case
Modeling and Refinement: A Quality-Based Approach. In
Proceedings of the ER 2006 (Tucson, Arizona, USA,
November 6-9, 2006). Springer-Verlag, 2006.

[16] Azevedo, S., Machado, R. J., Bragança, A. and Ribeiro, H.
The UML «extend» Relationship as Support for Software
Variability. In Proceedings of the SPLC 2010 (Jeju Island,
South Korea, September 13-17, 2010). Springer-Verlag,
2010 (accepted for publication).

8

Automating Test Cases Generation: From xtUML System
Models to QML Test Models

Federico Ciccozzi
Mälardalen University

Västerås, Sweden
federico.ciccozzi@mdh.se

Antonio Cicchetti
Mälardalen University

Västerås, Sweden
antonio.cicchetti@mdh.se

Toni Siljamäki
Ericsson AB

Stockholm, Sweden
toni.siljamaki@ericsson.com

Jenis Kavadiya
Tata Consultancy Services

Hyderabad, Andhra Pradesh,
India

jenis.kavadiya@tcs.com

ABSTRACT
The scope of Model-Driven Engineering is not limited to Model-
Based Development (MBD), i.e. the generation of code from sys-
tem models, but involves also Model-Based Testing (MBT), which
is the automatic generation of efficient test procedures from corre-
sponding test models. Both MBD and MBT include activities such
as model creation, model checking, and use of model compilers for
the generation of system/test code. By reusing these common activ-
ities, the efficiency of MBT can be significantly improved for those
organizations which have already adopted MBD, since one of the
major efforts in MBT is the creation of test models. In this work, we
propose to exploit modeling activity efforts by deriving test mod-
els from system models. In this respect, we present a case study
in which the Executable and Translatable UML system models are
used for automatically generating test models in the QTronic Mod-
eling Language using horizontal model transformations. In turn,
the derived artefacts can be used to produce test cases which result
to be appropriate for the system under development.

Keywords
Model-Driven Engineering, Model-Based Development, Model-Based
Testing, Automatic Test Cases Generation

1. INTRODUCTION
Model Driven Engineering (MDE) aims at facilitating the system
development by creating, maintaining and manipulating models.
In fact, models provide abstractions of a real phenomena which re-
duce the complexity of the problem, allow to focus on the aspects
that matter in the design of the application, and permit to reason
about the scenario in terms of domain-specific concepts [4]. The
MDE term was first introduced by Kent [10] and includes all mod-
elling tasks needed for the entire software development process. A
system is developed by refining models starting from higher and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MOMPES ’10, September 20, 2010, Antwerp, Belgium

Copyright l’ 2010 ACM 978-1-4503-0123-7/10/09 ... $10.00

moving to lower levels of abstraction until code is generated; re-
finement is implemented by transformations over models. A model
transformation converts a source model to a target model preserv-
ing their conformance to the respective meta-models. When source
and target models are at different levels of abstraction, the transfor-
mation is referred to as vertical transformation; on the other hand,
for horizontal is intended the transformation between two models
defined at the same level of abstraction [12].

At some point in the transformation chain, a deviation from the
standard goal of generating actual code can be taken towards the
derivation of test models for model-based testing (MBT) purposes
(Fig. 1). Although model-based development (MBD) and MBT

Figure 1: MBD-MBT Integration

are often seen as separated processes, in this work we show how
to integrate MBD and MBT in a more complete MDE process.
In particular, we propose to automatically derive test models by
exploiting the behaviour information carried by the existing sys-
tem artefacts through horizontal model transformations. The aim is
manyfold, notably: i) to reduce the efforts devoted to testing tasks
by automatically computing test models; ii) to ensure the consis-
tency between the behaviour modelled for testing purposes and the
one carried by the application design; iii) to produce useful feed-
backs for the system design whenever generated tests diverge from

9

the intended system behaviour.
In order to better clarify our proposal and the issues that have to

be faced, this work presents a case study dealing with the derivation
of QTronic Modeling Language (QML)1 test models, needed for
the generation of efficient test procedures, directly from a set of
system models defined in xtUML [11].

The rest of the paper is structured as follows. Section 2 gives an
overview on the involved technologies from MDE to model-reuse
approaches. The paper culminates with section 3 in which the ac-
tual proposed approach is described and fully unwound in its details
together with a case study. Moreover, the section contains a discus-
sion of the results observed on the generated artefacts. Section 4
explores the related literature by giving some notions on similar
works already proposed in automating model-based test-cases gen-
eration. The paper is concluded by section 5.

2. BACKGROUND
As mentioned above, typically model-based development and test-
ing are intended to be distinguished phases; by considering the ex-
tent of models reuse for the purpose of a joint process, the most
common approaches can be classified into three main categories,
each of which entailing specific advantages and drawbacks, as clar-
ified in the following.

Shared Model Approach.
It consists in using the same models for both MBD and MBT pur-
poses. The system is generated from the models from which tests
are also derived. Hence the system is tested against itself. The
expected output part of the tests or verdicts can not be derived us-
ing MBT tools [14]. Testing a system using this approach, without
manual derivation of verdicts, may be merely seen as testing of
code generators or model compilers. A benefit of this approach is
that models have to be created only once and verified twice, i.e.
from MBD and MBT perspectives. It also facilitates models main-
tenance; a change to the generated system or test suite will modify
the parent model, which will not only update the system but also
help in deriving the updated test suite. However if there is a bug in
the parent model, MBT would not detect such bugs as test cases are
also derived from the same defected models. Moreover, it could be
not possible to enjoy the separation of concerns, that is the usage
of distinct languages dealing with domain-specific concepts.

Separate Model Approach.
Different models are used for MBD and MBT purposes. Ver-

dicts can be automatically derived from test models using MBT
tools [14]. In many situations testing yields better results when it
is independent of the implementation. If compared to the previous
solution, this approach can be considered as going in the opposite
direction: expected behaviours (i.e. test models) are independent
from the actual behaviour (i.e. system models). In this way it is
possible to reach a strong separation of concerns between design
and testing domain concepts. However, time and effort for creating
and maintaining separate models rapidly increase, especially when
changes made to the system require test cases to be updated; in
fact, synthesis of impacts of design changes to test models could
not be a trivial task. A factor which undermines the adoption of
this approach is that both architects and testers can be considered
as experts for their own respective domain only.

Hybrid Model Approach.

9 1http://www.conformiq.com/qtronic.php

Test models are derived partially or fully from the system mod-
els or vice versa [2]. In case of the derivation of partial test models
from the system models, a manual enrichment is needed to com-
plete them by covering the aspects to be tested rather than the en-
tire system’s test details. By means of this solution the effort of
defining models tailored to testing is reduced due to the (partially)
automated generation of them. Moreover, the consistency between
the concerns can be kept by construction through the transforma-
tion itself. As a drawback, adopting this solution demands for the
implementation of a mapping between two distinct modelling lan-
guages, typically only partially overlapping and with their own se-
mantics, which can result a not obvious task.

In this work we propose to exploit a hybrid model reuse approach
for derivation of test models from system models by using horizon-
tal transformations. As mentioned above, it is worth noting that
despite the hybrid solution appears as the simplest, it poses several
issues to be faced. For instance, test models need to be detailed
and formal in order to allow a MBT tool to automatically generate
a test infrastructure (i.e. test cases) in a correct way. In turn, this
implies that system models have to be formal and detailed as well
to provide useful information from which the test models can be
derived. In the meantime, the selected languages for design and
testing should have a comparable degree of expressiveness in order
to enable a fruitful mapping; if not, either too much of the system
information would be lost when transforming it for test usage, or
a relevant manual input would be required to provide the neces-
sary details not present in the design models, making the necessary
effort comparable to the separate model approach.

The remaining part of this paper discusses a possible solution
and the related challenges in mapping system design models to-
ward corresponding testing tool artefacts to enable a hybrid ap-
proach devoted to application testing. In particular, both the ap-
proaches are UML-based and add their own action languages for
supporting behaviour descriptions. Therefore, what is required is
to map system design concepts to meaningful details from a testing
point of view; our case demands for both a syntactical translation
of UML state machines represented in different formats and a se-
mantic mapping between the xtUML and QML action languages.
The mechanism can be automated through the model compiler pro-
vided by the source design language: in essence, the application
modelling platform provides a facility able to translate design mod-
els toward corresponding artefacts compatible with the testing tool
format. Then, minor manual adaptations could be required to fix
ambiguities that can not be solved at design time; in this respect, it
is of critical relevance to successfully map also the graphical ren-
dering between the tools to aid the testing expert in her/his task.
Finally, the models can be input to the test generation engine to
produce test cases.

3. PROPOSED APPROACH

3.1 Motivation
The approach we are proposing in this work aims at integrating
MBD and MBT for a complete MDE development process. The
industry de-facto modelling standard UML is typically too generic
and lacks domain-specific features, thus UML profiles, which are
extension mechanisms of the basic UML concepts, are used to ad-
dress the specific needs such as code generation, testing or other
domain specific purposes. xtUML is one such UML profiles, de-
veloped for executable models and code generation purposes. It
has a rich set of constructs that allows model compilers to trans-
form models into, virtually, any programming language. The entire

10

Figure 2: From xtUML System Models to QML Test Models

software application can be automatically generated from source
models; however, the designer has to describe a relevant amount of
details about the application and its behaviour. Therefore the test-
ing phase could benefit of such modelling efforts by re-using the
information specified at the design level for validation purposes.
In order to enable such interchange, xtUML models have to be
mapped towards an appropriate language from which it could be
possible to generate test cases: in our case study we use Mentor
Graphics BridgePoint 2 as MBD tool which uses xtUML for the
definition of system models and Conformiq QTronic as MBT tool
which uses QML for the definition of test models; the final goal
is the development of a MDE environment which integrates and
enables the cooperation between MBD and MBT tools.

Horizontal transformations between xtUML and QML are not
straightforward due to differences in the respective meta-models
and action languages. The graphical part of xtUML is in fact con-
forming to the xtUML meta-model while the UML portion present
in QML models does conform to the UML meta-model. Neverthe-
less, being both xtUML and UML MOF-based, transformations be-
tween diagrams from xtUML to QML are reducible to transforma-
tions between MOF-based metamodels; xtUML state-machine dia-
grams can be transformed to QML state-machines with minor syn-
tactical changes since the xtUML meta-model is based on the UML
meta-model (Fig. 2.a). The textual part, consisting in the QML ac-
tion language, is intended to be derived from the xtUML action
language, which is platform and language independent (Fig. 2.b).
Since QML expresses its UML portion using XMI files, it can be
easily exported and imported in QTronic; in the same way, the tex-
tual action language part, which is saved in separate files, can be
independently created or derived.

In the proposed approach, QML test models can be derived par-
tially using model extraction and horizontal transformation from
xtUML system models; completion of test models may still require
minor manual enrichments (Fig. 2.c). xtUML’s UML portion can
account for UML part of the QML models in case of state-machine
diagrams. Even though both xtUML and QML support similar

9 2http://www.mentor.com/products/sm/model_development/
bridgepoint/

types of UML model diagrams (i.e. state machines), it is preferable
to derive only the necessary portion of models that allows to satisfy
the targeted test criteria. Hence, not all the information present in
xtUML models is relevant for testing purposes.

Our approach for MBT benefits from the fact that xtUML sys-
tem models are detailed enough to be virtually considered as the
system itself. Code generators and model compilers only attach
language constructs (i.e. syntax and semantics) and optimization
to these models to yield a working software application for sim-
ulation, analysis or execution purposes. Thus in a sense we are
developing a black-box testing tool to perform white-box testing
by providing a form of input model which is as ’good’ as the sys-
tem itself. Statement coverage, branch coverage testing techniques,
which are supposed to work on models placed at different level of
abstraction, can now work on the same virtual system.

3.2 Case Study
A simple microwave oven is used as sample model for the demon-
stration of the described approach. By adopting a separate model
approach (see Sect. 2), from the same requirements specification
document two different models have been designed, one for system
modelling purposes through xtUML in BridgePoint and a second
one for testing purposes through QML in QTronic. On the contrary,
a shared model technique would have exploited the same system
modelling documents for testing purposes also. By automatically
transforming the xtUML system model into the appropriate QML
test model, i.e. by implementing a hybrid technique, we aim at
showing that the suite of test-cases derived from the generated test
model, coming from a system model, is able to cover the whole set
of functional requirements as the ones derived from the test model
designed in QML in a separate testing task.

The system model designed in xtUML is composed by three
components, i.e. oven, door and timer. The approach in xtUML
is based on designing structural diagrams of the system, in terms
of its components and interactions giving a static view, and then
modelling the functional perspective by means of state-machines
related to the components (generally one-to-one) and interacting
among themselves. In our case, focusing on the functional perspec-

11

tive, the microwave oven system is composed by three components
and therefore three state-machines: oven, door and timer (respec-
tively a, b and c in Fig. 3).

Figure 3: Oven State-Machines modeled in xtUML Bridge-
Point

Each state-machine is supposed to represent the functional be-
haviour of the related component and several state-machines inter-
act in order to build-up the overall behaviour of the system. In
the xtUML microwave model, door and timer state-machines (re-
spectively b and c in Fig. 3) status affect the oven’s behavior, since
events generated by them cause transitions’ triggering in the oven
state-machine (Fig. 3.a).

At the same time, the microwave oven system has been designed
in terms of a test model through QML in QTronic (Fig. 4). Look-
ing at the two models, their different nature clearly arises; in fact,
while the xtUML state-machines relate directly to the three struc-
tural components of the system (oven, door, timer), in the QML
state-machines it is quite hard to individuate such a connection of
behavioural meanings to structural components, since the model
has been designed focusing on testing of the overall behaviour of
the system. In the QML microwave model, a main state-machine
(Fig. 3.a) is defined to model the behaviour of the oven, and each
state contains an inner state-machine (Fig. 3.b) modelling the oven’s
cooking time. Differently from the xtUML model, no explicit in-
formation regarding the structural components of the system can be
found in the QML model, even though many similarities can be no-
ticed in terms of behavioural concepts since both models have been
designed based on the same functional requirements specification.

3.3 Transformation Mechanism
The transformation mechanism has been developed using the Bridge-
Point UML Suite Rule Specification Language (RSL), which al-

Figure 4: Oven State-Machines modelled in QML QTronic

lows to write translation rules that traverse the xtUML metamodel
and create corresponding text that is emitted to files; in essence, it is
a model-to-text transformation engine. Since in QML and xtUML a
model is composed by a set of state-machines and action language
code, the overall transformation functionality is achieved by the in-
tegration of two sub-functionalities, i.e. the transformation of the
state-machines from BridgePoint to QTronic and the translation of
xtUML action language to the QML action language.

The algorithm takes as input a xtUML model which we designed
and exported through BridgePoint in a single .xtUML file and pro-
duces two files: a .xmi file represents the QML model (function cre-
ate_qtronic_state_machine() in Fig. 5) in terms of state-machines,
with eventual action language code placed within them, and their
graphical rendering; a .cqa file (function create_qtronic_actionLang
_file() in Fig. 5) describes the QML action language code needed
for QTronic for the dynamic instantiation and automatic test-cases
generation.

Syntactical Transformation.
In the xtUML model, both structural and behavioural concepts

of the modelled system are described, but our focus in this work is
the behavioural perspective, i.e. specification of instance state ma-
chines. Each xtUML state-machine gives birth to a correspondent
state-machine defined in QML. Transformation issues concerning
the translation of state-machine model elements from a UML mod-
eling perspective are purely syntactical.

This statement is enforced by the fact that both languages adopt
a subset of the UML definition of state-machines and moreover
xtUML has a lower degree of expressiveness than QML in terms
of pure state-machines, leaving aside any action language coding.
A xtUML state-machine is mapped to a QML state-machine by it-

12

Figure 5: Transformation Algorithm in Pseudo-code

erating, for each xtUML element present in the state-machine, the
following three-steps approach: (1) navigating the xtUML model
driven by the xtUML meta-model definition, (2) retrieving the needed
information to be mapped and (3) eventually creating the corre-
spondent QML element. The algorithm performs the syntactical
transformation from xtUML to QML state-machine through the
function create_qtronic_state_machine(), given in pseudo-code in
Fig. 5. A snippet of the actual code related to the transformation of
a state element is depicted in Fig. 6.

Figure 6: Snippet of the Syntactical Transformation

For each state in a xtUML state-machine, the model is navigated
in order to reach the information needed for the creation of the XMI
code representing the correspondent QML state. An actual initial
state element has to be created and added in order to build a correct
QML state-machine, since such element is not part of the xtUML
meta-model, but on the other hand it is a compulsory element in the
QML definition of state-machine. The initial state is then linked by
a transition to the state that virtually acted as initial in the xtUML
source model.
Concerning the translation of transitions from xtUML to QML,
more manipulative transformation rules are needed. A transition
in xtUML is defined in terms of state-machine_ID: event_label.
In order to match to QML, it has to be manipulated to reach the
following format:
port_type: in_state_machine_name[msg.val==’event_label’]
where the port_type has to be manually chosen at the end of the
transformation process. In fact, they are all created by default as
internal transition, i.e. only triggerable by internal events, in order
to trace the xtUML concept of interaction among state-machines.
Since the test cases generation in QTronic can fail due to deadlocks
in state-machines (e.g. an internal transition which is never trig-
gered), manual enrichment is needed in terms of selecting which
ports are internal (port_type this) and which are triggered by ex-
ternal signals (port_type in). This manual step is requested since
it is not possible to automate the decision due to the fact that such
information is not present in the xtUML source model.

13

The QML representation of state-machines in the .xmi file does not
only contain the syntactical and semantic descriptions of the state-
machines, but also their graphical rendering information. There-
fore, the transformation mechanism is also in charge of the transla-
tion from xtUML to QML graphics. The function create_qtronic
_state_machine() (Fig. 5) is responsible for such translation and a
fragment of actual code performing part of this transformation on
rendering of transitions is depicted in Fig. 7. This snippet is only
part of the transformation which addresses the rendering of transi-
tions; the actual code performs, for instance, further manipulations
in case of polyline transitions for creating and properly rendering
their set of segments. Since graphics in xtUML and QML are ex-
pressed in different formats, the xtUML model has to be navigated
to retrieve the graphical information of each element (states, transi-
tions). This information is then manipulated by the transformation
mechanism in order to create the appropriate QML graphical item
in the .xmi file.

Figure 7: Snippet of the Graphical Transformation Rule

Semantic Transformation.
The syntactical transformation between xtUML and QML is not

enough. Issues concerning the translation between the two action
languages is indeed a matter of semantics and therefore a semantic
transformation is needed. First of all, the xtUML action language is
defined only within the state-machine itself, while in QML, an ap-
posite .cqa file is needed with the description of the state-machines’
structure in a Java-based action language, and actions can be placed
both in the .cqa file and in the state-machine definition contained
by the .xmi file. We decided to map the xtUML actions directly to
QML actions to be placed within the state-machines, while dele-
gating to the .cqa file only the minimal amount of code needed to
be able to make the QML state-machines operative. The function
create_qtronic_actionLang_file() in Fig. 5 is in charge of creating
the QML action language code file (Fig. 8) in terms of:

• Inbound ports: one for each state-machine created as in_name,
where name is the state-machine’s name retrieved from the
xtUML model;

• Outbound ports: a common outbound port;

• Records: a structural definition for each defined port; a string
field val is always created since it is in charge of carrying the
string related to the event that would trigger a transition on
the state-machine which owns the related port’

• State-machines definition: each state-machine has to be de-
fined has a Java class extending the abstract class StateMa-
chine;

• Instantiation of state-machines: in order to be used, defined
state-machine classes need to be instantiated;

• Initialization of threads: a main method is created and con-
tains the initialization of the state-machines instances in terms
of threads.

Figure 8: QML Action Language Generated File

Both xtUML and QML action languages are complex and power-
ful in terms of expressiveness, therefore a complete mapping among
them goes far beyond the scope of this work, which focus on the
motivational proof of translating design models into test models.
As a consequence, we take into account only the minimal set of
actions needed for the models, i.e. xtUML and QML, to be com-
parable and the QML models to be operative, i.e. the generation of
events for triggering of transitions. In xtUML, the generation of an
event triggering a transition is defined by the following action: gen-
erate eventID:’event_name’ to state_machine. In QML, a single
code line of action language is not enough for the purpose, since,
being a Java-based language, objects have to be first created and
instantiated in order to be used. Due to the fact that QML transi-
tions are triggered by messages received through inbound ports, we
decided to initially create one of such ports for each state-machine.
While the state-machine is statically created and instantiated during
the creation of the .cqa file, ports, i.e. records with an obligatory
string field for the event, are only defined at that time, while they are
instantiated whenever they have to be used. For instance, the QML
action language code related to the xtUML generate MO_O3:’start_
cooking’ to oven action (in state Closed of Fig. 3.b) would be (in
state Closed of Fig. 9.b):

14

in_oven port;
port.event = ’start_cooking’;
oven_instance.send(in_oven);
While oven_instance was instantiated in the .cqa file and can be
used directly, the in_oven port has to be instantiated in the action
body before it can be used (in the first line); eventually, the event
start_cooking is sent to the state-machine oven_instance through
the dedicated in_oven port.

Figure 9: Generated Oven State-Machines in QTronic

3.4 Discussion
In the previous sections we gave our motivations and described

in details both the proposed approach and its application in a real
case study. In order to prove that our goals have been achieved a
conclusive analysis step was performed. As explained previously,
the microwave oven system has been modelled in xtUML and QML
for different purposes (respectively system modelling and test mod-
elling), but referring to the same functional requirements speci-
fication. What we want to demonstrate is the fact the QML test
model automatically generated from the xtUML system model ap-
plying our approach is capable of fully covering the behavioural re-
quirements of the system as well as the modelled QML test model.
Patterns and coverage from automatically generated and manually
modelled test models have resulted clearly comparable in terms of
functional testing of the system’s intended behavioural scenarios.
This arises from the comparison of the test-cases generated from
the two test models (generated and modelled), and confirms our
initial motiviation and goal, since the approach can actually help in
reducing the efforts devoted to testing tasks by automatically gen-
erating test models from system models. Moreover the consistency
between the behaviour modelled for testing purposes and the one
modelled at design level is ensured since test models are directly
derived from the structural model of the system; this produces a
three-fold advantage that would rarely occur in case of designing
test models as a separate task in the MBD process:

1. behavioral testing patterns in terms of interaction between

system components are produced and tested ;
2. patterns which may be feasible from a pure functional per-

spective but unfeasible from the system’s structural definition
(e.g. interactions among components) are not generated;

3. testing patterns that are directly traced to the system struc-
tural components gives the possibility for the system design-
ers to get immediate and precise trace of eventual divergences
from expected and actual behaviour in terms of involved struc-
tural components.

When dealing with more detailed system models, in terms of xtUML
action language, the actual approach might not be able to produce
test models with same degree of expressiveness due to the fact that
the translation between the two action languages has not been fully
implemented yet. Therefore we are going to include details coming
from xtUML action language in order to generate more refined and
powerful test models.

4. RELATED WORK
Automatic test cases generation from design specifications has been
widely studied and many approaches have been proposed to address
it. In this respect, the closest work to our proposal is presented
in [1], where the authors illustrate the mapping of UML and SysML
design models toward diagrams in the QTronic tool. Despite that
work could appear as overlapping and even extending our tech-
nique, there are some relevant differences. First of all, the UML
state machines are restricted in their expressive power and copied
only with respect to their graphical rendering towards QTronic. The
underlying assumption is that the functional representation for test-
ing purposes exactly matches the behavioural description provided
at system design level. As we have shown in our work, the design
decomposition often does not match the functional view of the ap-
plication, even for simple case studies; therefore, we exploit the
expressive power of xtUML to grasp the functional abstraction of
the system behaviour from its design specification. Of course, we
try to preserve the graphical information as well, though we con-
sider it necessary but not sufficient. Another important distinction
between the techniques is that [1] adopts a text-based translation
of tool formats, namely from MagicDraw to QTronic, by means
of Python scripts. This entails that whenever the source model
streaming format would change the transformation scripts would
be corrupted. On the contrary, we propose a model transformation
approach based on the xtUML metamodel.

In [13] UML activity diagrams are intended as design specifi-
cations and a set of test cases are indirectly generated by refining
an initial wider set of randomly generated test cases accordingly to
a given activity diagram and coverage criteria. Test suites with a
given coverage level can be also generated from UML state charts
as described in [6], where tests are derived as solutions to a plan-
ning problem solved by a tool that takes as input the state chart ele-
ments mapped to the STRIPS planning language. Also in this case,
the generation is not directly performed on the design specifica-
tions, but rather from behavioural models derived a priori. Another
effort in this direction is presented in [15], where the Automated
Test Case Generation based on Statecharts (GTSC) environment
is presented; its main feature is the automated generation of test
sequences from both state chart- and finite state machine- based
behavioural models.

Model transformation technology of MDA has also been used
to address these issues; in [9] a method for generating unit test
cases from platform-independent models is presented and achieved
through a set of model-to-model and model-to-text transformations.
In order to perform more extensive system testing, behavioural
models may not be sufficient. An integration of formalised in-

15

formation derived from UML use-case and sequence diagrams is
presented in [16] and describes the process of generating test cases
from a System Testing Graph (STG), which is the result of the in-
tegration of the Use-case Diagram Graph (UDG), derived from the
UML use-case diagram, and the Sequence Diagram Graph (SDG),
derived from the UML sequence diagram.

More theoretical approaches have also been proposed; in [5] the
authors aim at generating test cases by combining data abstrac-
tion, enumerative test generation and constraint-solving in order
to broaden the applicability of model-based test generation tools to
a system regardless of its size. Further information is needed for
specific testing criteria, such as boundary-based coverage; a com-
bination of UML state machine diagrams, class diagrams and Ob-
ject Constraint Language (OCL) expressions is used in [18] to au-
tomatically generate test data input partitions by correlating OCL
pre/post-conditions of operations and guard conditions of the state
machines. This approach is supported by the model-based testing
tool ParTeG [17].

Another popular approach to solve the test cases generation prob-
lem is to use a model-checker. This is done by producing test cases
through the formulation of the test generation problem as reacha-
bility problem. The selection of test cases is driven by the cover-
age criterion and such algorithm, proposed in [7], is able to gen-
erate a test suite covering all feasible coverage items. Other ap-
proaches based on model-checking use coverage criteria derived
from control-flow and data-flow of state-charts and, as in [8], for-
mulate the problem of test generation as finding counterexamples
during the model checking of such state-charts. In [3] the authors
show how an integrated use of state and sequence diagrams can be
used for deriving a reference model, which shall be the input for
automatic derivation of test cases.

5. CONCLUSIONS
MDE aims at exploiting models in all the phases of the software
development lifecycle; in this respect, design models can be (par-
tially) reused for testing purposes. The major advantages are the
reduction of efforts for re-modelling the system for testing, the
preservation of coherence between design and testing models by
construction, and an improved management of application evolu-
tion.

This paper presented a hybrid testing technique for re-using de-
sign models in an environment able to generate test cases from ap-
propriate artefacts describing a system for testing purposes. Since
design decomposition does not necessarily match the functional de-
scription of the application, a transformation able to grasp system
features from design models and map them toward the correspond-
ing functional representation is required. The feasibility of such
a solution has been illustrated together with possible advantages,
notably the reduction of efforts for test design and maintenance.
Despite the initial results are quite positive, the approach has been
validated against small case studies, therefore future investigations
will encompass a thorough proof of the technique for industrial
sized systems. Furthermore, we are currently investigating the in-
clusion of additional details coming from xtUML in order to gen-
erate more refined test models. Finally, we are planning to map the
generated test cases back to xtUML; in fact, in that way we could
exploit available facilities for model simulation and generation of
test scripts toward different implementation platforms, thus closing
the loop of the integration between the domains. In this respect,
we are evaluating the adoption of an alternative transformation lan-
guage, more suitable for such a wider task.

6. ACKNOWLEDGMENTS

We would like to thank Athanasios Karapantelakis for his sup-
port and fruitful discussions on QTronic related features.

7. REFERENCES
[1] F. Abbors, T. Pääjärvi, R. Teittinen, D. Truşcan, and J. Lilius.

Methodological Issues in Model-Based Testing. In
Model-Based Testing of Reactive Systems, pages 281–291,
2004.

[2] P. Baker, Z. R. Dai, J. Grabowski, O. Haugen,
I. Schieferdecker, and C. Williams. Model-Driven Testing:
Using the UML Testing Profile. Springer-Verlag New York,
Inc., 2007.

[3] A. Bertolino, E. Marchetti, and H. Muccini. Introducing a
reasonably complete and coherent approach for model-based
testing. Electron. Notes Theor. Comput. Sci., pages 85–97,
2005.

[4] J. Bézivin. On the Unification Power of Models. Software
and System Modeling (SoSym), 4(2):171–188, 2005.

[5] J. R. Calamé, N. Ioustinova, and J. van de Pol. Automatic
Model-Based Generation of Parameterized Test Cases Using
Data Abstraction. Electron. Notes Theor. Comput. Sci., pages
25–48, 2007.

[6] P. Fröhlich and J. Link. Automated Test Case Generation
from Dynamic Models. In In Proceedings of ECOOP ’00,
pages 472–492. Springer-Verlag, 2000.

[7] A. Hessel and P. Pettersson. A Global Algorithm for
Model-Based Test Suite Generation. In In Proceedings of
Third Workshop on Model-Based Testing. Electronic Notes in
Theoretical Computer Science 16697, 2007.

[8] H. S. Hong, I. Lee, O. Sokolsky, and S. D. Cha. Automatic
test generation from statecharts using model checking. In In
Proceedings of FATES’01, pages 15–30, 2001.

[9] A. Z. Javed, P. A. Strooper, and G. N. Watson. Automated
Generation of Test Cases Using Model-Driven Architecture.
In In Proceedings of AST ’07, page 3. IEEE Computer
Society, 2007.

[10] S. Kent. Model Driven Engineering. In In Proceedings of
IFM ’02, pages 286–298. Springer-Verlag, 2002.

[11] S. J. Mellor and M. Balcer. Executable UML: A Foundation
for Model-Driven Architectures. Addison-Wesley Longman
Publishing Co., Inc., 2002.

[12] T. Mens, K. Czarnecki, and P. Van Gorp. A Taxonomy of
Model Transformations. In Language Engineering for
Model-Driven Software Development. IBFI, Schloss
Dagstuhl, Germany, 2004.

[13] C. Mingsong, Q. Xiaokang, and L. Xuandong. Automatic
test case generation for UML activity diagrams. In In
Proceedings of AST ’06, pages 2–8. ACM, 2006.

[14] A. Pretschner and J. Philipps. Methodological Issues in
Model-Based Testing. In Model-Based Testing of Reactive
Systems, pages 281–291, 2004.

[15] V. Santiago, N. L. Vijaykumar, D. Guimara̧es, A. S. Amaral,
and E. Ferreira. An Environment for Automated Test Case
Generation from Statechart-based and Finite State
Machine-based Behavioral Models. In In Proceedings of
ICSTW ’08, pages 63–72. IEEE Computer Society, 2008.

[16] M. Sarma and R. Mall. Automatic Test Case Generation
from UML Models. In In Proceedings of ICIT ’07, pages
196–201. IEEE Computer Society, 2007.

[17] D. Sokenou and S. Weißleder. ParTeG - Integrating
Model-based Testing and Model Transformations. In
Software Engineering, pages 23–24, 2010.

[18] S. Weißleder and D. Sokenou. Automatic Test Case
Generation from UML Models and OCL Expressions. In
Software Engineering (Workshops), pages 423–426, 2008.

16

A New Modeling Approach for IMA Platform Early
Validation

Michaël Lafaye, David Faura, Marc Gatti, Laurent Pautet

Telecom Paristech, LTCI
46 rue Barrault

75634 Paris Cedex 13, France

{lafaye,pautet}@telecom-paristech.fr

Thales Avionics, ACS/DTEA
18 avenue Maréchal Juin

92366 Meudon-la-Forêt Cedex, France

{david.faura,marc-j.gatti}@fr.thalesgroup.com

ABSTRACT
This past few years, avionics platform conception changed to

integrated architecture, permitting one processor to host some
applications, in order to reduce weight and space. But this
method entails more complexity, especially in safety domain,
while time to market tends to decrease, so new development
processes are needed. Model-based approaches are now mature
enough to design embedded critical systems and perform
architecture exploration.

In this paper we present a new modeling approach allowing
avionics platform description and dynamic simulation. This
method aim at dimensioning the architecture according to the
applications it has to process, and to achieve early platform
validation.

General Terms
Performance, Design, Verification.

Keywords
modeling, avionics systems, real-time, simulation, AADL,
systemC

1. INTRODUCTION
Avionics systems are critical real time systems, i.e. timing

constraints have to be strictly respected at the risk of
catastrophic issue. They are composed of applications, real-time
operating system and hardware modules. Initially, avionics
platform (hardware and operating system) were implemented as
federated architectures, where one processing unit hosted one
function. This relatively simple architecture was however costly
in terms of space, weight and power consumption, but offers a
simple approach regarding the certification.
In order to reduce these parameters, and also to reduce costs, the
Integrated Modular Avionics (IMA) concept was developed in
the 2000s. It defines integrated architectures, where one
processor can host some applications, and so reduces the
number of modules used in avionics platform. Following this
evolution, suppliers developed network architectures, in which

modules are interconnected and communicate through a
deterministic network. However, aggregating applications in a
few modules, and gathering communications in a central
network entails an increase of complexity in avionics platform
design, verification and certification processes. In the same time,
time to market tends to decrease. These developments require an
early modeling of the system to validate and maximize the use of
the future platform, while ensuring the critical level required by
current standards in aviation (DO-178B, DO-254, MILS-CC…).
To model this IMA platform and perform early validation,
Model-Driven Engineering (MDE) approaches are now suitable
to describe system high-level functionalities. Many projects aim
at modeling these platform with Architectural Description
Languages (ADL) as AADL [1] or MARTE [2], or with
synchronous languages such Lustre or Signal [3,4]. However,
they often focus on the applications description, model the
hardware as connected blackbox components with a few
properties, and perform static simulation. Moreover, there
actually is no automated process for complete platform modeling
and simulation.
We define a new modeling method, that aims at designing a
complete avionics platform (hardware, operating system and the
applications). It is a component-based approach, relying on two
languages and taking advantages of both: AADL and systemC.
AADL [5] is, as MARTE, an ADL particularly adapted for
software architecture description [6,7], enabling the modeling of
ARINC 653 embedded real-time system [8]. In view of the
experience of partners who developed the ARINC 653 AADL
annex, the ARINC 653 compliant runtime for AADL called
POK, the Ocarina tool suite etc., we choose the AADL rather
than MARTE. SystemC [9] is an IEEE standard widely used in
industry for hardware platform description, and containing a
simulation kernel for architecture simulation and exploration.
In this paper we present our new modeling approach. We first
introduce IMA concept, then we detail our method, before
concluding with perspectives of our work.

2. Integrated Modular Avionics platform
IMA concept introduced integrated architecture, allowing

to reduce the number of different modules used for platform
design. As illustrated in figure 2, an IMA platform is composed
of avionics applications, embedded operating system and the
underlying hardware. This latter is composed of several
processing modules communicating through a deterministic
network, the AFDX (Avionics Full DupleX).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MONPES’10, September 20, 2010, Antwerp, Belgium.
Copyright © 2010 ACM 978-1-4503-0123-7/10/09…$10.00.

17

Figure 1. IMA platform

A processing module can host one or some applications at
different criticality levels, it is then necessary to respect safety
constraints. That's why OS ARINC 653 standard was defined,
which specifies space and time partitioning. Figure 2 gives an
overview of an IMA module embedding an ARINC 653
operating system. To ensure space partitioning, each application
is enclosed in one or some partitions, isolating it from each
other. Each partition is bound to a part of memory, so it only
access its memory area. This partitioning prevents from failure
propagation. Intra and inter-partitions communications are also
defined by the standard to prevent failure propagation. To
ensure time partitioning, each partition has its own execution
time window, during which the application has access to all
resources dedicated (processing, memory, dedicated I/O etc.).

Figure 2. ARINC 653 spatial partitioning

3. IMA platform modeling

3.1 Overview
Model-Driven Engineering approaches are now mature

enough to serve as a basis for building embedded systems and
perform early validation. They are especially suitable for
modeling the high-level architecture, that are the functional
architecture (description of the functionalities offered by the

system) and logical architecture (description of how the system
is structured into logical components cooperating by
communications) [10,11]. But at platform architecture level,
these approaches describe both hardware and software as static
blackbox elements with some properties.
 Some projects [1,2,3] aim at building more accurate platform
models, but they mainly focus on the software behavior, and
model hardware as one or a few blackbox components without
behavior information. They after simulate this latter statically.
There is so no method to retrieve dynamic performances from
the hardware to validate it according to the applications
requirements.
Our method develops a new approach for avionics platform
modeling. It aims at refining architecture description at platform
decomposition level, specially the hardware. In order to refine
this latter, our approach models and sizes it according to
applications requirements. As we can see in figure 3, this
approach consists of different tasks:

- system modeling;
- applications characteristics extraction;
- platform generation according to requirements;
- platform simulation with simulation scenario made with

extracted stimuli;
- platform performances analyses.

Figure 3. Modeling approach.

3.2 Application modeling
The description of the application consists of a set of

characteristics (parallel code percentage, hit cache rate etc.), that
will give the future platform requirements, and a set of
instructions which will be translated into hardware stimuli.
Figure 5 shows the two ways we can use to extract these
characteristics from the application, and build a simulation
scenario to simulate the platform.

18

Figure 4. application modeling.

In the first way, -left path in the figure 4-, we have access to the
application source code. In this case, the application is modeled
with the AADL threads, which represent the ARINC 653
processes of the application. They are configured according to
this processes (deadline, priority etc.). Threads are bound to a
processor (or partition) and a memory (or part of memory), and
ordered according to the scheduling policy defined for the
application. Each thread as a reference to a part of the source
code, from which we extract characteristics giving the
requirements the platform has to match.
To elaborate the simulation scenario, we use a code profiling
and application decomposition method. The figure 5 gives an
overview of an application decomposition: it is decomposed into
a logical function sequence (encoder, decoder…), refined into
basic functions instructions (FFT, FIR…). Each basic function is
composed of simple instructions (operator and operand(s)), that
can be simple operations (add, div etc.) or memory access. The
code attached to the AADL thread is parsed and instructions are
extracted. We translate these latter into corresponding systemC
instructions. For example, a "load" gives a systemC
READ_COMMAND instruction.

Figure 5. Application decomposition example

On the other way -right path on the figure 4-, we have not the
source code of the application, so we can not extract basic
instructions. However, some main application characteristics
(sequential code percentage, scheduling policy etc) are given,
and allow the elaboration of several constraint-random
simulation scenario which fulfill application requirements. This
method allows a hardware platform early validation without
access to the application, but only with representative
characteristics. It is less accurate than the first way, but is easier
and faster.

3.3 High level system modeling with AADL
As we saw in the previous section, the application is

described with AADL threads.
The real-time operating system is defined by some properties
dispatched in the different hardware components. For example,
scheduling policy is set in the processor module, partition
security level is defined in the virtual processor, etc. To model
an ARINC 653 operating system, we use the AADL 653 annex,
and the method described in this article [8].
Each hardware component is modeled with the AADL
corresponding component, or with the device element. Some
components more complex, like network, are modeled as a sub-
system containing some components. We model hardware
component as a pseudo blackbox element, where behavior is not
defined. We define interface information (ports, bus required if
needed) and a few properties (memory size, bus transfer latency
etc.). In order to refine those hardware properties, we created
DRAM and cache component (that inherit memory element) to
refine their read and write latencies, and we defined or
completed some AADL property sets. We introduced behavior
and specific properties, like cache hit rate for cache module, or
refresh time for DRAM component.
The user models with the AADL the system corresponding to
the platform, and choose which viewpoint(s) will be set when
analyzing the platform. Viewpoints can be for example timing
performance, power consumption or safety, and enable the
platform investigation under different angles. We then extract
the main characteristics of the application, and parse this AADL
platform to retrieve properties, connections and deployment
information, that will serve for systemC platform generation.

3.4 Platform integration by generation
 In order to generate the systemC platform, we developed a
database of configurable systemC components. These
component have three parts: behavior, main properties and
interface. For each of them, we identified the main
characteristics and defined a configurable automata. At each
state of this one are attached parameters corresponding to
viewpoints and/or global parameters. Figure 6 shows an example
of DRAM automata with some timing parameters (tRefresh,
tRDC etc.) and one global parameters (burst_cpt).
For each platform element of the AADL model, we retrieve its
information (properties, connections etc.) and configure the
corresponding systemC behavioral model. Then, we connect all
the modules to elaborate the refined systemC platform.

19

 Figure 6. DRAM automata example with timing annotation

3.5 Platform simulation and results
Currently, this is a work in progress. However, we have

already encouraging results. The AADL part of the process has
been specified and is under development, while systemC main
hardware components (processing unit, cache memory, dram
and bus) have been developed (behavior, main properties and
communication interface). In order to test and refine these
elements, we implemented a minimum hardware platform with
one or some instance of each of them. We also developed a
systemC frame generator that simulates the platform, so we can
observe the elements behavior and the platform
communications.
Otherwise, to test our future platform, we defined a simulation
and performances analysis method: to see if the hardware
platform built is compliant with the application requirements,
we perform a simulation using systemC kernel. It takes the
platform generated, the viewpoint(s) set, and applies the
simulation scenario. As we can see in the figure 7, the user can
analyze the platform performances by examining performances
graphs or simulation traces. Then, we can see if the platform
matches the requirements corresponding to the viewpoint(s) set.
If the hardware is not compliant with the applications
requirements, we can investigate what is the problem, and try to
refine or modify one or more components implementation.

Figure 7. Platform simulation and performances analysis.

4. Conclusion
Current early platform validation methods center on

software modeling, regarding the hardware as blackbox
components which can't be dynamically simulated.
We have presented a new early validation approach, that aims at
modeling a complete avionics platform, software and hardware
(i.e. IMA modules and their interconnections as AFDX). Our
method automatically generates hardware and simulation
scenario to simulate it. It enables a dynamic simulation of the
platform, and analyzes its performances according different
viewpoints (timing, power consumption or safety). It takes
advantages from the AADL, particularly adapted for software
architecture modeling, and from systemC, industrial standard for
hardware architecture description.

To validate the accuracy of our modelling methodology, we
first model electronic evaluation boards. We will afterwards
model a complete IMA platform to compare the model
performances with the experimental results. Otherwise, we will
connect with existing model-driven engineering methods and
improve the platform development process.

5. REFERENCES
[1] Support for Predictable Integration of mission Critical

Embedded Systems project (SPICES), 2009
 http://www.spices-itea.org
[2] Model-Based Approach for Real-Time Embedded Systems

development project (MARTES), 2007.
http://www.martes-itea.org/

[3] C. Brunette, R. Delamare, A. Gamatié, T. Gautier, J-P.
Talpin, "A Modeling Paradigm for Integrated Modular
Avionics Design", IRISA report, 2005.

[4] Y. Ma, J-P. Talpin, T. Gautier, "Virtual prototyping
AADL architectures in a polychronous model of
computation", IRISA research report, 2007.

[5] AADL Portal at Telecom Paristech : http://aadl.telecom-
paristech.fr/

[6] J. Hughes, F. Singhoff, "Développement de systèmes à
l'aide d'Ocarina et Cheddar" ETR09, 2009.

[7] P. Dissaux, F. Signhoff, "the AADL as a Pivot Language
for Analyzing Performances of Real Time Architectures",
4th European Congress ERTS Embedded Real Time
Software, 2008.

[8] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F.
Singhoff, F. Kordon, "Validate, Simulate and Implement
ARINC 653 systems using the AADL", CM SIGAda Ada
Letters, 2009.

[9] Open SystemC Initiative. IEEE 1666: systemC Language
Reference Manual, 2005. www.systemC.org.

[10] J.A. Estefan. "Survey of model-based systems engineering
(MBSE) methodologies". Technical report, INCOSE
MBSE Focus Group, may 2007

[11 Bernhard Schätz, Manfred Broy, Franz Huber, Jan Philipps,
Wolfgang Prenninger, Alexander Pretschner, Bernhard
Rumpe, "Model-Based Software and Systems
Development – a white paper", 2004

20

Modular Synthesis of Mobile Device Applications from
Domain-Specific Models

Raphael Mannadiar
McGill University

3480 University Street
Montreal, Quebec, Canada
rmanna@cs.mcgill.ca

Hans Vangheluwe
McGill University

3480 University Street
Montreal, Quebec, Canada

hv@cs.mcgill.ca

ABSTRACT
Domain-specific modelling enables modelling using constructs
familiar to experts of a specific domain. Domain-specific
models (DSms) can be automatically transformed to var-
ious lower-level artifacts such as configuration files, docu-
mentation, executable programs and performance models.
Although many researchers have tackled the formalization of
various aspects of model-driven development such as model
versioning, debugging and transformation, very little atten-
tion has been focused on formalizing how artifacts are ac-
tually synthesized from DSms. State-of-the-art approaches
rely on ad hoc coded generators which essentially use mod-
elling tool APIs to programmatically iterate through model
entities and produce the final artifacts. In this work, we
propose a more structured approach to artifact generation
where layered model transformations are used to modularly
isolate, compile and re-combine various aspects of DSms.
We demonstrate our technique by detailing the synthesis
of running Google Android applications from DSms, and
discuss how it may be applied in addressing the character-
istic non-functional requirements (e.g. timing constraints,
resource utilization) of modern embedded systems.

Categories and Subject Descriptors
D.2 [Software Engineering]: Software Architectures; D.2.11
[Software Engineering]: Software Architectures—domain-
specific architectures , information hiding, languages

General Terms
Design, Languages, Standardization

Keywords
Multi-paradigm modelling, Model transformations, Language
ripping and weaving, Application synthesis, Performance
metric synthesis, Google Android

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MOMPES ’10, September 20, 2010, Antwerp, Belgium
Copyright 2010 ACM 978-1-4503-0123-7/10/09 ...$10.00.

1. INTRODUCTION
Domain-specific languages (DSLs) allow non-programmers

to play an active role in the development of applications.
This makes obsolete the many error-prone and time consum-
ing translation steps that characterize code-centric develop-
ment efforts; most notably, the manual mapping between
the (often far away) problem and solution domains. Further-
more, due to their tightly constrained nature – as opposed
to the general purpose nature of UML models, for instance,
which are used to model programs from any domain using
object-oriented concepts –, domain-specific models (DSms)
can be automatically transformed to complete executable
programs. This truly raises the level of abstraction above
that of code. Empirical evidence suggests increases in pro-
ductivity of up to an order of magnitude when using domain-
specific modelling (DSM1) and automatic program synthe-
sis as opposed to traditional code-driven development ap-
proaches [15, 11, 14].

Due to the very central part played by automatic code
synthesis in DSM, we argue that structuring how models
are transformed into code is both beneficial and necessary.
Previous work realizes the said transformation by means of
ad hoc hand-coded code generators that manipulate tool
APIs, regular expressions and dictionaries [15, 11, 18]. In
constrast, our approach employs modular and layered visual
graph transformations whose results can readily be inter-
preted.

Section 2 briefly overviews related work. Section 3 intro-
duces a DSL we have developed for modelling mobile device
applications as well as the lower level formalisms and trans-
formations that make up and produce the layers between
the DSms and the generated applications. In Section 4, we
present a non-trivial instance model of our DSL, every stage
of the transformation to code and the synthesized applica-
tion running on a Google Android [1] device. In Section
5, we compare the traditional approach to artifact synthe-
sis to our own in the context of generating and presenting
non-functional requirement related performance information
from DSms. Finally, in Section 6, we discuss future work and
provide some closing remarks.

1Note that we refer to domain-specific modelling as DSM
and to a domain-specific model as a DSm.

21

2. RELATED WORK
In this section, we briefly discuss related research on three

topics: artifact synthesis from DSms, modelling mobile de-
vice applications and integrating performance concepts in
early development phases.

Most of current research in the general area of model-
driven engineering focuses on enabling modellers with de-
velopment facilities equivalent to those from the program-
ming world. Most notably, these include designing/editing
[9, 4, 3], differencing [2, 6, 12], transforming [8, 16], evolv-
ing [5] and debugging models [18]. More hands-on research
has explored the complete DSM development process start-
ing from the design of DSLs to the synthesis of required
artifacts from instance models. In these works, DSms are
systematically transformed to lower level artifacts by means
of ad hoc hand-coded generators [15, 11, 14]. However, no
allusions are made regarding model debugging, simulation,
tracing or any other activity where it might be desirable to
establish links between model and artifact. Wu et al. [18]
recognized this need for the context of DSm debugging and
proposed a generic grammar-based technique for generating
DSL debuggers that reuse existing integrated-development
environment facilities. Unlike previous work, mapping infor-
mation from model to code is computed and stored during
code generation. This information is then used to enable
common debugging activities such as setting and clearing
breakpoints and stepping into statements at the DSm level.
Limitations of this work are that the mapping construction
inevitably increases the complexity of the code generator
and that the said mapping is not readily presentable to the
modeller.

Several academic and non-academic efforts have investi-
gated the modelling and synthesis of mobile device appli-
cations. In [14], a meta-model for modelling mobile device
applications is introduced where behaviour and user inter-
face elements are intertwined. In [15], a meta-model for
home automation device interfaces with provisions for es-
cape semantics2 is described. The meta-model we introduce
in Section 3 is inspired by these two formalisms and is in
fact a combination and enhancement.

Finally, in [17], Tawhid and Petriu review past and cur-
rent research on the benefits of elevating performance con-
cerns to the early stages of development of software product
lines (SPLs) as well as propose means to realize the said
elevation. Their technique consists in annotating high-level
models which are later transformed to performance models
that lend themselves to analysis. The reasoning behind in-
tegrating low-level non-functional requirement related con-
cepts so early on is that it is best not to realize that these
requirements can not be met under the current design once
implementation is well under way. The mindset of SPLs
(where parameterizing high-level domain-specific concepts
enables application synthesis) is of course very similar to
that of DSM. Thus, means to reason about performance re-
lated concerns such as resource utilization and application
response time at the DSm level are desirable.

2Means to extend the modelling language’s expressiveness
are built into the language itself.

3. META-MODELS & TRANSFORMATIONS

3.1 PhoneApps
Mobile device applications often require high levels of user

interaction. It can thus be argued that behaviour and visual
structure make up the domain of such applications. The
PhoneApps DSL encompasses both of these aspects at an
appropriate level of abstraction (see Figure 1a). Timed, con-
ditional and user-prompted transitions describe the flow of
control between Containers – that can contain other Con-

tainers and Widgets – and Actions – mobile device spe-
cific features (e.g., sending text messages, dialing numbers)
– with each screen in the final application modelled as a top-
level Container (i.e. a Container contained in no other).
With a series of graph transformations, PhoneApps models
are translated to increasingly lower level formalisms until a
complete Google Android application is synthesized. Figure
1b gives an overview of the hierarchical relationships be-
tween the meta-models in play. The following subsections
overview each transformation3.

3.2 PhoneApps-to-Statecharts
The first step in the synthesis of executable applications

from PhoneApps models is the PhoneApps-to-Statecharts
transformation which extracts the models’ behavioural com-
ponents. Rather than attempt to invent a novel way of
transforming and generating code for complex behaviour, we
use the extensively proven and studied formalism of State-
charts [10] as our target formalism. The behavioural se-
mantics of PhoneApps models are fully encompassed in the
edges between Containers and Actions and can readily be
mapped onto Statecharts. Existing tools for Statechart com-
pilation, simulation, analysis, etc. can be exploited to pro-
duce efficient and correct code. Figure 2 shows an example
graph transformation rule4 from a subgraph of a PhoneApps
model to its equivalent in the Statechart formalism. When
the full PhoneApps-to-Statechart transformation has run
its course, every Container and Action has a correspond-
ing state. These are connected via customized transitions
according to the edges that connect their respective Con-

tainers and Actions. Note that the current range of pos-
sible behaviours of PhoneApps models requires only the ex-
pressiveness of timed automata. Future work will extend the
formalism with notions of hierarchy and concurrency such
that more powerful Statechart features (e.g., orthogonality,
nesting) become required.

3.3 PhoneApps-to-AndroidAppScreens
After isolating and transforming the behavioural compo-

nents of PhoneApps models to Statecharts, another trans-

3See [13] for more detailed descriptions of the steps that
make up these transformations.
4Rules are the basic building blocks of rule-based graph
transformations. They are parameterized by a left-hand side
(LHS), a right-hand side (RHS) and optionally a negative
application condition (NAC) pattern, condition code and
action code. The LHS and NAC patterns respectively de-
scribe what sub-graphs should and shouldn’t be present in
the source model for the rule to be applicable. The RHS pat-
tern describes how the LHS pattern should be transformed
by the application of the rule. Further applicability con-
ditions may be specified within the condition code while
actions to carry out after successful application of the rule
may be specified within the action code.

22

(a) (b)

Figure 1: (a) The PhoneApps meta-model (as a Class Diagram); (b) A Formalism Transformation Graph [9] for PhoneApps.

Figure 2: A PhoneApps timeout mapped to a Statechart
timeout. The grayed out transition between Containers il-
lustrates the marking of that transition as “visited”.

formation is required to isolate and transform their user-
interface and Google Android related components. The for-
malism we propose to encompass this information is An-
droidAppScreens (see Figure 3a). When the full PhoneApps-
to-AndroidAppScreens transformation has run its course,
top-level Containers and Actions each have corresponding
Screens and Acts respectively. These are appropriately con-
nected to some number of constructs that represent snippets
of generated Google Android-specific code (e.g., XML lay-
out code, application requirement manifests, event listener
code). Figure 3b shows an example translation rule from
a subgraph of a PhoneApps model to its equivalent in the
AndroidAppScreens formalism.

The PhoneApps-to-Statecharts/AndroidAppScreens trans-
formations clearly demonstrate the modular and layered na-
ture of our approach to code synthesis. We improve upon
the traditional ad-hoc hand-coded generator approach on
numerous fronts.

First, the recurringly stated goals of simulation and de-
bugging at the DSm level can be achieved by instrumenting
the generated code with appropriate callbacks as in [18]. Un-
fortunately, in doing so, the code generator is polluted by
considerable added complexity. In our approach, the com-
plex task of maintaining backward links between models and
synthesized artifacts is accomplished by connecting higher-
level entities to their corresponding lower-level entities in
transformation rules via generic edges5. These have minimal

5Notice the purple, undirected edges between constructs of

impact on the readability of the rules and their specification
is amenable to semi-automation. The resulting chains of
generic edges can be used to seamlessly animate and update
DSms (or any intermediate models) during execution of the
synthesized application 6.

Second, the aforementioned generic edges can aid in the
debugging of the graph transformations themselves. Ad-
vanced DSM tools such as AToM3 [9] which support step-by-
step execution of rule-based transformations provide a lim-
ited but free transformation debugging environment where
one can very easily observe (and modify) the effect of every
single rule in isolation. Complex tasks such as determining
what was generated from which model entity become trivial
and don’t require any further instrumentation. Once again,
this is considerably easier, more modular and more elegant
that lacing a coded generator with output statements and
breakpoints.

Third, although in a finished product the inner work-
ings that convert DSms to artifacts should be hidden from
the modeller, it may be useful for educational purposes to
see how higher- and lower-level constructs are related (as
demonstrated in Figure 5). Both our transformation rules
and the cross-formalism links they produce explicit these re-
lationships.

Fourth, the multiple intermediate layers between model
and artifact (and the links between them) provide a means
to observe models from various “viewpoints”. For instance,
in the context of PhoneApps, to study only the behavioural
aspects of a model, one could observe the generated Stat-
echart in isolation from the DSm and the other generated
artifacts.

Finally, the most important advantage of our approach
is perhaps that it raises the level of abstraction of the de-
sign of “code synthesis engines”. Rather than interacting
with tool APIs and writing complex code, the task of im-
plementing a code generator is reduced to specifying rela-

different formalisms in the figures describing rules.
6Future work will explore extending these animation capa-
bilities to more advanced debugging activities such as alter-
ing the execution flow.

23

(a) (b)

Figure 3: (a) The AndroidAppScreens meta-model; (b) Extracting information from a Container into new AndroidAppScreens
constructs.

tively simple (graphical) model transformation rules using
domain-specific constructs. In a research community that
ardently encourages the use of models and modelling and
more generally development at a proper level of abstraction,
our approach to code synthesis seems like a natural and log-
ical evolution.

3.4 AndroidAppScreens- and Statecharts-to-
AbstractFiles

Benefits of keeping links between models and generated
artifacts were discussed in the previous subsections. Follow-
ing the same mindset, we introduce the AbstractFiles formal-
ism. This trivially simple formalism serves as an abstraction
of the actual generated files i.e., a model element exists for
each generated file. Hence, rather than compile and out-
put the previously generated AndroidAppScreens and Stat-
echart models directly to files on disk, their compilation re-
sults in an instance model of the AbstractFiles formalism.
An added benefit of this design choice is that the generated
output for each file can be reviewed from within the mod-
elling environment as part of the debugging process; there
is no more need to locate files on disk and open them in a
separate editor. Figures 4a and 4b show two example trans-
formation rules from subgraphs of an AndroidAppScreens
model to their equivalent in the AbstractFiles formalism.
As for the transformation of the Statechart constructs to
the AbstractFiles formalism, the output of a Statechart com-
piler is directed towards an AbstractFiles model element to
be later output to a Java file on disk.

4. CASE STUDY: CONFERENCE REGISTRA-
TION IN PHONEAPPS

We now present a hands-on example that demonstrates
the successive intermediate representations involved in syn-
thesizing a Google Android conference registration appli-
cation from a PhoneApps model. Of particular interest is
the intuitive mapping between each model and its counter-
part(s) in the lower-level formalisms. The following will ex-
plicit the above-mentioned advantages of easier debugging
and readability of the code and code synthesis engines that
result from our approach. Figure 5a shows the modelled
conference registration application CR in the PhoneApps
formalism. There are 3 main use cases: (1) registering, (2)
viewing the program schedule and (3) canceling a registra-
tion. The first is explored below.

1. The user sees the Welcome screen for 2 seconds and is
taken to the ActionChoice screen;

2. The user clicks on“Register”on the ActionChoice screen
and is taken to the EnterName screen;

3. The user enters his name, clicks “OK” and is taken to
the PaymentMethodChoice screen;

4. The user clicks on a payment method. A text mes-
sage containing the user’s name and chosen payment
method is sent to a hardcoded phone number after
which the user is taken to the RegistrationDone screen;

5. The user sees the RegistrationDone screen for 2 sec-
onds and the application exits;

6. The mobile device’s operating system restores the de-
vice to its state prior to the launch of the conference
registration application.

The output of the PhoneApps-to-Statecharts transforma-
tion is shown in Figure 5b7. Essentially, the application
behaviour encoded in CR’s transitions is isolated and used
to produce an equivalent Statechart. Not visible are the
state entry actions which effect function calls to generated
methods that carry out tasks on the mobile device such as
loading screens and sending text messages.

The output of the PhoneApps-to-AndroidAppsScreens is
shown in Figure 5c. Essentially, the layout and mobile device
specific aspects encoded in CR are translated to appropriate
elements of the AndroidAppsScreens formalism.

Figure 5d shows the model after the AndroidAppsScreens-
to- and Statecharts-to-AbstractFiles transformations have
completed8. The two transformations output to a disjoint
set of AndroidAppsFiles entities and can thus be run in par-
allel. Their results are presented together to illustrate the
merging of the previously isolated conceptual components
into a single, final target formalism.

The final step is the trivial transformation of the Mod-

elledFiles to actual files on disk. The end result of this
series of transformations is two-fold. First and foremost,
a fully functional Google Android application that perfectly
reflects the original PhoneApps model is synthesized as shown

7For clarity, we refrain from reproducing the entire CR
model and generic edges between it and generated constructs
in Figures 5b, 5c and 5d. Instead, we overlay corresponding
constructs.
8Remember that though they are hidden here, numerous
generic edges connect the ModelledFiles to Statechart and
AndroidAppsScreens constructs

24

(a) (b)

Figure 4: (a) Creating one ModelledFile per Screen to hold its XML layout specification; (b) Appending event listener and
content initialization code to a ModelledFile of the main Java artifact “PhoneApp.java”.

(a) (b)

(c) (d)

Figure 5: (a) Conference registration in PhoneApps; (b) The CR model after applying the PhoneApps-to-Statecharts trans-
formation; (c) The CR model after applying the PhoneApps-to-AndroidAppsScreens transformation; (d) The CR model after
applying the AndroidAppsScreens-to-AbstractFiles and Statecharts-to-AbstractFiles transformations.

25

in Figure 6. Second, an intricate web of interconnections
between model entities at different levels of abstraction is
created. This web can be used for explanatory purposes
(i.e., as we have used it to relate corresponding constructs
in Figures 5b and 5c) or to ease debugging and simulation
of DSms.

5. CASE STUDY: PERFORMANCE METRICS
FROM PHONEAPPS

Our approach can also be beneficial in the context of mod-
elling embedded systems and more specifically, in the ad-
dressing of their characteristic non-functional requirements.
Although the mobile devices we target are indeed embedded
systems, the Google Android API abstracts away traditional
embedded system concerns. However, it is conceivable that
information such as expected running time and battery us-
age may be required by the modeller. Indeed, the designer
of a PhoneApps DSm might be faced with non-functional
requirements pertaining to resource utilization and applica-
tion response time. Hence, means to constrain or at least
measure such performance related aspects should be pro-
vided. In this case study, we compare how such facilities
could be implemented using both our approach to artifact
synthesis and the traditional coded generator approach.

First, see Table 1 for a set of imaginary performance spec-
ifications for all Google Android devices. Second, let us as-
sume that these specifications are stored and formatted such
that they can be easily read from a modelling tool or a coded
program. Finally, let us also assume that the modeller of a
conference registration application is faced with the three
non-functional requirements listed below:

• The full execution must require less than x% battery
power;

• The full execution must require less than y seconds;

• The waiting time between two Screens should never
exceed z seconds.

Such requirements in conjunction with target platform
specifications (ala. Table 1) could help a modeller discrim-
inate between design decisions such as preloading a device
with data versus downloading it at runtime, or communicat-
ing via email versus text messaging.

The task of generating performance models and/or statis-
tics from DSms is analogous to that of generating any other
artifact. Thus, the traditional coded generator approach
would programmatically iterate over model entities to pro-
duce desired output (e.g., estimates of battery usage and
running time9). One option would be to extend an existing
generator (in this context, a generator that would synthe-
size complete Google Android applications from PhoneApps
models) with performance measuring provisions. Another
option would be to write a new generator from scratch and
have it focus solely on extracting performance related in-
formation from models. Both approaches have merits and

9These estimates could be parameterized and plotted to il-
lustrate pertinent bounds such as “the application respects
requirement r provided SMS messages are restricted to x
characters” or “local data as opposed to web data should be
used if the said data is larger than y megabytes”.

limitations. Although the latter will be more efficient, it may
induce considerable code duplication since model traversal
and information extraction will conceivably be carried out in
a similar fashion than in existing generators. On the other
hand, the former option might introduce undesired complex-
ity and reduce the modularity of an already complex gener-
ator. In either case, providing more advanced features (e.g.,
“tagging” domain-specific constructs with battery usage or
running time information at the DSm level, live performance
data updates from DSm modifications) that exploit one- or
two-way links between model and artifacts will require con-
siderably polluting the generator’s code.

Analogous options for generating performance informa-
tion using our model transformation-based our approach are
fairly obvious: a new orthogonal model transformation could
be created or existing model transformations could be refac-
tored. For instance, PhoneApps-to- or AndroidAppScreens-
to-Metrics transformations could be introduced with rules
that count such things as the total number of Widgets on
all Screens along each possible execution path. Both op-
tions raise the same concerns as in the traditional approach;
namely that PhoneApps-to- and AndroidAppScreens-to-Metrics
will conceivably bare numerous similarities to the PhoneApps-
to- and AndroidAppScreens-to-AbstractFiles transformations
respectively whereas merging everything into a single trans-
formation might result in a complex intermingling of con-
cerns. Nevertheless, our model transformation-based ap-
proach will facilitate the creation of links between DSm and
synthesized performance related artifacts thereby facilitat-
ing the implementation of the aforementioned advanced fea-
tures.

Thus far, we have focused on “static” performance metrics
in the sense that we assume that the desired information can
be extracted from static DSms. However, it may be required
to execute (or simulate) models to obtain more detailed and
precise results (e.g., average and expected measurements as
opposed to best and worst case theoretical bounds). Con-
structing such“dynamic”performance metrics would require
that the generator or transformation rules instrument the
synthesized executable artifacts (e.g., with code to incre-
ment a counter for every displayed widget). Instrumentation
to output global information such as total measured running
time could just as easily be produced by the traditional ap-
proach than by our own. However, to output more localized
measurements (ideally on the DSm itself and possibly even
during runtime) like the battery usage of a SendMessage en-
tity or the time of entry of each Screen, links between DSm
and artifact become a necessity. As we have repeatedly ar-
gued, such links are easier to specify and represent with our
approach than with coded generators.

In sum, the numerous benefits of our technique to artifact
synthesis not only apply to generating coded applications
but also to the production and display of performance data
useful in the modelling of embedded system applications.

6. CONCLUSION AND FUTURE WORK
We proposed a structured approach to artifact generation

where layered model transformations are used to modularly
isolate, compile and re-combine various aspects of DSms,
while leaving behind a web of interconnections between cor-

26

(a) (b) (c) (d)

Figure 6: Screengrabs of the synthesized application running on a Google Android device emulator: (a) The Welcome screen;
(b) The ActionChoice screen; (c) The ProgramSchedule screen; (d) The EnterName screen.

Function Execution Time Range (s) Battery Usage Range (%)

Tap Touch Screen [0.001, 0.003] [0.0001, 0.0003]
Load Screen [0.05, 0.07] ∗ nb widgets [0.001, 0.003] ∗ nb widgets

Send SMS [0.1, 0.3] + [0.1, 0.2] ∗ �sms.length ÷ 120� [0.01, 0.03] ∗ �sms.length ÷ 120�
Send Email [0.05, 0.1] ∗ �msg.length ÷ 1024� [0.05, 0.07] ∗ �msg.length ÷ 1024�

Load Web Data data.size ÷ 200Kb

s
data.size ÷ 50Mb

%

Load Local Data data.size ÷ 5Mb

s
data.size ÷ 500Mb

%

Table 1: Imaginary performance specifications for Google Android devices.

responding constructs from formalisms at different levels of
abstraction. We argued that our approach improves upon
the traditional ad-hoc coded generator approach to synthe-
sizing applications from DSms. Discussed benefits include
improving the domain-specificity and easing the develop-
ment and debugging of code synthesis engines, providing
clear pictures of the real and conceptual links between con-
structs at different levels of abstraction and simplifying the
construction of inter-formalism mappings that enable ad-
vanced functionalities such as DSm animation, simulation,
debugging and on-the-fly tagging.

The DSLs, transformations and case studies we presented
provided empirical evidence to back our claims that (graph-
ical) model transformations are a better means of gener-
ating artifacts (be they programs or performance metrics)
from DSms than coded generators. However, our approach
still requires some formalization. Since we essentially ripped
and woven DSLs with our transformations, we believe that
the first step towards this formalization is the study of the
broader ideas and theory of DSL weaving and ripping, specif-
ically during language design. For instance, combining some
form of explicit DSL concept generalization relationship (e.g.,
PhoneApps.ExecutionStep is a Statechart.State) with higher-
order transformations10 could enable the automation of much
of the above work (e.g., part or all of the PhoneApps-to-
Statechart transformation could be generated automatically).
As a final benefit of our approach, although (semi-)automatically
generating transformation rules seems straight-forward, gen-

10Transformations that take other transformations as input
and/or outputs.

erating parts of a coded generator would not only require
considerable effort but likely produce a complex and in-
complete program that would be difficult to understand let
alone complete and maintain. Thus, our technique is more
amenable to (semi-)automation.

7. REFERENCES
[1] Google android. http://code.google.com/android/.

[2] Marcus Alanen and Ivan Porres. Difference and union
of models. In Unified Modeling Language (UML),
volume LNCS 2863, pages 2–17, 2003.

[3] Jean Bezivin. On the unification power of models.
Software and Systems Modeling (SoSym), 4:171–188,
2005.

[4] Alan W. Brown. Model driven architecture: Principles
and practice. Software and Systems Modeling
(SoSym), 3:314–327, 2004.

[5] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo,
and Alfonso Pierantonio. Automating co-evolution in
model-driven engineering. In Enterprise Distributed
Object Computing (EDOC), pages 222–231, 2008.

[6] Antonio Cicchetti, Davide Di Ruscio, and Alfonso
Pierantonio. A metamodel independent approach to
difference representation. Journal of Object Technology
(JOT), 6:165–185, 2007.

[7] Krzysztof Czarnecki and Ulrich Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000. 832 pages.

[8] Krzysztof Czarnecki and Simon Helsen. Feature-based
survey of model transformation approaches. IBM
Systems Journal (IBMS), 45:621–645, 2006.

27

[9] Juan de Lara, Hans Vangheluwe, and Manuel
Alfonseca. Meta-modelling and graph grammars for
multi-paradigm modelling in AToM3. Software and
Systems Modeling (SoSym), 3:194–209, 2004.

[10] David Harel. Statecharts: A visual formalism for
complex systems. The Science of Computer
Programming, 8:231–274, 1987.

[11] Steven Kelly and Juha-Pekka Tolvanen.
Domain-Specific Modeling : Enabling Full Code
Generation. Wiley-Interscience, 2008. 427 pages.

[12] Yuehua Lin, Jeff Gray, and Frederic Jouault.
DSMDiff: A differentiation tool for domain-specific
models. European Journal of Information Systems
(EJIS), 16:349–361, 2007.

[13] Raphael Mannadiar and Hans Vangheluwe. Modular
synthesis of mobile device applications from
domain-specific models. Technical report, McGill
University, 2010.

[14] MetaCase. Domain-specific modeling with MetaEdit+:
10 times faster than UML.
http://www.metacase.com/resources.html; June 2009.

[15] Laurent Safa. The making of user-interface designer a
proprietary DSM tool. In 7th OOPSLA Workshop on
Domain-Specific Modeling (DSM), page 14,
http://www.dsmforum.org/events/DSM07/papers.html,
2007.

[16] Yu Sun, Jules Whit, and Jeff Gray. Model
transformation by demonstration. In MODELS,
volume LNCS 5795, pages 712–726, 2009.

[17] Rasha Tawhid and Dorina Petriu. Integrating
performance analysis in the model driven development
of software product line. In Proceedings of the 11th
international conference on Model Driven Engineering
Languages and Systems (MODELS), 2008.

[18] Hui Wu, Jeff Gray, and Marjan Mernik.
Grammar-driven generation of domain-specific
language debuggers. Software : Practice and
Experience, 38:1073–1103, 2008.

28

�������	
������������������������������������
���������	��������������	
������
���������
�������	
��
�������������
�����������
���

	����������
�������������
����������������
�����
���

�

 ��������������
!�����������
���
	"����#
� �������
���������
�����
���

�
�$������������$������������	������%��������&����#���'������������
��
�(�����'��)������*+,,��(����$-��.������������(��/��

�0�1�(��%��������&����.���������
	2��������������.����������'�����&�

�

���������
��� ����� 	
	������ 	�������
� ������� �	
��� ��	���
����� ���������
����������������������������������	��������������������	
���
��

��
�������
����
	��	�������������������� �������������
����������
	���������������	�������
��� �����������
���
�!��
		����	������
����
����
�����
��� �����
��� �������"� #���� ��� ���� �������

��	���
�#�������� ����������������#����
		��
������������
�
��������	
������
�����������	������������
�������
����
	��	�������

������������������	��������
������������������
�������
��� ��
����"� $����������� ��	�������� ����#���
		��
������ ����������
��������� ��
������
����� ������ ��� ��	������� ���� ������� ����
���
�����������������
���	����� ������������	
��"�%���������� ���

		����� ��� ���� ������� ���
� ��
�������
		���
�����
��� ��	���������
��������
�������������� �����"�

��	
���
����������
�	��
����	���
�"&"'�(���
���
�
����
�)*�#���������������������+�,"&�(-���
	�����.����������������)*�-��	�����
�����������+�-"/� (�	���
��
	��	����
���
		���
������
���� �������)*� (0�
�������
��� ������
�����������)�

�
�
����
���
�������1
���
����2������
������
��
���3
�����4������
�����

�
� ����
��������	
�����	���
�����#�������� ���������������5#1"�

!"� #$��%�&��#%$�
#������ ��������� �������� �
 �� �����
���� ������ ��������
�����
���������������	�����������
��
����
������
����� �����������
���
�
���
��� �����
��� ���	������� ������
����� ���	���� #�����

2��������������������-��	��#2��-�"�������������� ���	��������
#2��-��
�������
��������������
�����
�� ���
���������������������
�������
��� �����"� %��� ������
����� ���
�����
�� �� ��������
���
������������6������������ �����
����	������������	
�������������
���������
���������	����������������������������
�!��"�.��
�����
���� �� ���
� ������� �	
��� ��	���
����� ������
��� ���� ��� 	���
������� ��������� ���� ���!�� ���� ���������� ���������� ���� �����
	�
	���� ��������
��
		���
�����
���
��
����������
�� 	�
������ �����
��
�� �
��� ��������� ������	����� ���
� ���������� ��
������� ���
������
���������6����������
���������
�����(78)"�

$����
� ���
���� 	����� ��� ���� ���� ��� 	���������
��
���
�����
�� �������������� ������� �������������	��� �������
�����
�
�� ���������
�����
�������������� ���"�%�������
��� ������
�����������
�
������ ���	�����	�
������������������6����������
�����������
������������
��������������
����
���"��������������������	�������������
�������� ���	�������
��� ����������� ��� ���� �����
������� ��������
�����
�� �����
�� ����
���������� ��� ��� ���������
��� ����� ��� ����
����������������������"�#������������������
��� �������������
 ��

����
������		���
���
�����
�!���
���
��9�����
���	
������������
		��������
�!�����
	���������� �������� ��� �����
��� ��� ���������
��� ������"� .��
�
������
����
������ �� ���
����������	���������������
�����	
�
���
������������������	������������
���
������	��
�����3��	�	������
���� ������
��� �����
��� 	��������� ����� ��� �������� ��� ������ ���
������������������	������
����"�

.���������
��� �������
�����	���������
������������
����
������
�� ����
����
 �������������� ���������		�������
�������
�����������
�����"� �
��� ����� ��6������ ���� ���� �
��
����� ������� ��	��� �
��
��
����
������	�������
�������
�����������	�
��������
��������	�
	����
��� ��� ������ �������
��� ������ ���
� ���	���� �
�!"�#���� ���
������ ��� ��� ��������������
������
����� ���� ���������� ������ ���
������ �������
��� ������ ���� ��� ���� ������� �������	���������� ���
����������"�

��������� ��� ��	������� �������	���������� ��������	�������
��
�
������ ������� ���	�� ����� ���!� ��������
��
����
��� ������� �	
���
��	������
�����
��� ���� ��		���� ���
����
���� ����
��� ������ ���
��	�������� ����#�������� ��������������� �#���� (7:)�
		��
��"�
$����� ��� �������
� ������� �	
���
����
������
�� �
�������
�� ��
	��
	����������
���������������������	�����������������������
��� ��
����"�;��������	������
���������	
������
������
����������������

�

2��������������
!�������
������
�����	�������
������	
��������������!�����
	�����
�������
����������������
�����������������	�� �������
����	����
���
�����
����������������������	�����������������
��
�
��
���
�����
����	�
������
��������������
���������������
������������������	
��"�%����	��������
�������� ��	������� ���	���������� ����������������������������������6������
	������	�������	����������
��9���
����"�
#<#2��� =78� ��	������� >8� >878� .�����	� ?�������
-�	�������@�>878�.-#�A:B�7�C'8/�87>/�:97898A"""�D78"88�

29

����	��� �#$� (&)� 	��E���� ������ ��� ��
�� ��� �
�� ��� ����� ��� �����

��	����#��� ������ ������� ������ ���	�����	������"���	��������
����#���
		��
������������������������� ��
������
����� ������
����	����������������
�����������������������	���
�����	�������
���
	�����������������	
��"�

%������
�������������	
	���������
��3���
���������"���������>�
���������� ���
���� ���!"� �������� /� 	�������� ���� ����������� ��� ����
������� �	
���
����
������
��� �������
�����"� �������� C� ����������
���� ��������������� ��
������
����� ������
��� ����� ��� ������ ���
������������������	
�����	���
�����	������"�%�����		�������������

��� ����������� �����������'"� ��� ��������&�
� �
��������� �������
����
�����������
		������������
���
�������
		���
�����������"���������:�
��
����
���������������
������������������������!"��

'"� �()��(��*%���
.������������
��>8���
��������������������� ��	�������
����	���
�
�������
������	���
����
������!���
�����������������������
�����

������� �������� ������������(B)�
�������������(')"��

%�����������	
������������������
����
����������������������

�������������������������
����
��������
����
��������	�����������
������"��
�������
		��
����
�����������
�������	��������������
������	
�����������	����������		�������������
��� ������
����	�
����3
�����
���������"� %��� ��	������
����� ������ ��� ������� ��	����
�����
�����
�� ��	��	�����������
�����
��������	����3
�����	������"�

%���������������
�����
�� �������	�������������������	
������
������������������
���������
		��������������
	�����	��������������

		���
�����
���
������������ ���������
�� 	��	����� ���?���!��� ���

�"� (/)"�$���������(/)�
� �	������
�������
	�����������������	����
�����������	�������� ��
	��������� ��	������� ����
		���
�����
���
����
������������ ������"� ��� ���� �	������
����� ��
	�� �
��� ��	���
��������
	������
		��������
���������������
		���������"�%���
�	������
�������
	���������� ������������	
���
��������������
�����
����
����
����� ��������
��� ����������"� %��� ����� F
���
�����G�
�	�������������������������
�����������
��
���
��� ����������	������
�
����� ��
	�"�.� ���� ���
��� �� ������
��� ������ ��	��������
�� ���
	������
����� �"�"�
� �
����
��� ��� ���
�� ��������"� .����� ���� �������
����������	������
�������
	�����������������������
��
��������
�����
	������
����� ����� ��
��
���������
����������
��	�������
���	���
��3����������������� ����
���
��������������
��� �������"�?�������
�����
		�����������6�
�������������
�������
��������
��������
����
���
������� ������������
����
���6�
������������������������������
�����"�H��� ����������������������!�����������������������������
	���������� ����� ������� 	�� ������ �������
�� �	��� .2�� ��� ������
����
���������	�����������������
����"�

���
�����
�"� (:)�������� ������������	
�������6�
������������

������	���������������������������������	����3��"�%���
��
�����

�����������������������������
����������2
������ �������
���.��
����������2�.�"�.�����(/)�����������
�����
����6�
��������
�������
����
������������������������
���������
����
�������
������������
��
�
����"� H��� ��� ������������ ����� (/)� ��� (:)� ���� ������
�����
���
������
��������� ��� ����	��������������� ���� ������������	
������
	���
����������
���������������������������
���
����
���"�

.� �����
��
		��
��� ���� ������� �
		���� ��� ��	��������� ���
#�1.I� (7)� ������ ���� �
		���� ������ �	�������� ����

��
����
�
		����� ��� �
��� �
�
����� ���	������ ��� ����
		���
�����������
��������	�������
����������������������
����������
��������"�%���
�
		���� ��� ��	���
	������� ��� ����� ����
		���
�����
���
������������ ������"� %�����

�����	��� ����������� ��	������� �������������������

��
�����������
���� ������� �	
��� ��	���
����"� .�������
����
����� ���� 	������
�
����
��� 	����� �
�� ���
��
����� ��� ���� ����������� ��� ������ ���
������ ���� ��	���
�����
��������"�%����
		����������
���� ������
������ ���� ��
����� ��
�� ��	�������� ���� ��������
����� ��������
�
�
������
�!�"�

%�������0%������ (7>)�
������
		��
���
������������
����
����� �	
������
�����"�H��� ��� ������������ ���������� �������
�
������ ��	�������������	�������� �������	���������	�������"�%���
��������	
������
����������������������������� ���
� ����
���������
�����!� ���	������� �
��� ���������� ����
������ ������
����� �����
�
���
��� ��	�������"� %��� ��	���������
��� �������� ��� <-1�
���
�
�������������	��������������������
�������������
����	���������
��������������������
��"�%�������0%�����������������������	���
�
�����������������
���
�������������
������
�������	�����������������
����������	�������"�

%���J��!�� ����� (A)� ����� ������� ������
����� �	�������� ��� ����
�������5#1������"�-�����
��������
���������
�������	��	�������
���
��������
�� �
�����
�����
��� ����� ��� ���� �� ����
������ �
����
�
���"�%���������
��������
�����������
����������
��	�
������
������
������
�� �����
����� ���
�-�����
����� ��
��� ����
����� ��� ���� ����
�����������������
����"��
��������
������
�������
����
�����
�������

� ��������� ����������
�������
��"�%������������� ����������
������
���
�	������ ����������� �������
�������"�%��� ������
�� ��	������
��������
������������	
��� ����������������"�#
		����
����
�����
��������
��������
�����������������������������5#1��������������
���
���
�����
��
���
���	�������������	����3
�����	������"��

%����
0%�	��E����(C)�	��	�����
��
		��
����
�������#�.�
���� ����������������-�����������
�������
���������������	������

		���
������
�������������
���
�����
������ �������� �
���
���

��������
��"�#����������������
������
������
������������������
�
2�
������ ����	�������#����� �����
�2�
�������	�������#����� ���
	�������
��
�������-����
�����"�������	��������������
�����
��
	�
	���
������������������������������
��6�
��� ������
��� ���
��������
����� �����"� H��� ��� ��� �
0%� ������ ��� ��� ���
����� ���� �������
�	
��� ��	���
����� �
���� ��� ������ ��
������
������
��� �����
���
���������E�������������
����������������������
�����
��%1#�
���0%�
�� �������������������"�

;�
��
��� ���������������
 ��������������������
�����
�� ����
������� �	
��� ��� �����������
��������� ��� ����
��� ���� ��� ��� 	���
������"�#���� ������������
���������
����
��������������������
��
�����	������������
����
��
������������
�����	����
��������������
��� ���� ����"�.��
� ������� ��� ��������������
������
��� 	�� �����
��6������������	��������������		�����
����������
��� ���"�#���� ���
����	����������J��!��
�������0%������������������
		��
�����
������� ���� ������
����� ���� ��� ����������� ���	�� ����� ������
����� ���
	������������ ���� �������� �������������		�������������������
�����
����������"��

%����������	��	�������� �����	
	���� ����������������������
������������������
���������	
���
����
������
��
��
�������
����
	��
	������� (7B)"� ?������� ����
����
���� ������������� ��� ���� �������
�	
��� 	��������� ��� ���� 	������� ��� ��
	��� �����
����
������ 	���
 �����
� ������� ��	������
����� ���� �����	��� �������
��� �����"�
#���� ��������	������
��������
����
������������
������
��	����
�����������
��������� �����	���������#���
		��
���
�����������
������ ��
������
����� ������
�������� ��� ��	�������
��� ����� ����
���
�������	�� �����������������������������������"��

30

+"� �(�#�$��,��(��(,�(�($���#%$�
+"!� �
���������
����	��	����
�����
�� ������������
��� �	����3
�����
		��
�������� ��	��������
������� ������������	
���
��
��
		���������
	��"�H��� ���������
������� ����� ���� �������
		��
��� 	��������� ��� (/)� ������ ���
�
�
��
�� �
		���� �������� ���
����
���� �������� ��
	��� ����
	�
	��
�������� �����
�������
����
	��	�������(7B)�
����
���
�������
���
����� ���� �
		���� �������� ��
	��"� %����� ��
	���
��� ����� ���

����	����������
��������������� ��������������������"������������
�����������������������	������
��������������������	
��"�

-�������������������	
��	���
��
���
	������������������������

��� ������������+��� ��� �����������
�������������+�	
��������������
�������������������
������+�
���	����������������
�����������������

������"�1���������������������
	�����������������������	
���	������
�������������
������������������������
	�������"�%������������������
�������
	��� ��
��
�������
����� ����������������������
����������

��
� �
�!���
	��
��
����������
����
	��������������
�����������
����� ��� ������
��� ������"� H��� ������ ��
	���
��� ����
����� �����
������������������� ��� ��	�
����� �
���"�H��� ��� ���� �	������� ���
�
����������
�����
	��������������������������� ���������
��������
������������	
�����������	��	���������������	
���
����
�����"�%���
�	����������
�����������������
	��������������������������	���
�����
������
����	�
������������������������"�

%�����������	
������
���
	������������������������
�������
��
��
	��	����������������6���������������������
���
�����
	�������"�
���������
�������

��
	
����	
������	
���	�����	�������	�����

��	�������� ���� ��
	�� 	������� ����������������� ������� ������
KL�����	���������	����������
������
�����
����������������������
��������	��������������� ��������
�����������������������
��
���
���� ������������������������ �
����!���!������!� �
���
�E
�������������

�����������������
�E
����������!����������������
�E
����������!�������
����M�
���������
�E
����������!�����������������"������������������
������������
	�������"�

�
���	����������������6�����������������������
���������
����������	��������
��������
��� ���������
���
�!��
		����	������
��������������	���������
����
����� ���
�����
������������������"�
����� ��
�� �������� �����
��� ������� ����������
��� ������ �����
���
�������
�����
�� ���

��
����
��
��	������� ����������"�%���	��E���
��������������#�����#����#������������������� �����������
������
������������
	������� �� ����������	������"�5����������
����
������

���
	���$����
�������
	�������
�����	��������
��
����
���������"�

�������
���������
		��
��� ���������
��
����	�����
�	��� ����
��
	��� ��
��� %"� N�
	�� �� �$������ 7�
�� ��	��������
� �
�!� ��
	��
������ ���� ��������
��� �
�!��
��� ������ �	������ ���� �
�
� ��	���
������� �������� ����"� N�
	�� %� �$������ 7���� ��	�������� ����
	����������������
��� ����
���������������
������������������"�
N�
	������%� ��� $������ 7��� ��� ���� �
�������
�� ��
	�� 	������� ���
��������
���%� ��	����������
���������	
������� ���� �
�!��
		����
�������
��� ���"�%��� �������� �������%� ��	������������������������
��"�"� ����������� %��� �	�������� ��
�� �
�!���� ������� ����
		���
�����	���������%���
��������� ��������� ����

��
�����������
�����
�
�� ���
��
� �	������� ������ ��"�"�
����� ���������� ���� ��������&��
%&���������
	���
�!��&������	���������%&�����

��
�����������
����������
�����'�� %������'�� %&����(�� %���
�����(��%&��"�

5����������
�������
����
	��	�������
����
������������������	
���
��	���
����� 	������� ��������� ��� ��
������� ���� ������
	���������
��	������� �
����
��� �������� ����	������� ��� ���� ������� ��	���
�
�����
��� ������ ��� ��� 	��������"� $������ 7��� �������
����
� ���������
������
	�����	�������� �������������%�����&��%&����'��%&��

�����(��%&�"�%���	��������� ��� ������� �������� ��� ������ ���	���
���������������
	��������������������
���	����3
�����
���������

���
� ���� ��� ��	���
����� ��������������
������� ������������	
���
��
	�������
����
���������
	��"�

� �� � � �� ��

�� ��� �� �

-���
�!"�-��	�
.����
��/����������	
��
��������0���1�������
	1
���	
����������1������	�

?��
		����������	��������������������	�����
	���������	�����
�������	�������
����������������	
�����
	�����������	�������
��� �
�����"�.��
����
�	������������
���������
�������
	��)� �$������
>�
�� ��	���������� ���� ��������
����� ���������� ��"�"� ������ ���
I�����!����-��	������� ��� ������
��� �������������	���������"�2���
������������	���������������������������	
�����
	�������$������
7���
��� ��
	��)� ���� ���������� ��
	�� �$������>���� ��	�������� ����
�
		���� �������� �
�!�� ��� ��
	�� ��
��� ��������� 	���������� ���
��
	��%�
���������
������������	��������
����
������������	������
����� ��������� ����� ��
	�� %� �$������ 7���� ��� ���� ��������
�����
������������	��������������
	��)"�%����	����������
���������������
�����	��� 	��������
��� ����

��
���� ����
��� ������ ��	���� ���
��������
	���
���	������������������������
������������	���
�����
��������
��������������	���
�����
���	�����������������	
��"��

�� �

�� �
-���
�'"�(.����
��/��
���������
�/�����	���
������	�"�
5����� ���� �
�������
�� ��
	�� 	�������
��
����
������ �������

�	
�����	���
������
�����	������������������	����������
��� ������
������
��������
���
���	���������	��������
��������
��� ���"��	��
������	��	���������� �����	������� �����
��
� �������������������
�E
�
�������� ������� ��������������

��
����
�����
�� ���
�� �����
 ��
�
��������������������	
������	��������������������������"�#����
� ��� �������	������
������ �������� ���� �������	����������������
�������
��� ������
������ ���������������������	
�����	������������

31

��	��������������������
�� �����
��� ����"�%����
����
������
�������
	�����������������
��������	����������������������������
������
�����������������������������������
�������������	�������
�������
�����
����
������
�!�	����������
����������"�

+"'� �
���������
��
	����
��
%����	�������������������	
���
����
���������
����������
������
����
��� ���������� ���
��#����� �������������
 ����������
����
�
������ ��� ��	������� ���� ������� �	
���
����
������
��� 	�� ����
��������� �����		�������� ���
�����������
��
		��
��"�%������
�
�������
����������������������#��������	�����
�����	�
�������
��������������������	�
��������
����������
��3
�������������	���

����
������
���
����
����"� ��� ��� ��	���
��� ������������� ��
�� �����
���
���������	��	����������	�������
���������	
������
����
����
�
������
����
������������	������������
��������������	����������
�
�������������"�%�������������������������������	�������
��������
�
���
��������
��5#1��������!����
�����1"�%������������	
���
���
������������������$������/"�

�
-���
�+"��
���������
�
.����	������������
	����
��
%������������
����������������
�������������*+����������

���
�����
���������
���������������
����������"�������������	��	�������
��������,*�-.�.-+-�/�
��
������������������ ��� ��������
�����"�
%��� �����
��3
������
���������� ���!��	� ������
��
�����
�"����"
�*+���� ����
���� ���%0*1.-+2� ������ �������
� ���� ����
���"�
���%0*1.-+� ����
����
� ����� ����-2�3��0�452� ����
����� ��������
�����������"�.��-2�3��0�45� ����
���� ��������
���������������
 ��������
����64.*0�1.-�.-+-�/2��
�����3-� ��	�������� ������	���
������� �������� �������"� �64.*0�1.-�.-+-�/� ���
� ���������� ���
�
������� �������� ����������� �����-2�3��0�45� ��� �����
���"� %����
���������� ��� ��	���
��� ��� ���!� ���� ���� ��������� ��� ���� �������
������
���
�������������
������������
��
�������������	�������
���������
��5#1��������!�
���������"�-������������������������
��� ��	��������� ��� �������� ���� �
��� ��� ���� ������� ��������
��
�
����������64.*0�1.-�.-+-�/�
���������6�����������������������
����
��������������������������������������	����������"�"�5#1�������"�
%���� ��	������
����� ������ ��� ��	�� ��� ���� ��� ��� ��	���
��� ���
�
��
����
�����������
��	������
���������
��������	�����������
���������
�������
�����
��
�������������������������"����%0*1"
.-+�
��������
����
� ��������718-9/�!-2�������
��� ����
����� ������
�	����3��� �������� ��� ������ �
���
��� ����"� �-2�3��4�9-�
��	�������������
�������
����
	��	�������
�������
��������

��
����
�-2�3��-9�2*�2"�:./-0��/�!-2� ���!� ����
��������-2�3��-9�2�*�2"�
�-2�3��-9�2�*�����
���	�������� ������������������-2�3��0�452"����
����
����
������
��������-2�3��0�45�
��
�!���
���
������
�������
4������
��
�
���������
������
���
	�
�������������������������6"

4.*0�1.-�.-+-�/2� ��	��������� ��� ���� �-2�3��0�452"� .� ����� ���
����*.�/�*�2���	���������
����
�����������������
���������
	���
��� ���� ������� �	
��� ��
	�"�.�����*.�/�*������� �������� ����6"
4.*0�/�*�;�.-2"�.�����*.�/�*���
���������������������������718-9"
/�!-�*)*2/,�4�
�6�����������
�������
����9�����
�����	������"�

%��� ����� ����64.*0�/�*�;�.-2� �������� ������������ ������ ����
���������
���	�����������������	
��"�%�����������
�����	�������
��
���
�����
	����
��
������������������
�����������������	
�������
��"� .���
���� ������ ������ �
�� ��� ��	��������� ���
��� ���������
������ ��
������
����� �
���
���
�� O4%�� O4%�� P����� .%1�

���������"�.����������������	������
���������������
�����������
��������	����#$���������������������������������
��������
������
�
����� ������9�
���
��� ����� ��		���� �-<0�� �
���� ���
������"�
H��� ����#$�����
��������		���������
�
��"�?��
����������
���
����� �
����� ��� ��
��
��� ��
������
����� �
���
���� ������ ��� ���
��
��������
 ��
���
�� ����
��������64.*0�/�*�;�.-2"�H��� ������

���	�
��������������������������
��
��
�
������������������
������
�
�������������	�����������������%0*1.-+���������
����"�5�����
��������������� ��
������
����� ������ ���� �
�� ������ ������
�����
��
������������
��������������	����������������������
��	����������
�
�!�� ������ ���
��� �� ���
��� ������"� ?������� ���� ������
�����
������ ��
������
����� ������
�������� ��������� ��������	�������
��
�����
�����������������
��
����������������
���
��
����
�����������"�
%����
		��
���
������
���������������� �������� ����� ���������	���
����
��� ������������ ���� ����� �
�� ������� ������� ���� ��
������
�
������ ��� ���
		����� ��� ���� ������� �	
��� ������ ��
�
�����3�� ����
���
���������������
	���
�����������
��� ���"�

2"� (3,)%���#%$��&)(��
��� ����
		��
��� ��	���
����� ������
��� ��������������� ��
������
�
���������������������� ��
������
��������
���-2�3��4�9-���"�"�
��������
����� ������� �	
����
�� ��	���
��� �����
���
� ������
�����
�-2�3��4�9-� ����
����
�� ���	��"� %����� ������
��� ������
����� ���
������
���	���������

��
������������	
�������������������	���
�
����� �����
��� ������� ���� ��
��������� ���
� �
����
��� ��������"� %��
�
��� ���� ���������
����� ��� ������ ��
�� ����� ���
		����� ������� ����
����	������������
�����������������������
��������*�

: � �/0�9/�0�.*� %����� ������
���
		����� ���
 ���� �����
�� ���
������ ������ ������
		�
��
��
� ������
	�� ��� ���� ������� �	
��"�
%�	��
��������
 �����������
��������������
�����������"�"��������
����	����������
����������������
�����������
��� �����������
�����
������������� �����
����
�!�
���������������������	���������"�<�����
�������
�� ������� ��
��
��� �
�!������� ����
		��� ���
�� ��
��� ����
	�������������� ���
����
���"� %����� ������ �
�� �	������ ������
�����
������������
���������	���������
���������������������
�����������
�
�������������
������������	
���������������"�

< �=*�">��9/�*��.*�� ������
�������������
����������
��������

���
���� ����� ����!���
�
����� ������������
�� ��6����������
���������������
���������������������"�%�����
��������������
 ����
���� ���
����� ��� ��6���������� �����
�� �
�!� ��
������� �
������
���
���
����
�������������������	����"�<�����
������� ��� ����
����	���������������
�����������������������������
��������	
��
��
�����
��
���"�.������� ��������	��������
��	���	�����������
������	
���	����������
�����������	�
�������������
��
����������
��� ������ ������� ���� �
����
���� ����� ���� ������� �	
��"�%���� 	�����
�����
 ����� ���������� ���� �
����
���
�
��� ��� ���� ���� �������

�����
�� �����
���
���
������6���������� ���
����"�

32

-��%0-"�-?��-���-2�3���-9�2�*�2*������������
������
��������
	����������� ������� ����������
��� 	�� ������� �� ���	��� ���	��
������
����������������	�
�������
����	�����������������������
��
��������� ����� ���	���"�#���� ��� ��������=�� ��	���������
�� ���
�������� ���� ����
����
���� ���� 	������� 	�������"� %���������
������������
����	������������
������������������������������������
��������	������� ���������	�����������������������"�%�	��
��������
��������	��������
�!��
		����	���������
����
������	��������
�!����
	����������������������6������
���������"��

-������������������
������
�����������������������������������
��	������ ���������� ����� ������ ���� �
����
�������������
		��� ���
���9���� �	����������%0*1.-+"� %��� ������ �
�� ��� �	�������� ���
���
��������������� ��
������
����� �
���
��� ��
�� ��		����� �-<0��
���
������"�.���
���������������6�������������
�������������������
����
� ���������� �
���
��"� $����� ���� ������ ��� ���������� ���� ����
����������
������
		��	��
������������
������������	���
��������������
������������ �
���
��"�%���� ����
����� ��6������ ��� ��	������� ����
������
��� ������� ��� �
��� ���� ��
������
����� ������� ���� ���� �
���
��
�����������������������������������		�����������������
���
��"��

%��
��� �
��� ����������������
����������	��
���������
����	���
�������
������	�� �����
��
�����
��������������"�%�����������

���

����������
��*��

����4.�9�/-��%0*9-22*0�:22�3�+-�/*�. �����
����������������
���� 	���������� ��� ���� �
��� ����� ���
� �� �����������
����� ������
����"�

��,�./�4.-�:22�3�+-�/2�*?���%0*9-22*0*�. �����
�������������
�
���	�������������������������������
��� �����������
�����������
����"�

��,�./�4.-�:22�3�+-�/2�*?�����2�*�. �����
��������������
���
�
�!��������������	���������"�

��,�4� :..� ��2�2*� �������� ��
�� � ���� �
�!� ��� ���� ������� ���
�
		������
����
�������	��������"�

"�@*A-0�B�C44-0�%-0?*0+��9-�B�%*A-0B�,-+*0D�B�)*++���"
9�/�*����.�-*�����������������������		���
���������	������
����
	�����������������������
�����
����������
��
�!"�

��,�6�+�+� %0*9-22*0� 799�4�/�*�*� ��������
�� �		��� ������
��������	
��������
�	��������������
��
��������
�������������
�����
�
�������"�

����2���-��.��-���*.�/�*�*�4�������������������	��	����������
�
�
�!�
��� ���� ��� ���� �
����
��� ����� ����	�	��
����� ��� ������ ���
�
��
������ ���
����"�

"� �4-9�?�9� ��2�� ,�44��3*� �������� ��
��
� �
�!� �
��� �� ���
E���9����
�������������������
��	�������	��������"�

"� �4-9�?�9� %0*9-22*0� :..*9�/�*�*� �������� ��
��
� 	���������
��������
����
�������
��	�������	��������9����� ���
���������
�����
���������"�

"� �4-9�?�9� %0*9-22*0� �-.-9/�*�*� �������� ���� 	��������� ��	��
��
������������������������	������������
����
���������"�

"��4-9�?�9���2���6-9�/�*��>0-E�-�9D*��������� �������6������

��������
�	��������������������������
��	��������
�!"�

"� �4-9�?�9� %0*9-22*0� �6-9�/�*�� >0-E�-�9D*��������� ���� ����
6������
��������
�	���������������������"�

%�����������
���	
�
������3���
�������������
��	
����������
��
�����
����������
������
��	�����������"�.�������
���������
�����
�	�����������������������������
�������������������
�����"�

$�����������������������������
����������
������
�����������
����� ��	��������
������
�����
�������5#19#.0%��(7')�����
������� ��
����������� ���������6����������
��
�����	���������������
	���
����� �����"� %�� ��	������� ����� �����
����� �����
5#19#.0%�������������
����
		������������������
�����������
�����
����
���
���� ����������� ����"� $��� ����� 	��	���� #.0%��
��������	���
��� �
���
���
		����� ��� ��
��� ���	������
��� ���
6��������
��
��"�%
����7�	��������
����	������� ������������
	�
	���� ����� 5#19#.0%�� ����������� ��� ��	���
����� 0����"� %���
���?4��� ��������	��������������� ���������� �����
�
� ��	����� ����
������������
��	��	��������������
��
�����������������E���� ������
����	����3���"����?4��������6����������������	������
����	���
����������
�����������
������
�
���	����������������	������
�
����� ���
����?4)*�2/0���/���� %��� �
�� ��	�� ��� �������?4)*�"
2/0���/�����������	��������	������
���6������
������������	��	���
��"�%�����������������
�����
		��������������������������������
��
�
�!��
��� 	����������
���
����
		��� ��� ���� ������@*A-0BC44-0�
%-0?*0+��9-B%*A-0B,-+*0DB)*++���9�/�*��
���,�6�+�+�%0*"
9-22*0�799�4�/�*�"� %�����2���-��.��-���*.�/�*�� ����� ��6������
�
�
�!������������������������0/C��/�����������	��
����������
 ����
����������������� ���� ��������	����0/?�������� ���� ������� ������
�
����� �
����� ��	�� ��� ����������� 	������
��� ���
�� �� ��
������
�	�������� ��� ���� �
���*99F����4-0�*��
��� 0-�.�@� ���	���� ���"�
%��� ����� �4-9�?�9� ��2�� ,�44��3� ��� �
		��� ����� ���� ��������	��
QQ.����
���RR���������������
		��������
��
�����
�������������

� �
�!� ����������� ��� ���� QQ��5���RR� ��������	��
���
� 	���������
��������	��� ����� QQ��2��������RR"� %��� ����������� ��������
�
��������
����� ���������� �����������
�� QQ��?��RR� �������� ����
	����� ���
� 	��������� �������� ���� �4-9�?�9� %0*9-22*0� :..*9�/�*��
����"�%�� �������
��4-9�?�9�%0*9-22*0� �-.-9/�*�� ����� ��������� E����
������ ��� ����
���
���
� ��
��� ��������	��� ����� QQ��2��������RR"�
%��� ��������	�� QQ��-���!RR� ��������� ����� ���� ���6������ �
��
�
�����
�����
���������
��
�!����
�	��������������������������������
�4-9�?�9���2���6-9�/�*��>0-E�-�9D���� �����4-9�?�9�%0*9-22*0��6"
-9�/�*��>0-E�-�9D���

����
�!"����������/�����(���/��
�	��(.����	�������
���
&�)4����(� �������	
�������

QQ��	RR�
QQ��	-����
���RR�
K!���S��6�����T�

@*A-0BC44-0�%-0?*0"
+��9-B%*A-0B,-+*0DB)*++���9�/�*��

QQ��	RR�
QQ��	-����
���RR�
K!���S��6�����T�

,�6�+�+�%0*9-22*0�799�4�/�*��

QQ��5���RR�
QQ���RR�

K���J���	����������1T�
��2���-��.��-���*.�/�*��

QQ.����
���RR� �4-9�?�9���2��,�44��3�
QQ��?���RR�

QQ��2��������RR�
2����-����������

�4-9�?�9�%0*9-22*0�:..*9�/�*��

QQ��2���������RR� �4-9�?�9�%0*9-22*0��-.-9/�*��
QQ��-���!RR�
K���6�����T� �4-9�?�9���2���6-9�/�*��>0-E�-�9D�

QQ��-���!RR�
K���6�����T� �4-9�?�9�%0*9-22*0��6-9�/�*��>0-E�-�9D�

33

5"� �&,,%��#$���%%)��
%���������� 	��������� ��� ����� 	
	��� �������� ����H������ ���

��������	
�����	���
�����������H��2�P��(7/)���������	��������
������������	
���
����
�������������
�������������
�����"�%���
�������
�������
���������������� ��������	����#$� �����������

������
���-<0�������"�%�����	���������������������
������	����
����� ������ ���� �������
������ ������� �����
���� ������ ���� �#$�
�������������
����������5#1��������
�����������
����������"�%���
�������������
������������
����������5#1����������������������
�����������
������
����������������
���������6������������
����"�
-��������� ����� ��� 	��������� ��� ���� #<���� ��
�����!� (77)�
���������!��
��
� ������� ��	��������
��� 	�� ����� ���� ������� ���
����
���������
����������5#1�������"��

%�������
��������	���
��������������
�������������������P�����
�
���
��� ����� ���� �	��.�����������;
��� (7&)"� %��� ��	���
�����
������ �
�� ��� �	�������� ������ ���� ����	��� #�������� �������������
����������
�������������������P����"�

%������������
������6������
���	����3
�����
���������
���
��
�
��
���������"�;����	�������������
����������������������	���
 ����
�� �	����3
����� ���	� ������� ���� �
����
���U� �����
����*�
-��������2�	��
������
����.���-������<	����3
����� ����#�����
<�E���� ���-2.-<�#<��(>)�
���0
����"�.���
�����������������
������������������������
����������
������
���	�
���������������
���
�������������������	����3
���������
��������	�� �������	����3
�����
��		���������
�
������
�����
	���
����
�����"�%����	����3
��������
����� ���
��
� ��
�!����� ��
������
����� ������ �����
�� .2�� ���
��������
��� ������
�������������������
������
������������
���
���� �	����3
�����
��������"� .�� �
��
����� ����� ��� ���� �2�5�
(7C)�
���
����
�
������������
�������5#1��������
�����	�� �����
�
�
����
��
��������	���������� �������������!���� ��������	������"�
H��� ���
����������
��
�����������������������������������
��
�
�����
������� �������
������
�����
�
"�-��������� ����� ��� �����
���
�����������������������
�����*.�/�*���������
�����	���������
��������������������
������
�������������������.2�������
�������
�����#$�����"�

6"� ���(���&�7�
6"!� ���
���������
�(.����	������
�����
��� ������ ��� �������
��� ���� 	��	����� ���� ������� ����� ��������
	��������
���������
��������
���
��
		���
��������������������
��
���
���� �������� ���
��������
��"�%���
		���
����������� ���������
��� ���� ���� �
��� ��
��
�� ���� ��
��� ��
��
�� 7B� �����
������ ��
�
��
���
��� ���� ��	�������� ��
��
�"� $������ C� �������
���� ����
�������
����������
���������������
�����	������"�

�
-���
�2"�*1

��1������	������	
����
��
 ��

�������
����
��������	�������	���������������������
��������
���� ����� �
�� ����������� ��� 	������� ���������� ������� �
�!�*� ����
����������� ��� ������ ��E�����
���
��� �� ��� 	
��� �� �����
������

����� ���� 7:� ���
 ����� �������� ��� ���� �����
������ N�
	��+� �����
��	�������� ��� ����
��� �� ��E����� ��� ��������� 	���������� ��	� ���&�
	����������+� ������
����
����� ��� ���� ���������	���������� �����
�����
�
�����
�����������������������+�
����� ��	��������� ���
�����
��
���� ����� C� ��������� ���
��� �� ���"� ��	�������
��� ������
��� ������
������
����������������������
�����������������	����3����������
���� ��� ������ ��� 	������
���� ��������� 	����� �V;
���� �������
�V,������� ���
�� ������� ��������
��� ��������
����� ������
���������
��������������������"��

%����
����
���	�	��
������
��������
�����'888��
��
������

�����	���������������������
������������
����
����������"�$������
'� �������
���� ������ �������"�%��������� ��
����
����
��������������
�������
�����
� ��
�������
�
���������������������
����������
������

����
�������������������
������
�������������������	����3������
E���� ������
������������������
����"��

� � 3 4 + 5 6 7 * �, �� �� �3 �4 �+ �5 �6 �7 �* �,
,

,
�

,
�

,
3

,
4

,
+

,
5

,
6

,
7

,
*

�

��������

�
��
�
�
��
��
��
89
�
��
���
��
��
�!
��
��
��
:�
��
��
��

�
-���
�5"�$�����8
���
���������
�
.����	����
���	�� �	1�
/��
����
�	��
�9��
/�����
�:;<=���
�:�"�<=�	�	����
����:.<=�

�
���:><=��������������	����:�<"�
%�����������	
������������
�������������
����>8&C�
�����
�� ��

������� ���������� � ���������
��� //C8B8������� �����������
� ����
�	� ���7:� ��
������
��� ���
�!��������������� �������������������
�����������������
��
����
��������������������������
	��"�%������
 ��������������	
���	���������������
��'"BA���78C7�
�����
�� �����
������ ������������
�� ������������� ������� �	
��� ������� ����������
��
	��"�H��� �����������	��	��
������������������

��
����
�����
�
�� ���
���������
������	��������
�������������������
������
�
����� ������
��� ���
����
		������������� ���� �������� ������
��� ����
���������� ����� 	������� ���� ������� �	
���
��� �	������� �	� ����
����	������"��

1���
��
�!���
�������������������
����
�����������������������

�� %7'� ������ ��	��������
� ������ ������ ��������� ���� $������ C�
%7'�������	������������F-�����
������
����W�#���
��$������G� ���
����� 	���������� ��
 �� ��
��� 	����������
���������"� $������ &�.�
������
���
��
���	�����������
���������������������
	�%
�!�7'�
����� ���� ��2� 	��������� 28� ����������� ����� ���� ��2� 	���������

�����������"� $������ &�?� ������ �����	�������#
		���� ������
����
������ ���
����
���
����
		����� �����
� ��	�������� ��
��
�� ���
�	�������"��

34

� ��� �
-���
�6"������
��/��
���������	���	��

1��� ���������
� ������ ������������ �	
��� ��
	�� ��� ���� ��	���
Q%7/� 27� -7� 4>R� ������ �	�������� ��
�� �
�!� %7/� ����� ���
�
		������	���������27�������27���������
����
���������������
�
���������-7�
�����������%7/������ ���
��� �� ���4>"�%�����
���
CB�
�����
�� ���
�� ����� �����"�$������:� �������
����
�	
���
�� ��
	��
��	����������������������	
���
������� ������������������
����
������
������"� %��� ��
������ ��������
������ ���� ������ Q%7/� 27� -7�
4>R� ��� �����������
���	������������
�������������������
�������

�����
�� ������������
���
������
���������
����"�

;�+�.��0��-,

;�+�.+�0,�-,

;�+�.4�0,�-,

;�+�.��0��-,

;�+�.3�0,�-,

;�+�.3�0��-,

;�+�.��0,�-,

;�+�.4�0��-,

;�+�.��0,�-,

;�+�.+�0��-,

;�+�.,�0,�-,

;�+�.,�0��-,

;�3�.��0��-�

�
-���
�?"������
��/�����	�����
���������
����1�

.		������ ���� ��������
�� ������
����� 	��������� ��� �������� C�

��������
�	����������������
���������������������	�������	�������
�
�� �������� ���� ������� �	
��� ��� B/� X� ��� ���� �	������� ������

 ��������
������ ������������������
����
��
������
�������
���
������������ ����� ���������������
��������
��
��6�
���������������
�������������
����������	�����"�

6"'� �
���������
�(.����	����(�����	����
��	��������� ����� ���
����� �����
�� �����Y� -���Z� >�O�
��

>"C�NH3�	��������������>�N?�0.#���������#���������;�������
P2� 2���������
������� ��� ����2
�!� >� �	��
����� ������"�;��	���
�������788�����
��������������
�����	�������"�%�����������������
��
�����
����
����������������
���������'8�������������������'888�
�
��
������ �����
�����	��������
�������	�	��
�������3�� �	���
��
�������>8��������������������
����
����
����"��

$������B�	�������� ���� ���
�� ���������� ���������788�����
������
��� �����	����3
�����
��������� ���
���������� ���� ������� ������
E���� �����������	������
����������7����:"�%�������������
��� ��
������
���
��������
��>"�%���
��� ������
����
�!��
		����
���	������
����
����
����"� %��� ��E���� ��� ��� ��� �	����3���
��*� 	������
����
�������	�����	����
����������
�
�����������
���������
���
��������
����� �����"�

� � 3 4 + 5 6
�,
*

��

��
�

��
�

��
3

��
4

��
+

��
5

������������:�������

<
8�
��
���
��
���
��
=�
��
��
��
>

;�����89���������8������������

�
-���
�@"�(.����	����
.
��	����	��
�/��!�	��?����
�	��
�"�
$��� ���� ������� ��E���� �� ���� ������� ��	�������� ����
 ��
���

������������������������������������ ��������������E���� ���������
���� ��	�
��� ������� �
��� ��	������� ���� �
������
��� ��������
���������� ����� ���
����� ��� ���� ��	���
����� ��� �������� �����E���
�� ������	���� ���"�$����������������E���� ����������������	��������
����
 ��
���
������� ���� ���������� �������� ������ �
������� �
!���
������
�������������E���� ������������������������������E���� ���
��� ��	����� ��"�"� ��� �� S� >� ���� 	�������� ������
����� ��� Q	������
�
����������R��
���������	�
�����������
�����	������������
��
�����
��������������������� ��������
��������� ������	���
�����
���	���� ���"� ��� ���� �
��� ��� �� �����E���� ��� ���� �����
����
����
��	�������� �������������������������������	�����������������	���
�
�����������
����������������� �����E���� ��"�

%�����������
�����������77"8����77"'�����������������������
����� ����� �����
��
�����������
���
���� ���� ������	���
��������
�����������������
����������
�����E���� ���
�����������	�����"�
����
�����������������
������	��	�����
����������������������
���
���� ���� �����
��� �����E���� �����������	�����"�.���
���� ���� �
���

�������
����E���� �� ������	���
�����
�����������6����������������

�������
�������������������
����
�������
��
����
���������"�

%
����>�	�������� �����������
�������������
��������������
���
��� ��������������	�����������788��	����3
���������
�����"�%���
������� ��� ��E���� ��� �!���
�� ������
�� >"�%���
��� ������ ��	������

��� ����������� ��� ����
����� ��	��������
����
�����
��� ���
���
��
����������������	
�
��������6�
���������	�� �������������
����
	��������� ��� �������� &"7"� %��� ������ ��E���� ���
��� 	������
����

���	����"�

����
�'"�(.����	���� �	1�'�	��2���	���	�
��:�<�
��	
�
	
��� �����	
��� �����	
���� ��������

0���
����
�����	�������� 8"7C:B� 7:>� >/>8�
0���
������	���������

���
����
����� 8">7:'� /CC� A>B8�

0���
������	��������
����
�
�����
��� ���
�����
����� 7"8� 7/:&� 7CBCB8�

�

��� ���� ������� ������� ���������� ������ ����� ����
��3��� ���
���������������� �"�"���
��
�� �����"�%�������������� ��������
���������
�����������������3�����
������
	��	������"�0����������%
����>��������
����������	
������
	���
�����������������	��������������������������	���
�����
��� ��
������
!��������
������"�

�������	
����	������
���
		�����
�����������������������
�����������������������
�����������	
������������	
���
������������
����
�����������	�����������
������������������������ !���
��������	������������"#$%&��$#!��
���������������
����
������''�
����	��(�����"����������	�����������)�
�����������	
�����*���&+��������������
�,���-.��/��0�

35

?"� �%$�)&�#%$�
%�������!��
��	��	�����
�������������	
���
����
�������
�������
���� �
�������
�� ��
	�� 	������"� %����
����
������ � �������� ����
��
������������
��������������	������������������������
��� ������

���	�� �����
� ��������� ��	������
����� ���������	����������
��� ��
����"�#���� ����������	������
����������	����������	���
�����
����
�����������������������	
���
��
���!��	���������
�����	���
�����
	������� �������
���������������	����3
�����
����������
��������
�����
�������
	�� ��
���	����3���
� ���������E���� ��"�%����
����
��
������������������������
����
������	���
������������������
���
!��

�
��
������������#���
		��
���
�� ������
	���
����
������
��
����� ��� ��������������� ��
������
����� �����"� -����������� �����
�
���
� ���� ���
������ �
�� �������� ��� ��
�� ���� ������� �	
���
����������
����
���������#�����
������
�������������������������
��
������
����� �����"� %����� ������
��� ����� ��� ��	������� �������
������
�������
��	�����������������	
���
��������
��������
����
���
��������������	�� ���������������"�#���� �������������������
��
��6����������
��� ����� ��� �����
��� ����
�������
�� ��
������
�����
������ ������ ���� �� ����
������ �������� ����� ���� ������� �	
���
������
 ����������������������
����
��
�����"�

%��� 	��	������������ ������
���� ���� �������� �����������	��
�
����� �
����
��� ��������� �����
�����
��� ������� �	
��� 	�������
�����
��#���������������
��� �	���� ���� �		����������� ��� ���
	�� �� ��������	������� �������� ���� ��	����
����� ���#��"� ��� ����
����������
���	�
���������������������������
�����������������
������
������������<#N����
������������
��<-1�O4%�
��9���
#.0%�������
��
����������������<-1���	���������
���
���
��
���
��	�����������	�� ���������	������
��������������	���
����������"�
.�������
���� ��	�� ������� ��� �������
�������
��������� ����
	�
	���
����������	�
�������������
�����
���
�������
����	���������
������ ��� 	��������� ��� 6�
����
�� ���� �
��
��� ����� 	��	��
��

�
�����������"�

���$%*)(��(�($���
%������!�������������������
��	
�������������������N���
��#���
������ ��� ����
�����
��� 0���
���� �������� ���� �.I�%.��
	��E����87#/8BB�"�

�(-(�($�(��
(7)� .".��
�
�����
�"�F#�1.I*�.�#�����?
����������
���������

�
����� $�
�����!� ���� ������� ��� ��������� �������G"� ��*�
2��������������1-%���>887"�

(>)� �".����� F-��������2�	��
������
����.���-������<	�����
�
�������������#�������E���� ��%�
 ��������
����
��2������G"�
��*��2���"�#-�#�>88:�		"�///�/C8"�

(/)� %"?���!���,"%�����1"%�����"�F�������1� �������������5�����
� �������
��� .���������G"� ��*� ������� .����
����� ���� ���
��������������� "�/�7AAB"�		�>/�'B�

(C)� 1"?���[� -"��������� ,"�1"��!�����"� F#��
�������
���
#�.�%�
������
��������������������������G"���*�2�������
����� ��� ���� $����� ��� ������� 1
���
���� �$�1�� 1�����
$�
������	�������>88C"��

(')� �"��������� � 0"2
�������� �."�
����
����4����������"� F.�
2�
������?
����%
�������������1�������G"�������������\�
%���� ">/��"'�	"/'A�/:C���	�������>88&�

(&)� �#$"� ����	��� #�������� $�
�����!"� .
��
����
�*�
���	*99���"����	��"���9���"�.�����������#
��>8878"�

(:)� -"���
���"�"���
��."�"2�������"�F.�#�������E���� ��<	���
��3
�����#����� ���� ��	�������#����	���������#
		����� ���
2������� I�����!�G"� ��*� 2���"� -<���W����� >88/� .-#�
2�����		"�7B>�7B:"�

(B)� #"N����"� F#������ ���� �
��
�����
���-� ������ ���� �������
�	
��� ������� �
���� ������� �� ���	����G"� ������
����� ����
41���,����
��(�"�")� "�/B��"�>�	"7/7�7B/�>88C"�

(A)� %"J
��
�� ���
�"� F5#1��
���� #�����2��������� ��-� �������
$�
�����!G"� .-#� %�
��
������� ��� ��������� -��	������
�������� "�'��"�>�>88&"�

(78)�J"J���3��� ."0"I������ ,"#"0
�
��� ."�
����
����
4����������"� F�������1� ��� ������*� <�������
��3
����� ���
-��������
��� 2�
������?
���� ������G"� ����� %�
��
�������
��� -��	�����.������������ ��� ������
����-��������
��� ����
�����7A�7>��7'>/�7'C/�>888"�

(77)�$"."I
���������#"$"�"<�� ���
�$"0";
����"�F#�������
������������������������#�����������
���%������
�������
#��G"���*�2���"����C������"�;��!���	����#������
����#��
����������������2��
�� ��
�����������������
���
�#<#2���"�?�
�
�2�����
��>88:"�

(7>)��"I���
� ,"�3��	
�� ���� N"J
��
�"� F-�����
����?
���� ���
������	
�����	���
�����
���#��������������G"� ��*�2�������
������������/���������
����
��-���������������������������
�
��� ��#�<$%�� 2���
���	��
�5�.�<������� >88/"�1I-��
>B''"�		�>A8�/8'�

(7/)�#"$"�"<�� ���
� �";"?��
�� $"."I
��������� $"0";
����"�
F#����� ��� ��� ������������ ����#2��-�������� �	
��� ���
	���
����G"� ,����
�� ��� ������
����-��������
��� ������� "� /�
�"7�>88B"�

(7C)�#"�$"��"�<�� ���
�1"?"?�����
�
�1"-
����$"0";
����"�F�
��
�����������������
�����������	
�����	���
�����5�����
5#1�?
���������
����G"���*�2���"����0�2]8&���7:��������
���"�;��!���	����0
	����������2������	����-�
��
�
N������>88&"�

(7')�<#N"�5#1�2�����������#��������
���.�
���������0�
�������

��� ��������� �������� �#.0%��"� >88:�

��
����
��
Q���	*99���"����
���"���R"�

(7&)��	��.�����������;
�����
�����!"��
���	*99���"��	��
������������
��"����

(7:)��"-"�������"� FN����� ������]�� ������������*� #�������� ���
�����������G"�-��	�����4��"�/A�I�"�>�$��"�>88&�		"�>'�
/7"�

(7B)�2"#";�������"� F%��� J�����!��� 2������� ��� N�
	��G"� 2���
��������� ��� ����.�����
��#
����
���
���������� ��"�7/��"�
7�7A&>"�
�

�

36

View-Supported Rollout and Evolution of
Model-Based ECU Applications

Andreas Polzer
Embedded Software

Laboratory
RWTH Aachen University

Aachen, Germany
polzer@cs.rwth-

aachen.de

Daniel Merschen
Embedded Software

Laboratory
RWTH Aachen University

Aachen, Germany
merschen@cs.rwth-

aachen.de

Jacques Thomas
Daimler AG

Group Research & Advanced
Engineering

Böblingen, Germany
jacques.thomas@daimler.com

Bernd Hedenetz
Daimler AG

Group Research & Advanced
Engineering

Böblingen, Germany
bernd.hedenetz@daimler.com

Goetz Botterweck
Lero – The Irish Software

Engineering Research Centre
Limerick, Ireland

goetz.botterweck@lero.ie

Stefan Kowalewski
Embedded Software

Laboratory
RWTH Aachen University

Aachen, Germany
kowalewski@cs.rwth-

aachen.de

ABSTRACT
When applying model-based techniques to the engineering
of embedded application software, a typical challenge is the
complexity of dependencies between application elements.
In many situations, e.g., during rollout of products or in
the evolution of product lines, the understanding of these
dependencies is a key capability. In this paper, we discuss
how model-based techniques, in particular, model transfor-
mations can help to reduce the complexity of such analysis
tasks. To this end, we realised a representation of Simulink
models based on the Eclipse Modeling Framework (EMF).
The resulting integration allows us to apply various model-
based frameworks from the Eclipse ecosystem. On this basis
we developed a view that increases the visibility of functional
dependencies, which otherwise would have been hidden due
to a lack of abstraction in the native Simulink representation.
The provided analysis framework comes in handy, when such
a model has to be modified. Consequently, the developer
is supported in reusing existing models and avoiding errors.
The concepts and techniques are illustrated with a running
example, which is derived from a real industry model from
Automotive Software Engineering.

Keywords
Model-based development, variability, Matlab Simulink, au-
tomotive software, model transformation, ATLAS Trans-
formation Language (ATL), Epsilon Translation Language
(ETL)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOMPES ’10, September 20, 2010, Antwerp, Belgium
Copyright 2010 ACM 978-1-4503-0123-7/10/09 ...$10.00.

1. INTRODUCTION
Model-based development (MBD) of ECU applications has

become an established methodology for automotive electron-
ics. The behaviour of the application (e.g., exterior light
control, 12V power network management) is first modelled
using, e.g., Target Link, then ECU code is automatically
generated. Finally, the code is integrated into the runtime en-
vironment of the ECU. Nowadays, the challenge is no longer
to introduce such methods and techniques, but to manage
the application including legacy versions and current product
variants over many years. In doing so, one has to consider
many different types of artefacts, for instance, the Simulink
model, the requirements specification and the corresponding
tests.
In the automotive industry MBD is often used in connec-

tion with a rollout of an application in different car lines.
Although the reuse level across car lines is high, some differ-
ences cannot be avoided nevertheless. Moreover, the applica-
tion is continuously developed, because of enhancements or
newly introduced features. Consequently, there is the major
challenge of managing consistent artefacts over time and
car lines. With each change or new variant, the application
developer is confronted with questions like: “Which func-
tions are there already in the application?”, “What are the
dependencies between them?”, “What effect will a change
in requirements / a Simulink subsystem have?”, “Are there
some other requirements/Simulink subsystems concerned?”,
“Which consequences will result for the corresponding tests?”,
or ”How can we ensure that the artefacts stay consistent de-
spite the change?”. Answering such questions today can only
be done by an experienced application expert and involves
complex searches in a large number of potentially involved
artefacts.
To address these challenges, we propose to support devel-

opment and variability handling using model-driven technolo-
gies. In particular, we apply technologies from the Eclipse
ecosystem, such as the Eclipse Modelling Framework (EMF)
and corresponding model transformation languages. The

37

Simulink Model

Xtext

Transformation

ETL Expand

Transformation

TransformationTransformationTransformation

ETL Graphical

Transformation

<name>.mdl

EMDL Raw Model

inputXtext.emdl

EMDL Base Model

base_model.emdl

Graphical EMDL Model

gmf_model.emdl

EMDL View Model

view_model.emdl

Basic Transformation Advanced Transformation Graphical Transformation

Figure 1: Overview of the transformation concept

main idea is to import original artefacts (as used in MBD
industry practices) into an EMF-based representation and
subsequently apply techniques, which are available in Eclipse-
based frameworks. For instance, with such techniques an
artefact can be analysed directly or combined with other
artefacts for cross-artefacts analyses.
Out of the many involved artefacts, in this paper we focus

on the Simulink model. We will first describe the model
transformation concept, then we provide an analysis example
producing another view of the model applying this concept.
Finally we evaluate the concept in the context of benefit for
industries.

2. TRANSFORMATION CONCEPT
To answer the questions raised in Section 1 we have de-

veloped a transformation concept, which is visualised in
Figure 1.
The transformation concept consists of three main steps

each of which is dedicated to a specific task in the process.
First of all the Simulink model is imported into the EMF
world during the basic transformation step and enriched
with additional logical information. This step is described
in more detail in Section 2.1. The result is a model that
we call EMDL Base Model as we use it as input for further
advanced transformations (cf. Section 2.2). These advanced
transformations lead to models that represent special task-
specific views of the original Simulink model. Such a “view
model” can subsequently be transformed to a “GMF model”
during the graphical transformation process described in
Section 2.3 to be visualised.

2.1 Basic transformation
To explain the benefits of the basic transformation step, we

will focus on lines that are connecting blocks in a Simulink
model as they are the central element to identify those blocks
which are transporting a signal and are potentially affected
by the signal. For instance, in the very simple Simulink

model visualised in Figure 2 we might be interested in which
blocks are affected if the constant signal of block "Constant
2" changes. To automate this task we have to analyse the
Simulink model text file, which includes all information about
the different blocks, their connections, signal flows, graphical
positions and so on.
If we want to perform such analysis, the original format

of the text file is problematic as an input, because some
of the necessary information mentioned above is available
only in an implicit form. That is the reason why the task
of identifying lines which are connected to block Constant
2 in Figure 2 becomes quite complicated as illustrated in
the following. Each line can be connected either directly
to a block or to a port of a block. Lines and blocks are
independent objects which are represented in the model
file with a keyword (“Line” / “Block”) followed by a body
surrounded by curly braces “{}”. All entities are just listed
in a linear order without a logical or hierarchical structure.
Listing 1 illustrates how a line between the Simulink blocks
Constant 2, Module A, Module C and Output Interface of
the Simulink model in Figure 2 is represented in the original
Simulink model file.

1 Line {
2 [. . .]
3 SrcBlock " Constant 2 "
4 SrcPort 1
5 [. . .]
6 Branch {
7 [. . .]
8 Branch {
9 DstBlock " Module C"

10 DstPort 1
11 }
12 Branch {
13 [. . .]
14 DstBlock " Output I n t e r f a c e "
15 DstPort 4
16 }
17 }
18 Branch {
19 DstBlock " Module A"
20 DstPort 1
21 }
22 }

Listing 1: A line as represented in the original
Simulink file
Answering the previously mentioned question is problematic
with this structure. For example, if we would like to retrieve
all blocks that are linked by lines to the block Constant 2
directly or indirectly via further blocks (which is generally a
frequent task when identifying blocks affected by a signal) we
first have to pick this block in the model file and retrieve its
name (here Constant 2). Then, we have to iterate through
all lines beginning at this block (i.e., which have an attribute
“SrcBlock” with this name as value).

One of these lines is displayed in Listing 1. The names of
the blocks which are directly connected to Constant 2 will
then be all DstBlock entries which appear in the line body of
these lines. In order to identify blocks connected with block
Constant 2 indirectly we would have to look for the names
of the destination blocks (DstBlock) of all lines which the
condition SrcBlock=“Constant 2“ holds for. After this we
have to repeat the whole process recursively on the resulting
destination blocks.
In summary, the flat structure and textual storage format

of original Simulink files, impedes efficient traversal and
analysis of the model. This is not a suitable basis when

38

Subsystem1

In1 Out1

Output Interface

In1

In2

In3

In4

Module C

In1 Out1

Module B

In1 Out1

Module A

In1 Out1 Goto

[A]

From

[A]

Constant 2

1

Constant 1

1

Bus

Selector

Bus

Creator

b

X
a

<a>

Figure 2: A Simulink model to be analysed

aiming to understand and analyse an ECU application, even
if such analysis is performed with tool support.
To overcome this obstacle, we decided to explore techniques

that would turn implicit information into explicit objects,
such that queries on the Simulink model can be implemented
and performed more elegantly and efficiently. In order to
do so, we created a parser within the Xtext framework [10].
This parser turns a given Simulink model file in the original
.mdl format into an EMF-based representation, which is
stored in XMI (XML Metadata Interchange), a common in-
terchange format for EMF models. This document conforms
to an EMDL metamodel, which we defined to capture all
information given by the Simulink model. Furthermore, we
extended this metamodel by additional logical and hierar-
chical information, which facilitates analyses. Connections
between blocks and lines, for example, will then be easier to
address.
The Xtext parser is started via an Xtext workflow script.For

the given Simulink model line in Listing 1 it generates the
output shown in Listing 2.

1 <mdlLines name=" b ">
2 [. . .]
3 <branches>
4 <branches>
5 <d e s t i n a t i o n P o i n t e r = " Module C"/>
6 </branches>
7 <branches>
8 <d e s t i n a t i o n P o i n t e r = " Output I n t e r f a c e "/>
9 [. . .]

10 </branches>
11 [. . .]
12 </branches>
13 <branches>
14 <d e s t i n a t i o n P o i n t e r = " Module A"/>
15 </branches>
16 <s o u r c e P o i n t e r = " Constant 2 ">
17 </mdlLines>

Listing 2: A line as represented after Xtext
transformation

Up to this point we have just translated the original
Simulink model file one-to-one into the new EMDL Raw
Model file, which conforms to the defined meta model. As
we mentioned before some important information is implicit
in the Simulink model and cannot be addressed directly.
This information is still implicit in this EMDL Raw Model.
For analyses purposes it is desirable to abstract from tech-
nical details to make the required information explicit. For

Figure 3: The structure of logical entities which fa-
cilitate the transformation process

the line displayed in Listing 2 an abstraction would not use
the quite technical construct of branches. Instead it would
just describe a logical line with one source and many targets
(which would be references to the corresponding target blocks
reached by this signal). Therefore we identified the follow-
ing logical entities which become relevant in this context
and which are created during a further transformation (ETL
Expand Transformation):

1. Logical ports

2. Logical lines

3. Logical signals

4. Signal transporters

Figure 3 illustrates a part of the metamodel describing the
relationships between these logical entities.

2.1.1 Logical ports
Each line in a Simulink model is connected either directly

to blocks or to ports of blocks. In our enhanced model we
facilitate this by introducing logical ports which belong to
a block. Logical lines can then only be connected to logical
ports. So in this context we do not have to distinguish
between blocks and ports as endpoints of lines in a Simulink
model. A logical port can either be a logical inport or a
logical outport depending on whether a port is a line’s target
or source.

39

Figure 4: A logical line that abstracts from details
of a Simulink model line

2.1.2 Logical lines
As mentioned before, in the EMDL Raw Model connecting

lines between blocks are still represented in a quite technical
manner. In other words, each line has exactly one source
and one explicit target but it can contain many branches
where further lines branch off (see Listing 2). This construct
of branches is not necessary as it does not introduce more
semantical information into the model useful for analysing
signal flow.
For analysis purposes we are mostly interested in what

block (or port respectively) is connected with which other
blocks and which signals are transported. Hence, we intro-
duced the logical lines which abstract from the details of
how a line is connected with different blocks. Instead a line
has exactly one logical source port and at least one logical
target port but no branches as they do not introduce relevant
information about signal flow. Consequently, there are no
branching lines left which facilitates the process of analysing
connections and signal flow between blocks significantly.
Figure 4 illustrates the logical representation of the Simulink

line of Listing 1 (and MdlLine of the EMDL Raw Model of
Listing 2). Furthermore, even visually separated blocks like
from and goto blocks in the Simulink model are connected
by a logical line.

2.1.3 Logical signals
While information about the signal flow is contained im-

plicitly in the original Simulink model as described above
(and hence difficult to extract) we create logical signals, which
have a name and are related to all ports and lines transport-
ing the signal. For example, in order to identify the signal
flow of a given signal in the Simulink model we have to follow
the lines beginning at the source block. But a line may also
transport more than one single signal, i.e., it transports a
bus signal that contains all transported signals.
To this end, we also introduce logical signals that can either

be bus signals, which contain one or many further logical
signals or atomic signals that may be contained in a bus
signal but cannot transport other signals. Furthermore, each
atomic signal is linked to all bus signals, which transport it.
By this means, it becomes apparent for a given signal which
lines transport this signal (either included in a bus signal
or directly). For a given atomic signal we can now directly
lookup which line is associated (either to this atomic signal
or to a bus signal that contains this signal). Now we can
perform queries on the model to identify parts of a model
which are potentially influenced when a signal changes.

2.1.4 Signal transporters
In a Simulink model signals are transported between blocks.

In order to facilitate identifying signal flows throughout a
Simulink model both logical lines and logical ports are ab-
stracted as “signal transporters”. By having such an abstrac-
tion at hand the problem of finding out, which parts of a

model are influenced by a special signal, becomes solvable
with a reasonable effort since the information about signal
flow now becomes explicit. That means that we no longer
need to follow a given signal through a Simulink model.
Instead, we just have to query our transformed model for rel-
evant signal transporters for the signal under consideration.

2.2 Advanced transformations
By enriching the original Simulink model with abstract

logical information we created a useful base model, which
now allows us to answer questions about the ECU application
and the corresponding Simulink model with reasonable effort
(e.g., ”Identify all lines and blocks of the model which are
influenced by a change of signal ’a’.”). The second step of
the concept is then to extract some information out of the
EMDL Base Model and process it further. For that step we
use transformations that we call Advanced Transformations.
One of these is shown in Section 3. In future extensions these
advanced transformations may also consider further input as
exemplified in Section 6. The result of this step is called the
view model, which represents those aspects that are relevant
to a particular stakeholder or for a particular task.

2.3 Graphical transformation
To further support the engineer in his work, one objective

is to provide tools, which provide interactive access to the
task-relevant information. Hence, we aimed to produce a
graphical representation of the view model to make the result
of the analysis more comprehensible and intuitive. To this
end, we have developed a graphical editor using Eclipse GMF
(Graphical Modeling Framework).

The editor enables the user to recursively descend into sub-
systems by double-clicking them – similar to the behaviour
known from Simulink. The graphical representation uses
available positioning information as given by the Simulink
model to arrange the blocks on the canvas.
Each model to be visualised in the editor has to be struc-

tured such that the editor can display it. Therefore, our
transformed model has to be enhanced such that it provides
the necessary information. This is the task of the graphical
transformation. Especially lines and – if desired – branches
of lines are introduced within this transformation. Now the
created view can be visualised. The result of the graphical
transformation is called a GMF model. Section 3 applies
the described methodology to create such a graphical editor
view.

2.4 Transformation languages
For all transformations we applied two state-of-the-art

transformation languages, selecting one of them depending
on the adequacy for a given problem. While the ATLAS
Transformation Language (ATL) [8] succeeds in transforming
huge models very efficiently, the Epsilon Translation Lan-
guage (ETL) [9] seems to be more convenient to apply for a
developer used to programming with Java or C++.
This is why we mainly use ETL whenever concrete mod-

ifications on a model have to be performed (e.g., to create
special view in the advanced transformations) whereas we
apply ATL to add minor additional information on possibly
large models (e.g., to create logical signals and to distinguish
bus and atomic signals). With transformation languages
it is difficult to directly manipulate a given model in place
(similar to accessing and modify objects in an object-oriented

40

programming language). Hence, we created what we call
“identical transformations” both for ETL and for ATL. These
transformations create an output model that is identical to
the input model. That way, we can build new advanced trans-
formation just by modifying these identical transformations
as necessary.
It should be noted that the applied transformation lan-

guages (both ATL and ETL) provide some similar support
for copy-and-modify transformations, e.g., in ATL’s refine
mechanism or in ETL’s capability to generate a copy trans-
formation. However, we had mixed results with these and
are still exploring our options to find the best solution for
use in everyday practice.

3. ANALYSIS OF SIMULINK MODELS
The previous section explained the transformation concept.

Such transformation of a Simulink model into the Eclipse
world enables to use all techniques available from the Eclipse
Modeling Project, e.g., corresponding transformation lan-
guages. In this section we apply these concepts to support
the development of Simulink models. In particular, we are
aiming to support a development strategy, where a model is
built out functional, compatible units taken from a library.
We will refer to this approach as “module-based”.

A Simulink model is often used to generate code, for in-
stance with Target Link. As models are used by different
partners many standardisation techniques have to be adopted
(e.g., to comply with AUTOSAR [4]). For example abstrac-
tion techniques have to be adopted to follow special design
patterns. Parts of the whole system might be grouped into
subsystems, which in turn themselves may contain subsys-
tems. Furthermore, signals may be integrated into buses.
Consequently, the structure of a Simulink model often be-
comes very complex.
Especially, as we are dealing with families of products

(e.g., similar implementations for various types cars) the
implementation model contains the functionality for a whole
family of variants. These variants are used to adopt the
models for different vehicles where slightly different changes
are necessary. Therefore different patterns are used to enable
variant management of the functionality. In earlier work,
we presented some approaches to manage and configure
variants [12, 11]. One of these patterns is a subsystem called
Module, which encapsulates the functionality of one feature.
Figure 5 shows the pattern of a module. There are dif-

ferent activation states. The Disabled state is set when the
feature/module is never active in the variant (e.g., due to
an functional option that is not available in this particular
car type). When the module is Enabled it is either active or
inactive. Active means that the module is running while an
Inactive module is available but not running. The different
activation states are controlled by the subsystem .
With this structure the set of all modules can be divided

into different groups of running modules. Again we have to
deal with the complexity of the system, which is hard to
handle for the human engineer. The modules running at a
specific car state are not easy to grasp and understand by
a developer, neither on the requirement specification level
nor on the level of the Simulink model implementing these
requirements. To analyse the model the developer needs
to “see” which module is active at which state and which
dependencies exist between modules.
As an example for the above mentioned issue we assume

Activation Active Level 1

Active Level n

Inactive

Disabled

...

Input

M
e
rg
e

O
u
tp
u
t

A B

C

D

E

Figure 5: Structure of the module pattern

Module A

Driving Mode A, B

Module C

Driving Mode B

Module B

Driving Mode B, C

Figure 6: Example for a module structure which
might cause problems

the Simulink model given in Section 2 shown in Figure 6. The
Module A is activated in DrivingMode_a and DrivingMode_b
and providing signals to Module B. There is no problem
with Module C which is activated in DrivingMode_b does not
depend on signals from Module A. But Module C is activated
in DrivingMode_B and DrivingMode_C. So it expects to have
input from Module A in both modi. But Module A does not
provide any signals in DrivingMode_C. This might cause an
error.
One important task when developing the Simulink model

is the analysis of dependencies of modules within the models.
Hence, our work aims at providing a view which shows the de-
pendencies of modules and the states where the modules are
activated. The view should depict all modules on one pane
with arrows indicating the dependencies and the structure
which shows the activation.
To do so, we first import the Simulink model into EMF

as described in Section 2.1, then in a second step we have
to transform the EMDL Base Model to the desired “view
model”, showing the dependencies between modules. In the
next chapter we describe this advanced transformation.

3.1 Transformation of the Simulink Model
We have written two advanced model transformations (see

the structure shown in Figure 7), which identify the modules
at a first stage and transform the modules to a structure
according to the requirements described above.
The transformation identifying modules in the Simulink

model is written in the ATLAS Transformation Language

41

ETL Graphical

Transformation

EMDL Base Model

base_model.emdl

Graphical EMDL Model

gmf_model.emdl

EMDL Specific Model

marked_modules.emdl

ATL

identifyModules

active_view.emdl

EMDL View Model
C

ETL

createModel-

ActivationView

2

B

1
A

3

D

...

Basic Transformation Advanced Transformation Graphical Transformation

Figure 7: Overview of the model transformation to
create a flattened module structure

(ATL) [8]. Modules can be identified via a tag added to
the Simulink model. Each found module is transformed
into an instance of “Module” (a metaclass introduced in the
metamodel). By these means it is possible to identify the
modules in later processing steps.
The second transformation creates a new model consisting

only of modules and dependencies. To do this, we used trans-
formation rules written in Epsilon Transformation Language
(ETL) [9]. Listing 3 describes the essential rule for a root
system and the computation for new targets.
The rule CreateRootSystem converts a normal System (in-

put model) to a new special system (output model) where
only blocks of the type Module are available. The transforma-
tion of these new blocks can be found in lines 13-18, where a
loop transforms all instances of Module in line 15 and adds
them to the target model in line 17.
Within this rule we also adapt the lines such that they

should now indicate, that there is a connection between
modules. These connections are created by the operation
createNewLine which is called in line 19. Due to space con-
straints we do not depict this function. Its main contribution
is to create a new line with the source module m from the
loop and the targets which are computed by the operation
getLinkedModules.

1 [. . .]
2 rule CreateRootSystem
3 transform s : MdlIn ! System
4 to t : MdlOut ! System
5 extends NamedElement
6 {
7
8 var a l lModules :new Set (MdlIn ! Module) ;
9

10 for (m in MdlIn ! Module . a l l I n s t a n c e s ()) {
11 a l lModules . add (m) ;
12 }
13
14 // add only module b l o c k s
15 for (m in a l lModules)
16 {
17 var outModule : MdlOut ! Module = m. e q u i v a l e n t

(" CreateModule ") ;
18 t . b l o c k s . add (outModule) ;
19
20 // create the s t r u c t u r a l connection
21 t . l o g i c a l L i n e s . add (createNewLine (m, m.

getLinkedModules (a l lModules)) ;
22 }
23 }
24 [. . .]

Listing 3: Transformation rule for System given in
ETL

The operation mentioned above, which searches for linked
modules is an important operation, which is depicted in
Listing 4. This operation is realized as a recursive object-
oriented function. For a given block and a set of Subsystems
given as parameter it returns a subset of Subsystems which
are connected to the calling block. The result will be found
in the variable linkedModules.
As illustrated in line 3 the operation therefore iterates

through all outports of the block which the operation is
invoked for. If the output is linked to a logical line we
retrieve all targets of the line (line 5-7) and decide what to
do with them based on the block type of the target block of
the line.
If the target is contained in the set of our modules we have

found a connection and add it to our result (lines 8-10). If we
have found another subsystem we have to search for modules
within this subsystem. So we are calling this function again
recursively (line 12) and add all results we obtain from this
call. If we have reached the end of a subsystem we leave it
and continue searching in the containing system (line 14). For
all other types of blocks we call the function again recursively
(line 16).

1 operation MdlIn ! Block getLinkedModules (modules :
Set (MdlIn ! SubSystem)) : Set (MdlIn ! SubSystem)
{

2 var l inkedModules : new Set (MdlIn ! SubSystem) ;
3
4 for (outPort in s e l f . outPorts) {
5
6 // i s there a Logica l Line
7 i f (outPort . l i n k i n g L i n e . i s D e f i n e d ()) {
8
9 // Search in a l l Targets

10 for (t a r g e t in outPort . l i n k i n g L i n e . t a r g e t) {
11
12 i f (modules . i n c l u d e s (t a r g e t . parent)) {
13 l inkedModules . add (t a r g e t . parent) ;
14 }
15 else i f (t a r g e t . parent . isTypeOf (MdlIn !

SubSystem)) {
16 l inkedModules . addAll (t a r g e t . accord ingBlock .

getLinkedModules (modules)) ;
17 }
18 else i f (t a r g e t . parent . isTypeOf (MdlIn !

BlockOutPort)) {
19 l inkedModules . addAll (t a r g e t .

accord ingPort . parent .
getLinkedModules (modules)) ;

20 }
21 else {
22 l inkedModules . addAll (t a r g e t . parent .

getLinkedModules (modules)) ;
23 }
24 }
25 }
26 }
27 return l inkedModules ;
28 }

Listing 4: Operation which determines the targets
for a given module

42

Figure 8: Graphical editor for the transformed
Simulink Model

With the algorithm in Listing 4 we are able to scan the
whole model structure no matter if there are subsystems,
bus structures, goto or from blocks. Hence we are able to
find the modules that are connected with a special module
very easily due to the fact, that we did a lot of structural
work before.
The resulting model now contains the structure we are

searching for. All modules have been lifted to the same layer
and connected if there is a connection in the source model.

3.2 Graphical Editor
In Figure 8 we show how the transformed model appears

in the editor.
We used the example from Figure 2 in Section 2. After

the transformations the modules A, B and C are on one
layer and if modules are interconnected this it depicted by
lines, e. g., like between module A and module B. Within
the modules the developer can see the structural content.
Therefore he is able to decide in which levels the module is
activated.

4. EXPERIENCES AND EVALUATION OF
VIEWS

We applied the presented transformation concept on real
examples from automotive industry. These examples are
Simulink models which have up to ten different Driving
Modes similar to the presented example in Section 3. With
this concept module dependencies and their activation can
now automatically be extracted out of the Simulink model.
The application developer no longer has to do the exhausting
job of looking for this information in the Simulink model.
The views allow to save time and to avoid losing track

during search in the model. Additionally the graphical repre-
sentation facilitates the analysis of the information. Adding
a new module in the Simulink model or changing an existing
one is now better supported.
During early testing we noticed that the presented trans-

formations work correctly and efficiently when applied on less
complex Simulink models. However, there seem to be enor-
mous differences between the used transformation languages
ETL and ATL. For instance, by (manual) translation of an

ETL transformation into an equivalent ATL transformation
we could increase the performance of the transformation
by factor 60 related to one and the same Simulink model.
It is too early to give detailed report on the reasons for
this discrepancy, but it surely seems to be worth further
investigations.
Furthermore, we discovered that independent of the trans-

formation language very complex models caused heap space
errors on a normal PC (AMD Dualcore with 3 GB RAM).
This currently stops us from performing the presented trans-
formation with reasonable effort for very complex models.
We plan to tackle this challenge by (1) translating current
ETL transformations into equivalent ATL transformations
and (2) shrinking the Eclipse representation of the Simulink
models.
The latter means for example to drop out information

about the Simulink model which is not necessary for a devel-
oper to visualise in a view, e.g., options associated to blocks,
technical lines (cf. Section 2.1) and graphical positioning
information. However, this means that a transformation of
the Eclipse representation back into a Simulink model will
no longer be possible. But as we primarily aim at generating
views this will be acceptable for the current usage scenario.

5. RELATED WORK
Similar to our approach of analysing Simulink models there

is the MOFLON framework [3], which provides tools to access
Simulink models and other process artefacts. The authors
present a method of keeping requirements and Simulink
models consistent with the help of model transformations
given in the MOFLON framework.
Alhawash et al. [2] provide another framework to develop

and analyse automotive software systems. The framework
supports the development in an early design phase with
different views based on a common model provided by this
framework. The concrete specification and implementation
is done with Matlab/Simulink.
Agrawal et al. [1] focus on model transformation of Mat-

lab Simulink and Stateflow models in a verification context.
Therefore they adopted the Graph Rewriting and Transfor-
mation language (GReAT) to build hybrid automata from
given models specified in Hybrid Systems Interchange Format
(HSIF). In contrast of our work the transformation focussed
on the semantics of the Simulink model.
A further important focus on model transformation is pre-

sented by Biehl et al. [5]. They use the above mentioned
ATLAS Transformation Language (ATL) to automate trans-
lations from the automotive architecture description language
EAST-ADL2 to a safety analysis tool called HiP-HOPS in
the context of model-based development of safety-related
embedded systems.
This paper primarily aims to support the developer to

manage variability and changes of products or product lines
respectively based on the analysis of Simulink models via
Eclipse frameworks. Another approach presented in earlier
work [12] is managing variability via improving the Rapid
Control Prototyping engineering process with the help of
formal feature models.
[7] attempts to integrate product configuration and vari-

ability resolving into domain specific languages with special
focus on dependencies between elements and features. To
this end, the authors adopt higher-order transformation lan-
guages like the ATLAS transformation language (ATL).

43

[6] deals with possibilities to translate domain specific
languages into configurable models with formal semantics.
The presented framework enables a tool-supported configu-
ration process by visualising mapping between features and
implementation including explanations about constraining
dependencies (e.g., excludes and requires) in a given feature
selection. Furthermore they show how negative variability
combined with subsequent pruning can be used to derive
a product-specific model for a given configuration. Finally
they evaluate the presented approach on a parking assistant.
[11] elaborates on challenges which result from combining

embedded software products to a product line in model-based
engineering and how the upcoming problems can be tackled.
These challenges range from complexity handling to tool
integration. Therefore they create a Simulink model from a
feature model and transform this model into a domain model
in the Eclipse world using the Xtext framework. A product
can then be derived by selecting the desired features in the
feature model and mapping this selection to the previously
created domain model.

6. CONCLUSIONS
In this paper we presented an approach to analyse the

structure of a Simulink model to facilitate the engineering
process, in particular with respect to change and variability
management. We exemplified the methodology by a model-
based developed ECU application inspired by real projects in
automotive industry. Hence, our work is based on Simulink
models where we identified so-called modules (i.e., subsys-
tems that represent a special feature) and restructured them
to enable dependency analyses.
To this end, we created a view using model transformations

to determine the interesting blocks and interrelations between
them. The visualisation is implemented by a model-based
developed editor. Finally, we evaluated our approach on a
real industry example.
Generating this particular view was only a first step in

evaluating EMF to support the further development of ECU
applications. We plan to implement and evaluate diverse
further views with respect to their impact on industry de-
velopment. Moreover, we intend to develop a method or a
language suited to define arbitrary special view.
Additionally, we expect benefits and possibilities from inte-

grating further input into such transformations. Integrating
artefacts of different engineering phases, e.g., requirements
and test cases will enable analyses that support a traceable
engineering process of ECU applications. Even formal fea-
ture models could be used as further input. For instance, an
analysis tools could identify and visualise which parts of the
Simulink model will be affected by feature selection.

7. REFERENCES
[1] A. Agrawal, G. Simon, and G. Karsai. Semantic

translation of simulink/stateflow models to hybrid
automata using graph transformations. Electronic
Notes in Theoretical Computer Science, 109:43–56,
2004. Proceedings of the Workshop on Graph
Transformation and Visual Modelling Techniques
(GT-VMT 2004).

[2] K. Alhawash, T. Ceylan, T. Eckardt, M. Fazal-Baqaie,
J. Greenyer, C. Heinzemann, S. Henkler, R. Ristov,
D. Travkin, and C. Yalcin. The fujaba automotive tool

suite. In Proc. of the 6th International Fujaba Days
2008, Dresden, Germany, 2008.

[3] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr.
MOFLON: A Standard-Compliant Metamodeling
Framework with Graph Transformations. In A. Rensink
and J. Warmer, editors, Model Driven Architecture -
Foundations and Applications: Second European
Conference, volume 4066 of Lecture Notes in Computer
Science (LNCS), pages 361–375, Heidelberg, 2006.
Springer Verlag, Springer Verlag.

[4] AUTOSAR. Autosar - automotive open system
architecture. http://www.autosar.org.

[5] M. Biehl, C. DeJiu, and M. Törngren. Integrating
safety analysis into the model-based development
toolchain of automotive embedded systems. In LCTES
’10: Proceedings of the ACM SIGPLAN/SIGBED 2010
conference on Languages, compilers, and tools for
embedded systems, pages 125–132, New York, NY, USA,
2010. ACM.

[6] G. Botterweck, A. Polzer, and S. Kowalewski.
Interactive configuration of embedded systems product
lines. In Proceedings of the 1st International Workshop
on Model-driven Approaches in Software Product Line
Engineering(MAPLE 2009), collocated with the 13th
International Software Product Line Conference (SPLC
2009), volume 557, pages 29 – 35, San Francisco,
California, USA, August 2009. CEUR Workshop
Proceedings. ISSN 1613-0073.

[7] G. Botterweck, A. Polzer, and S. Kowalewski. Using
higher-order transformations to derive variability
mechanism for embedded systems. In 2nd International
Workshop on Model Based Architecting and
Construction of Embedded Systems (ACESMB 2009),
Workshop at the 12th International Conference on
Model Driven Engineering Languages and Systems
(MoDELS 2009), Denver, Colorado, USA, September
2009.

[8] Eclipse-Foundation. Atl (ATLAS Transformation
Language). http://www.eclipse.org/m2m/atl/.

[9] Eclipse-Foundation. Epsilon.
http://www.eclipse.org/gmt/epsilon/.

[10] Eclipse-Foundation. Xtext - a programming language
framework. http://www.eclipse.org/Xtext/.

[11] A. Polzer, G. Botterweck, I. Wangerin, and
S. Kowalewski. Variabilität im modellbasierten
Engineering von eingebetteten Systemen. In 7.
Workshop Automotive Software Engineering, volume
P-154 of Lecture Notes in Informatics (LNI), pages
2702 – 2719. Gesellschaft für Informatik (GI), 2009.

[12] A. Polzer, S. Kowalewski, and G. Botterweck. Applying
software product line techniques in model-based
embedded systems engineering. In Model-based
Methodologies for Pervasive and Embedded Software
(MOMPES 2009), Workshop at the 31st International
Conference on Software Engineering (ICSE 2009),
pages 2–10. IEEE Computer Societ, May 2009.

44

http://www.autosar.org
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/Xtext/

Assertion-Based Test Oracles for Home Automation
Systems∗

Ajitha Rajan, Lydie du Bousquet, Yves Ledru, German Vega, Jean-Luc Richier
Laboratoire d’Informatique de Grenoble (LIG), Grenoble, France

{ajitha.rajan, lydie.du-bousquet, yves.ledru, german.vega, jean-luc.richier}@imag.fr

ABSTRACT
The Home Automation System (HAS) is a service-oriented
application that facilitates the automation of a private home
to improve the comfort and security of its residents. HAS
is implemented using a service-oriented architecture. Many
of the services in the HAS dynamically change their con-
figuration during run-time. This occurs due to change in
availability and bindings between services. Dynamic recon-
figurations of services in the HAS presents several testing
challenges, one being the specification of test oracles. In
this paper, we give an approach for specifying test oracles
for services in the HAS. We formally specify test oracles
in the JML specification language. To verify service be-
havior in the presence of dynamic reconfigurations, we use
mechanisms in the service architecture that notify dynamic
changes along with run-time evaluation of JML specifica-
tions. We illustrate our approach using an example service
in the H-Omega HAS developed on the OSGiTMand iPOJO
service platform. To evaluate our approach, we developed a
testing framework that allows for generation of tests with dy-
namic service reconfigurations. In addition, we seeded faults
into the example service, and evaluated the effectiveness of
the test oracles in revealing the faults using the generated
tests.

1. INTRODUCTION
Modern day homes are being revolutionized with the ad-

vent of devices and technologies that can network and com-
municate with each other. A Home Automation System
(HAS) facilitates the automation of a private home to im-
prove the comfort and security of its residents. It integrates
different home appliances via a network to provide services
for entertainment, safety, and comfort. For instance, inte-
grating a TV, a DVD player, surround speakers, lights, cur-
tains and an air-conditioner allows to provide an integrated
service, that we call Theater integrated service, where a user
can watch movies in a theater-like atmosphere. HAS is an

∗Partially supported by the iPOTest Project of the Univer-
sité Joseph Fourier, and by the ISLE cluster of the Région
Rhône-Alpes .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOMPES ’10, September 20, 2010, Antwerp, Belgium
Copyright 2010 ACM 978-1-4503-0123-7/10/09 ...$10.00.

application in the domain of Service-Oriented Computing
(SOC) and is implemented using service-oriented architec-
ture. The HAS, like any other SOC application, utilizes
services as the basic units to support development of the
distributed application.

Most of the research in SOC has focused on the architec-
ture and framework for developing SOC applications. Re-
search in verification of SOC applications is still in its in-
fancy. The main challenge in verifying SOC applications
like the HAS lies in the dynamic reconfigurations that often
occur in these applications. In the HAS, new services may
appear or existing services may disappear as the application
is running. Not only is there a dynamic change in availabil-
ity of services but the bindings between them also change
during run-time. As a result, the architecture and config-
uration of the HAS and its services evolve dynamically. In
the rest of this paper, we refer to this phenomenon in the
HAS as its dynamic nature/behavior/reconfigurations. To
exemplify, consider the theater integrated service mentioned
earlier. The service may be required to connect to a mobile
video player (like an iPad) if it is available in the room and
play videos from it. Thus, if a mobile video player appears in
(or disappears from) the room when the theater integrated
service is running, the service is required to dynamically
bind to (or unbind from) the player service at run-time.
Such dynamic changes in service configuration may affect
the correctness and quality levels of these applications.

Verification of HAS and other applications with dynamic
reconfigurations can be viewed as two testing problems, (1)
the need for test oracles that observe and check behavior
during dynamic reconfigurations, and (2) the need to gener-
ate tests that involve dynamic service reconfigurations. In
this paper, we primarily focus on addressing the first test-
ing concern–specifying test oracles for HAS. Nevertheless,
to evaluate our approach for test oracles, we also addressed
the second testing concern with regard to test generation,
albeit in a preliminary manner.

Traditional test oracles that examine outputs at the end
of the test execution are not adequate for the HAS since the
configurations and context of the service can change dramat-
ically as the service is running. We need test oracles that are
run-time monitors, continuously monitoring the behavior of
the service, particularly during dynamic reconfigurations.
Test oracles that monitor the run-time behavior of a sys-
tem for consistency with requirements have been proposed
in the past [20, 16, 11]. These approaches, however, cannot
be directly applied to the HAS since they are not tailored
towards monitoring dynamic reconfigurations in the service

45

composition and bindings.
To address this issue, we propose test oracles in the form

of formal specifications that act as run-time monitors of the
services in the HAS. The test oracles monitor whether the
services deliver the functions expected from them in the
presence of dynamic reconfigurations. Our approach relies
on utilizing mechanisms in the service architecture to notify
run-time monitors of dynamic reconfigurations. We use the
Java Modeling Language (JML) [17] specification language
to formally specify test oracles. We illustrate our approach
on an example service in the HAS. The HAS we use in this
paper is simulated using the H-Omega [6, 9] framework im-
plemented on top of OSGi [2].

To evaluate our approach for test oracles, we generated
tests with dynamic service reconfigurations for the HAS.
We adapted our existing combinatorial testing tool, TO-
BIAS [18], to support test generation with dynamic reconfig-
urations that can be executed on a service-oriented platform.
We evaluated the fault revealing capability of our test ora-
cles by seeding faults into the example service and running
the TOBIAS test suite against them. Automatically gen-
erating tests with dynamic reconfigurations for SOC appli-
cations like the HAS has not been explored extensively in
the past. We believe our effort at test generation is a useful,
although preliminary, step in this direction.

2. BACKGROUND

2.1 Framework for Home Automation Sys-
tems

The Adele team at the Laboratoire d’Informatique de
Grenoble (LIG) developed a platform, called H-Omega [6,
9], for building home automation systems. The H-Omega
gateway eases the creation and deployment of new services
by transparently managing service bindings, heterogeneity,
and dynamism. The gateway is implemented on top of
OSGiTM [2] and iPOJO [10]. The OSGi framework is a sys-
tem for Java that implements a dynamic component model
that can be remotely managed. The service-oriented com-
ponent model, iPOJO (injected POJO), aims to simplify
service-oriented programming on OSGi frameworks by trans-
parently managing service dynamics.

The iPOJO framework allows developers to distinctly sep-
arate functional code (i.e., the POJO - acronym for Plain
Old Java Object) from the non-functional code (for depen-
dency management, service provision, configuration, etc.).
All non functional concerns are externalized and managed
by the container through handlers (see Fig. 1). The com-
ponent is the central concept in iPOJO. The description
of the component — information on service dependencies,
provided services, and callbacks — is recorded in the com-
ponent’s metadata. Using the component metadata, the
iPOJO runtime manages the component, i.e., manage its
life cycle, inject required services, publish provided services,
discover needed services.

Handlers

IPOJO Container

POJO

Required service

Provided service

Figure 1: Component in iPOJO

2.2 Example Service in HAS
To help illustrate the principles in iPOJO, consider the

following example of an integrated service, termed Temper-
ature Control, in the HAS. Note that the HAS and tem-
perature control service are simulations using the H-Omega
framework. Real home automation systems and their ser-
vices are not easily available. We chose to use the temper-
ature control service example simply to illustrate dynamic
reconfigurations in services and the need for their continuous
monitoring. Other services like the theater integrated ser-
vice, mentioned in Section 1, may also be used in its place.
Regardless of the example service used, the monitoring chal-
lenges encountered are similar. The temperature control
service controls the temperature of the room, so that the
target temperature desired by the user is reached. The ser-
vice requires heaters, and a display device (termed LCD in
the service) that displays the number of heaters active and
running. At least one heater and LCD are mandatory re-
quirements for the temperature control service, implying the
service will be invalid if either of these devices are unavail-
able. The service also ensures that the heaters are used eco-
nomically. The number of heaters that ought to be running
for economical usage is controlled based on the difference
in temperature between the desired target temperature and
current room temperature. The service uses the following
conditions for economical usage of heaters:

Temperature Difference < 10 Turn on 1 heater
Temperature Difference 10 to 20 Turn on <= 3 heaters
Temperature Difference > 20 Turn on All heaters

The service continuously monitors the temperature differ-
ence, and controls the available heaters in the room (turning
heaters on/off) based on this difference. The dynamic aspect
in the service is introduced by two factors:

1. Heaters may appear/disappear from the room. (As-
suming the heaters are portable heaters)

2. Depending on the temperature difference, the number
of active heaters in the room keeps changing. The LCD
should display the number of active heaters and update
the display as the number of active heaters changes.

public class TempCtrl {
private Heater[] m_heaters;
private LCD m_lcd;
…..

…..
}

TempCtrl Service

POJO Component

<component classname="...TempCtrl">
<requires filter="(location=livingroom)"

field="m_lcd“/>
<requires filter="(location=livingroom)"

field="m_heaters“/>
...

</component>

iPOJO Metadata

Figure 2: Temperature Control Service - POJO
component and metadata

The POJO component of the temperature control service
contains the Java class defining functionality of the service.
The devices (or services) required by temperature control
are simply used as fields in the component class. Figure 2

46

shows a portion of the POJO component for the tempera-
ture control service with field declarations for the required
devices. For instance, m heaters in the POJO component
in Figure 2 is an array of heaters whose length will vary de-
pending on the number of available heaters at run-time. To
enable iPOJO to manage this component, we describe the
component in the metadata file. In the metadata, we ask
iPOJO to create the temperature control component and
an instance, indicate the service provided by temperature
control, and indicate fields in the component that represent
required services. Figure 2 shows a portion of the iPOJO
metadata for the temperature control service with the re-
quired services. As seen in the figure, fields for heaters, and
LCD in the temperature control component are indicated as
required services (using the requires tag) to be injected by
iPOJO at run-time. If required services are unavailable, the
temperature control component instance becomes invalid.
When services fulfilling the requirement appear, the instance
becomes valid.

2.3 JML: Java Modeling Language
JML is an annotation language used to specify Java pro-

grams by expressing formal properties and requirements on
the classes and their methods [17]. Our proposed approach
for test oracles in the HAS uses JML specifications. We
chose to use JML as the formal specification language for
the following reasons, (1) Wide range of tools already ex-
ist for JML, supporting, runtime assertion checking, static
checking, program verification, generation of annotations,
specification browsing [17], and (2) The HAS application
was implemented in the Java programming language. JML
is a natural choice as a formal specification language for
Java.

JML specifications appear within special Java comments,
/*@ and @*/, or starting with //@. The specifications of
each method precede the method declaration. We ask the
reader to refer to [17] for a discussion on syntax and usage
of JML specifications. An example JML postcondition in
the temperature control service is presented below.

//@ ensures
((isrunning && (m_heaters.length >= 3) &&

(tempdiff >= 10) && (tempdiff < 20))
==> (num_running == 3));

The postcondition states that if the service is running and
the number of available heaters is greater than or equal to 3
and the temperature difference between current and desired
room temperature lies between 10 and 20 degrees, then the
number of heaters active in the room should be 3.

Our approach uses JML specifications as run-time moni-
tors. The JML Runtime Assertion Checker (RAC) [7] pro-
vides this capability. It translates JML specifications into
runtime checking bytecode, and verifies that specifications
are satisfied during program execution.

3. TEST ORACLES USING JML SPECIFI-
CATIONS

Test oracles that monitor the run-time behavior of a sys-
tem for consistency with requirements have been proposed
in the past [20, 16, 11]. Additionally, run-time monitoring
of JML specifications for use as test oracles in unit test-
ing of programs has been proposed previously [8]. Never-
theless, these existing approaches for run-time monitoring

have never been used for applications like the HAS where
the architecture is dynamically evolving, i.e., where bindings
among components in the application change dynamically,
and components available for composition also change. To
adopt existing run-time monitoring techniques for the HAS,
we need to enhance them with the capability of monitoring
service behavior during dynamic service reconfigurations. In
this section, we present our approach for doing this using
JML specifications along with capabilities in the service ar-
chitecture.

3.1 Validating Service dynamism using JML
As with any run-time monitoring technique, one of the dif-

ficult and important aspects lies in ensuring the assertions
are placed and checked at the right points in the execution
of the program. This aspect is more challenging in the HAS
due to the presence of dynamic reconfigurations in the ap-
plication and execution context. Broadly, in our approach,
we tackle this issue by first identifying potential sources of
dynamic behavior in the service, i.e. fields in the service that
may change dynamically. We then place probes in the ser-
vice architecture, so that dynamic changes at the identified
sources are communicated to a listener method in the ser-
vice component. The listener method is associated with a
set of JML assertions that check the correctness of the ser-
vice during dynamic reconfigurations. If a JML assertion is
violated, a run-time exception is raised to notify the user.

To better understand our approach, we briefly describe
how dynamic nature in services is managed by the H-Omega
framework. We then discuss the mechanisms we use in the
architecture to alert a listener method. The main source of
dynamic behavior in the HAS lies in the dynamism in service
availability which in turn affects other services depending on
or requiring them. When a service (or component instance
in the vocabulary of iPOJO) requires another service, the
iPOJO framework chooses a suitable service satisfying the
requirements and directly injects the required service ob-
ject inside a field in the component, or invokes a method
when the required service appears (or disappears). The
dependency handler in iPOJO manages service dependen-
cies/requirements. As stated in [1], the handler manages
two types of service injection in the component to handle
dependencies:

1. Field injection: a field in the component contains the
service object. As soon as the field is used, a consis-
tent service object is injected. This injection type fully
hides the dynamism.

2. Method invocation: when a required service appears,
or disappears a method in the component is invoked.
For each dependency, the component can declare bind
and unbind methods that get invoked when the service
appears or disappears, respectively.

In the second injection mechanism, method invocation, the
dynamics can be managed directly by the developer. Each
dependency can declare two callback methods: A bind
method, called when a service appears, and an unbind
method, called when a service disappears. The two injec-
tion mechanisms, field injection and method invocation, can
also be used together. In this combined injection mecha-
nism, the field receives the value before the bind method
invocation. So, if the field is used in the bind method, the
returned value will be up to date. Table 1 presents a portion
of the iPOJO metadata for the Temperature Control service

47

Field Injection Mechanism

<component classname=“...TempCtrl”>
<requires filter=“(location=livingroom)” field=“m heaters”>
</requires>
...

</component>
Method Invocation Mechanism

<component classname=“...TempCtrl”>
<requires>

<callback type=“bind” method=“bindHeater”/>
<callback type=“unbind” method=“unbindHeater”/>

</requires>
...

</component>
Combined Injection Mechanism

<component classname=“...TempCtrl”>
<requires filter=“(location=livingroom)” field=“m heaters”>

<callback type=“bind” method=“bindHeater”/>
<callback type=“unbind” method=“unbindHeater”/>

</requires>
...

</component>

Table 1: Injection Mechanisms in iPOJO Metadata
for TempCtrl Component

component (introduced earlier in Section 2.2) that shows
the dependency of the service on heaters. The three mecha-
nisms for injecting the heater service–field injection, method
invocation, and combined injection–for this dependency are
illustrated in Table 1. In the field injection mechanism, we
simply mention the field name m heaters in the requires
tag for the component, and iPOJO takes care of injecting
and updating the field when heaters appear or disappear
from the living room. In the method invocation mechanism,
we define the callback types bind and unbind along with
their associated methods in the component in the requires
tag. When a heater appears, the bindHeater method de-
fined in the temperature control component is called. In
a similar fashion the unbindHeater method in the compo-
nent gets called when a heater disappears1. The bind and
unbind callback methods are responsible for updating the
m heaters field. Finally, in the combined injection mecha-
nism, we use both the field name and callback types in the
requires tag. When a heater appears or disappears, iPOJO
takes care of injecting and updating the m heaters field. Af-
ter the field update, the callback methods in the component
get called.

Our approach uses the combined service injection mech-
anism, since it allows the component to be notified of the
dynamic event, while taking care of the burden of updat-
ing the field with a consistent service object automatically.
The callback methods in the component that get invoked
when the dynamic change in the field occurs are referred to
as the listener methods. The listener methods usually de-
fine actions or updates to be executed in the service after
the reconfiguration. We attach JML assertions to these lis-
tener methods. Thus, every time the service is dynamically
reconfigured, the listener methods are invoked and conse-
quently, JML assertions associated with the listener method
are evaluated and checked for violations. Our approach thus
validates service behavior during dynamic reconfigurations

1The callback methods, bindHeater and unbindHeater, use
the heater service object appearing or disappearing as a pa-
rameter in the method definition. iPOJO infers the service
object type for the requirement using this parameter.

while the service is running.
Our approach for monitoring services is targeted at help-

ing the creators of integrated services like the temperature
control or theater integrated services with testing and mon-
itoring their behavior. Our approach manually inserts JML
assertions and tags listener methods in the service imple-
mentation. We believe it is reasonable to assume that the
creators and testers of the service have access to its imple-
mentation when testing the service. Note that our approach
views other devices and services used by the service of inter-
est as a black box. We do not intrude into the implementa-
tion of these services. The completeness and correctness of
the JML assertions would have to be manually ensured by
the testers of the service.

3.2 Test oracles for Temperature Control Ser-
vice

In this section, we illustrate our approach for test oracles
using the temperature control service introduced earlier in
Section 2.2. The test oracles monitor the dynamic nature of
the service in the H-Omega architecture. The dynamic as-
pect in the service is introduced by the appearance or disap-
pearance of heaters, or due to temperature change resulting
in heaters being dynamically switched on/off.

We begin by briefly describing the methods implement-
ing the functionality of the temperature control component.
The execute() method in the component is responsible for
the core functionality of the service. When the tempera-
ture control service is activated, the execute() method in
the service component is called. The method computes
and monitors the temperature difference every 2 seconds2.
Based on the temperature difference and the availability of
heaters, the execute() method switches on/off the heaters,
sets the target temperature, and displays the number of ac-
tive heaters on the display device (LCD). The bindHeater()
and unbindHeater() methods serve as the listener methods in
the service component that are notified of dynamic changes
in the heaters. The listener methods are responsible for mak-
ing the necessary updates to the LCD display when dynamic
reconfigurations in heaters occur.

We now proceed to describe the test oracles for this ser-
vice. For ease in understanding, we split the JML specifi-
cations for the service into two: (1) JML specifications that
monitor service behavior during normal (no dynamic recon-
figuration) service operation, (2) JML specifications that
monitor service behavior during dynamic reconfigurations.
The JML specifications in (1) are associated with the exe-
cute() method. The JML specifications in (2) for monitoring
dynamic behavior are associated with the listener methods,
bindHeater() and unbindHeater(). To better understand the
JML specifications for the service, we give a brief description
of the variables used in the specifications.

• num running reflects the number of heaters that ought
to be active and running based on the temperature
difference and number of available heaters.

• isrunning is a boolean variable that reflects whether
the temperature control service is running.

• m heaters is an array of available heaters in the room.

2We found that monitoring every 2 seconds was adequate to
detect change in room temperature. Other values that also
ensure frequent monitoring can be chosen. Choice of this
value is only a service implementation concern, it does not
affect the specification of test oracles.

48

m heaters.length gives the number of available heaters.

• m lcd represents the LCD device available in the room.

• tempdiff represents the temperature difference be-
tween the desired and current room temperature.

iPOJO takes care of injecting the fields, m heaters and
m lcd, at run-time with available heaters and LCD, respec-
tively. Recall that our approach for handling dynamic re-
configurations in services uses the combined service injec-
tion mechanism mentioned in Section 3.1. As a result,
when heaters used in the service get dynamically reconfig-
ured, iPOJO automatically updates the m heaters field with
the change while also notifying the change to the listener
methods. All three methods in the service component, ex-
ecute(), bindHeater(), and unbindHeater() update the vari-
ables num running, the m lcd display, and tempdiff. The
isrunning variable is updated by the execute() method.
The first set of JML specifications, invariants and post
conditions, to check service behavior during normal oper-
ation, are shown in Table 2. The post conditions (using
the ensures clause) in Table 2 are specified on the exe-
cute() method and should hold after the execute() method
call. The invariants (using the invariant clause), on the
other hand, are checked before and after every method
execution in the service component. The post conditions
N1, N2, N3, N4, N5 ensure that the number of heaters ac-
tive in the room correspond to the number of available
heaters and the temperature difference conditions described
earlier in Section 2.2. The post conditions for the heater
(H1, H2, H3) ensure that only num running heaters as
per the economic usage conditions are on. They also en-
sure that all of those heaters are set at the desired target
temperature. The invariants (L1, L2) for the LCD ensure
that when the temperature control service is running, the
LCD is on and displays the number of active heaters. The
invariants L1, L2 should hold at the beginning and end of
the execute(), bindHeater(), unbindHeater() method execu-
tions. Note that since L1, L2 are specified as invariants, they
aid in monitoring service behavior during dynamic reconfig-
urations in addition to normal service operation. It is also
worth noting that properties involving the heaters are speci-
fied as post conditions, rather than invariants, since dynamic
changes in heater availability would cause such invariants to
be violated before calls to bindHeater() and unbindHeater()
that take care of the necessary service updates during dy-
namic reconfigurations.

The second set of JML specifications is to monitor the
dynamic nature of the service. In the service component,
the listener methods bindHeater() or unbindHeater() respec-
tively get called when heaters satisfying the temperature
control service requirements appear or disappear. To moni-
tor dynamic reconfigurations, our approach associates JML
specifications to these listener methods. We present the
bind/unbind methods along with their JML specifications in
Table 3. When a heater appears, the bindHeater() method
in Table 3 is called by the service. Within the method, if
the conditions for economic usage are not violated, then this
newly available heater is switched on and set to the target
temperature. The LCD display is updated to reflect the
change in the number of running heaters. The JML post
conditions associated with the bindHeater() method check
whether the heater is turned on according to the condi-
tions for economic usage. Note that post conditions from
the execute() method N1, N2, N3, N4, N5, H1, H2, H3 are

repeated here since they represent the economic usage con-
ditions for the heaters. The JML invariants, L1 and L2, for
the LCD, mentioned earlier in Table 2, also get evaluated to
ensure the LCD display is updated correctly.

When a heater disappears, the unbindHeater() method
in Table 3 is called by the service. To compensate for the
unbound heater, the method switches on another heater,
if available, in compliance with the economic usage condi-
tions. The number of active heaters in the room and the
LCD display are updated. The JML post conditions check
whether the heater being unbound is switched off and if the
economic usage conditions are obeyed. The JML invariants,
L1 and L2, check whether the LCD display is updated with
the correct number of active heaters.

4. TEST GENERATION AND EVALUA-
TION

We evaluated our proposed approach for test oracles in the
HAS by testing several dynamic reconfigurations in services.
To enable us to evaluate and test our approach thoroughly,
we developed a testing framework that generates tests with
dynamic service reconfigurations for the HAS from a test
pattern. We tailored our existing combinatorial testing tool,
TOBIAS [18], to help achieve this. We monitored the JML
specifications as the test cases were run to check for viola-
tions in service behavior. Additionally, we created several
mutated services by seeding faults into the service so that
service behavior is altered during dynamic changes. Each
mutated service has a single seeded fault. We ran the test
suite generated by TOBIAS against the set of mutated ser-
vices, and checked whether the test oracles in the service
could reveal the mutations. We say that the test oracles
revealed the service mutation for the given test suite if at
least one of the test cases in the test suite violated at least
one of the JML specifications in the mutated service.

The tests generated by TOBIAS are sequences of method
calls with different combinations of input parameter values
for the methods. The input to TOBIAS is a test pattern
(also called test schema) that defines the set of test cases to
be generated. A test pattern is a bounded regular expres-
sion involving the Java methods in the service. TOBIAS
unfolds the test pattern into a set of sequences, and then
computes all combinations of the input parameters for all
the methods in the pattern. The resulting test suite is con-
verted into a JUnit ([14, 4]) file for testing services on the
OSGi platform. Note that TOBIAS was previously used as
a combinatorial test generation tool for traditional JAVA
applications rather than service-oriented applications such
as the HAS. We adapted TOBIAS to generate test suites
that are executable on the OSGi service-oriented platform.
Additionally, we created test patterns that exercised differ-
ent dynamic reconfigurations and behavior changes in the
service by placing calls to methods that made required ser-
vices appear/disappear or by changing the configuration of
the environment during service run-time.

4.1 Temperature Control Service: Test Ora-
cle Evaluation

Due to space limitations, we only briefly illustrate test
generation and oracle evaluation using the temperature con-
trol service in this Section. The test pattern we used to
automatically generate test cases using TOBIAS for the tem-
perature control service is described in Table 4. In the test

49

// Properties for number of active heaters in the room
// (labeled N1, N2, N3, N4, N5)
N1: //@ ensures (isrunning ==> (num_running <= m_heaters.length));
N2: //@ ensures ((isrunning && (m_heaters.length > 0) && (tempdiff < 10))

==> (num_running == 1));
N3: //@ ensures ((isrunning && (m_heaters.length >= 3) && (tempdiff >= 10) && (tempdiff < 20))

==> (num_running == 3));
N4: //@ ensures ((isrunning && (m_heaters.length < 3) && (tempdiff >= 10) && (tempdiff < 20))

==> (num_running == m_heaters.length));
N5: //@ ensures ((isrunning && (tempdiff >= 20)) ==> (num_running == m_heaters.length));

// Heater Properties (labeled H1, H2, H3)
H1: //@ ensures isrunning ==> (\forall int i; 0<=i && i<num_running; m_heaters[i].isOn());
H2: //@ ensures isrunning ==> (\forall int i; num_running<=i && i<m_heaters.length;

!(m_heaters[i].isOn()));
H3: //@ ensures isrunning ==> (\forall int i; 0<=i && i<num_running;

m_heaters[i].getTargetedTemperature() == targetTemp);

// LCD properties (labeled L1, L2)
L1: //@ invariant (isrunning ==> m_lcd.isOn());
L2: //@ invariant (isrunning ==> m_lcd.getDisplay().equals("Number of heaters active is " +

Integer.toString(num_running)));

Table 2: JML assertions to monitor temperature control service behavior

// BIND method and specifications
/*@ ensures ((isrunning && (((tempdiff < 10) && (\old(num_running) < 1))

||((tempdiff >= 10) && (tempdiff < 20) && (\old(num_running) < 3))
||(tempdiff > 20))) <==> (h.isOn() && (num_running == \old(num_running) + 1)));

@*/
//@ Repeat post conditions N1, N2, N3, N4, N5 given earlier
//@ Repeat post conditions H1, H2, H3 given earlier

private synchronized void bindHeater(Heater h) {
if (isrunning) {

tempdiff = tempDiff();
if (((tempdiff < 10) && (num_running < 1))

||((tempdiff >= 10) && (tempdiff < 20) && (num_running < 3)) || (tempdiff > 20)){
System.out.println("Binding Heater: " + h.getFriendlyName());
h.turnOn();
h.setTargetedTemperature(targetTemp);
num_running++ ;
m_lcd.display("Number of heaters active is " + Integer.toString(num_running));

}
}

// if isrunning is false it means the execute method is not running,
// so no updates necessary

}

// UNBIND method and specifications
//@ ensures (isrunning ==> (h.isOn() == false));
//@ Repeat post conditions N1, N2, N3, N4, N5 given earlier
//@ Repeat post conditions H1, H2, H3 given earlier

private void unbindHeater(Heater h){
if (isrunning && h.isOn()) {

System.out.println("Unbinding Heater: " + h.getFriendlyName());
h.turnOff();
num_running--;
// Turn on another heater, if available, according to
// temp diff and economic usage conditions
if ((num_running < m_heaters.length) && !m_heaters[num_running].isOn() &&

(((tempdiff < 10) && (num_running < 1))
||((tempdiff >= 10) && (tempdiff < 20) && (num_running < 3)) || (tempdiff > 20))){

m_heaters[num_running].turnOn();
m_heaters[num_running].setTargetedTemperature(targetTemp);
num_running++ ;

}
m_lcd.display("Number of heaters active is " + Integer.toString(num_running));

}
}

Table 3: Listener methods and JML assertions to monitor dynamic reconfigurations in temperature control
service

50

Initial Configuration

Introduce 3 to 5 heaters
Set environment temperature to 5, 20, or 80
Set desired room target temperature to 20, 40 or 100
Activate Temperature Control Service
Wait for a fixed time

Dynamic Changes

Add/Remove heater
Change environment temperature
Wait for a fixed time
Deactivate Temperature Control Service

Table 4: Informal description of the TOBIAS test
pattern for Temperature Control service

pattern in Table 4, the wait times were configured to allow
the service to run for a sufficiently long time so that changes
in service behavior could be observed. The test pattern il-
lustrated was unfolded into 135 test cases by TOBIAS with
different combinations of input parameters. Note that it is
possible to create many other test patterns, different from
the one in Table 4, for the temperature control service; with
different sequences of method calls, different input parame-
ters for heater configurations and temperature settings, dif-
ferent numbers and combinations of dynamic changes. We
chose the test pattern in Table 4 to simply illustrate our test
generation and evaluation approach. We do not place any
claims on the thoroughness and effectiveness of the gener-
ated test suite.

We evaluated the effectiveness of our oracles by seeding
faults into the service and checking if the oracles were capa-
ble of revealing the faults. We created 25 mutated services,
by manually seeding faults to alter behavior of the service
during dynamic reconfigurations. Each mutated service had
a single seeded fault. We ran the test suite generated for
the test pattern in Table 4 over each of the 25 mutated ser-
vices and checked if any of the JML specifications in the
mutated service were violated. We found that for 23 of the
25 mutated services, JML specifications were violated re-
vealing the mutations in the service. Thus, for the given
test suite of 135 test cases, our approach for test oracles
was effective in revealing 23 of the 25 seeded faults. On
closer examination of the two undetected faulty scenarios,
we found that the test suite did not exercise the scenarios
involving the two seeded faults. To overcome this weak-
ness in the test suite, we manually created test cases that
exercised the two faulty scenarios. The newly created test
cases violated the JML specifications for the bindHeater()
listener method. We could thus reveal all 25 mutations with
our test oracles and the test suite augmented with the newly
created test cases. The evaluation clearly showed that the
JML specifications associated with the bind/unbind listener
methods were effective in revealing erroneous behaviors dur-
ing reconfigurations.In our future work, we plan to explore
test generation for SOC applications like the HAS in more
depth.

4.2 Threats to Validity
We face two threats to the validity of our evaluation.

The first one is with regard to the properties that can be
expressed with JML. In our example, the reconfiguration
properties specified with JML were either static properties
expressed as invariants, or properties only valid in the initial
or final states expressed as pre or postconditions. We also

specified dynamic properties involving current and previous
states in the example (using the \old clause). Nevertheless,
we did not explore properties where the current behavior
is dependent on behavior that occurred past the previous
state, i.e. the system has some memory of the behavior
history and reacts differently to an event based on the his-
tory. For example in the temperature control service, when
a heater appears, the service may be required to react differ-
ently based on whether that heater was already seen before
or not. The JML specification language does not support
operators to express such temporal properties. This issue,
however, can be overcome by using the approach proposed
by Bellegarde et al. [5] that translates such temporal proper-
ties into an equivalent set of JML annotations. The second
external threat is that the example service, test suite, and
number of mutations used in our evaluation are relatively
small when compared to an evaluation over an industrial
system. Nevertheless, this is only a preliminary evaluation
that helped show that our approach for test oracles holds
promise. We plan to pursue a more extensive evaluation on
real world examples in the future.

5. RELATED WORK
The run-time monitoring challenges encountered in sys-

tems composed of web services are closely related to the
monitoring challenges in the HAS since both applications
encounter dynamic reconfigurations in services. Run-time
monitoring of properties in web services has been explored
in the past.

Spanoudakis et al. [21] proposed a framework for run-time
monitoring of requirements, expressed in event calculus, for
web-service compositions. Baresi et al. [3] also proposed an
approach for run-time monitoring web service compositions.
They monitor whether the external service selected by the
composition process conforms to the behavior expected from
it. Ghezzi et al. [12] proposed an approach, Dynamo, to
specify constraints and monitor collaborations with external
services. Dynamo monitors whether the external services
that it collaborates with deliver what is expected of them.

The related work in the web services domain primarily fo-
cuses on monitoring web service compositions. Web service
compositions are managed by a composition process speci-
fied in languages like BPEL [13] or WSCDL [15] (depending
on the collaboration model chosen). A composition process,
as defined by Mahbub et al. [19], is one that coordinates
external web services that get deployed in a service-oriented
system. The composition process provides the required sys-
tem functionality by calling operations in the external web
services, receiving and processing the results that these ser-
vices return, and accepting and/or responding to requests
from them. All the proposed monitoring approaches in the
web services domain rely heavily on the composition pro-
cess, and monitor whether the external web service selected
by the composition process adheres to the behavior expected
from it. Our proposed approach for monitoring the HAS
differs from these existing approaches in two fundamental
ways. One, our approach aims at monitoring the behav-
ior of the integrated service that uses other external ser-
vices. Unlike existing approaches, our monitoring approach
is not concerned with the selection mechanism and behavior
of external services. For instance in the temperature control
service, we monitored behavior of the service in the pres-
ence of changes to the external heater services. We do not

51

monitor whether the heater and LCD services that it uses
are selected according to requirements and function as ex-
pected. Two, the H-Omega gateway that we use to deploy
and provide services, transparently manages interaction be-
tween services. There is no explicit composition process. As
a result, our approach for run-time monitoring is indepen-
dent of a composition process, and instead employs listener
methods interacting with the service architecture to help
verify dynamic service behavior.

6. CONCLUSION
In this paper, we proposed an approach to address one

of the challenges in testing home automation systems—
specifying test oracles that monitor service behavior in the
presence of dynamic service reconfigurations. We formally
specify test oracles for the HAS using the JML specification
language. We use JML specifications as run-time monitors
of the service behavior. The main challenge in run-time
monitoring is in identifying “visible” states for evaluating
the specifications during program execution. We provide
the visible states for specification evaluation using listener
methods that are associated to dynamic events in the service
architecture. We combine this capability with JML run-time
assertion evaluation to monitor service behavior during dy-
namic reconfigurations. We illustrated our approach with
an example service in the HAS.

We conducted an initial evaluation of our proposed ap-
proach for test oracles by testing several dynamic service
reconfigurations in the example service. We adapted our
existing combinatorial testing tool, TOBIAS, over JAVA
applications to generate tests with dynamic service recon-
figurations for the HAS. We ran the test suite from TO-
BIAS against 25 mutated versions of the example service to
evaluate the fault finding capability of the test oracles. We
found that the test oracles could reveal all 25 mutations.
From our preliminary evaluation, we believe our proposed
approach provides a useful and effective means for defining
test oracles that monitor service behavior in the presence of
dynamic reconfigurations for the HAS. We plan to conduct
a more extensive evaluation of our test oracle approach on
real world example systems in our future work.

In this paper, we have only explored the applicability of
our approach to the HAS implemented using the H-Omega
service architecture. Nevertheless, it is straightforward to
see that our approach can be used in a like manner for
other service-oriented applications implemented using the H-
Omega service architecture. To apply our approach to other
service architectures, we would need to utilize the appropri-
ate mechanisms in the underlying architecture for notifica-
tion of dynamic changes. We plan to extend our approach
to include other architectures in our future work.

7. REFERENCES
[1] Apache felix iPOJO website.

http://felix.apache.org/site/apache-felix-ipojo.html.

[2] OSGi Alliance. OSGi Service Platform: Release 3,
March 2003. IOS Press, 2003.

[3] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors
for composed services. In ICSOCŠ04, pages 193–202,
2004.

[4] K. Beck and E. Gamma. Test infected: Programmers
love writing tests. Java Report 3(7), July 1998.

[5] F. Bellegarde, J. Groslambert, M. Huisman,
J. Julliand, and O. Kouchnarenko. Verification of

liveness properties with JML. Technical report,
INRIA.

[6] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier,
and C. Marin. A dynamic-soa home control gateway.
In IEEE International Conference on Services
Computing (SCC 2006), 2006.

[7] Y. Cheon and G. T. Leavens. A Runtime Assertion
Checker for the Java Modeling Language (JML). In
Hamid R. Arabnia and Youngsong Mun, editors,
International Conference on Software Engineering
Research and Practice (SERP ’02), pages 322–328,
Las Vegas, Nevada, June 2002. CSREA Press.

[8] Y. Cheon and G.T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
16th European Conference on Object-Oriented
Programming (ECOOP’02), number 2374 in LNCS,
pages 231–255. Springer, June 2002.

[9] C. Escoffier, J. Bourcier, P. Lalanda, and Jianqi Yu.
Towards a home application server. In 5th IEEE
Consumer Communications and Networking
Conference, pages 321–325, January 2008.

[10] C. Escoffier, R.S. Hall, and P. Lalanda. iPOJO: an
extensible service-oriented component framework. In
IEEE International Conference on Services
Computing (SCC 2007), pages 474–481, July 2007.

[11] S. Fickas and M.S. Feather. Requirements monitoring
in dynamic environments. In Proc. of the Second IEEE
International Symposium on Requirements
Engineering, pages 140–147, March 1995.

[12] C. Ghezzi and S. Guinea. Run-time monitoring in
service-oriented architectures. Test and Analysis of
Web Services, 2007.

[13] IBM, BEA Systems, Microsoft, SAP AG, and Siebel
Systems. Business Process Execution Language for
Web Services 1.1, 2005.

[14] JUnit. http://www.junit.org.

[15] N. Kavantzas, D. Burdett, and G. Ritzinger. Web
Services Choreography Description Language version
1.0, 2004.

[16] M. Kim, S. Kannan, I.Lee, O. Sokolosky, and
M. Viswanathan. JAVA-MAC: a runtime assurance
tool for java programs. Electronic Notes in Theoretical
Computer Science, 55, 2001.

[17] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. R. Cok, P. Muller, J. R. Kiniry, and P. Chalin. JML
Reference Manual. Iowa State University, Jan 2006.

[18] Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron.
Filtering TOBIAS combinatorial test suites. In 7th
Int. Conf. FASE, Held as Part of ETAPS, volume
2984 of LNCS, pages 281–294, Barcelona, Spain, 2004.

[19] K. Mahbub and G. Spanoudakis. Monitoring
WS-Agreements: An Event Calculus-Based Approach.
Test and Analysis of Web Services, 2007.

[20] D.K. Peters and D.L. Parnas. Requirements-based
monitors for real-time systems. IEEE Trans. Softw.
Eng., 28(2):146–158, 2002.

[21] G. Spanoudakis and K. Mahbub. Requirements
monitoring for service-based systems:towards a
framework based on event calculus. In Proceedings of
the 19th International Conference on Automated
Software Engineering, 2004.

52

PicOS Tuples: Easing Event Based Programming in Tiny
Pervasive Systems

Benny Shimony, Ioanis Nikolaidis, Pawel Gburzynski, Eleni Stroulia
Department of Computing Science

University of Alberta, Edmonton, Alberta
Canada T6G 2E8

{shimony, yannis, pawel, stroulia}@cs.ualberta.ca

ABSTRACT
The task of programming sensor-based systems comes with
severe constraints on the resources, typically memory, CPU
power, and energy. The challenge is usually addressed with
techniques that result in poor code understandability and
maintainability. In this paper, we report on a data centric
language extension based on a tuple-space abstraction, akin
to Linda [2], applied to PicOS [5], a programming environ-
ment for wireless sensor networks (WSN’s). The extension
improves state and context management in a multi-tasking
environment suffering from severe memory limitations. The
solution integrates tuple operations into the model – for net-
working, event handling, and thread contexts. We demon-
strate how tuple constructs improve coding and reduce code
overhead. We also show how thread’s context-tuples can be
used as interface arguments for extension by modular aspect
constructs.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
data abstraction,domain-specific architectures, languages;
D.1.3 [Concurrent Programming]: Distributed program-
ming

General Terms
Design

1. INTRODUCTION
To be practically viable, a typical wireless sensor network
must be characterized by a low cost of its components com-
bined with minimalistic energy requirements [7]. These con-
straints translate into some physical properties of hardware
painfully perceptible by the programmer: small amount of
memory (RAM), code size limitations (ROM), limited CPU
power, and so on, which drastically affect the programming
characteristics of building WSN applications.

From the functional point of view, the environment of

a WSN node is reactive (rather than computationally-
intensive), which is good news. However, it can still be quite
complex, e.g., requiring the node to respond in a timely fash-
ion to complicated configurations of events, with multiple
events (possibly of different types) occurring at (almost) the
same time. This calls for multitasking capabilities of the
node’s program.

In this setting, the event-based programming paradigm has
been the preferred choice of the most popular program-
ming platforms for WSN nodes [7]. This paradigm has been
demonstrated to be efficient in terms of energy usage, mem-
ory footprint, and concurrent task management. However,
these advantages come at a serious detriment to system de-
sign qualities, such as code understandability, maintainabil-
ity, and extensibility [13]. In particular, the tight RAM bud-
get renders classical multi-threading methods impractical, as
they tend to squander memory for multiple and largely frag-
mented stacks. As a result, alternative coding structures are
used to handle multi-tasking. Typically, conceptual tasks
are broken into de facto independent event-handling proce-
dures that share a single (global) stack with no possibility
of preserving there a task-specific context. Hacks mitigat-
ing this problem are known under the collective name of
manual stack management (MSM [1]). Common techniques
rely on global variables or dynamic heap memory, which
are both inefficient in a RAM-tight environment. Moreover,
they are bad practice from the viewpoints of encapsulation,
modularity, and code readability, since they incur code over-
head to co-ordinate the shared data while also being counter-
intuitive and prone to errors [13].

To set the stage for our work, we review and compare two
programming styles: 1) a typical event-based system akin
to TinyOs [12] vs. 2) PicOS [5], a locally-developed, low-
overhead operating system for sensor nodes. In both envi-
ronments, limited memory imposes a non-persistent stack
space. TinyOS, the most popular environment for WSN
programming today, accommodates a single thread (termed
task), which executes at a low priority, while interrupt han-
dlers account for most of the dynamics. In PicOS, a lean
mechanism of cooperative threading is used to support a fi-
nite state machine (FSM) task management abstraction.

Our solution put forward in this paper adopts a data-centric
methodology relying on a tuple-space abstraction. That ab-
straction makes it possible to define named data structures
that can be easily handled and shared (a) across multiple

53

local tasks and (b) across a network neighborhood using
mirrored tuple spaces. Tasks can coordinate their activities
by accessing the (shared) tuples via associative memory op-
erations for retrieving, removing, and adding data. The ef-
fectiveness and elegance of this paradigm have been demon-
strated in Linda’s distributed programs [2], and it adapts
well to concurrent task programming, especially in a well-
coupled (local) setting. In this paper, we show how the basic
idea of Linda’s context matching operations fits naturally
the reactive environment of WSNs. Moreover, by imple-
menting a local tuple repository with additional support for
thread context tuples, we eliminate the need for global vari-
ables and (explicit) heap space, as detailed in sections 3, 4.
Finally, a flexible mechanism for matching and setting the
thread context and its event triggering conditions plays a
central role in extensions/modifications of programs. We
view this mechanism as an interaction point for modular
rule refinement along the line of aspect based constructs.
The approach is related to cooperative aspect-oriented pro-
gramming (Co-AOP [8]), as will be detailed in sections 5
and 6.

This work makes two important contributions. First, it
integrates tuple-space operations into the existing PicOS-
threads programming model – by adding language con-
structs and services to the event-based semantics of the sys-
tem. Second, it introduces thread context tuples as a stan-
dard interface to manage thread state context (mitigating
limitations on stack use), while providing an interface for
modular extensions.

2. BACKGROUND AND EXAMPLE
PicOS [5] provides a lean multi-tasking mechanism derived
from an FSM abstraction, around which elaborate rule-
driven routing protocols can be developed [4]. In this sec-
tion, we discuss the PicOS programming paradigm in com-
parison to TinyOS.

The two coding approaches are exemplified in Figures 1 and
2. The original code has been borrowed from [9]; its goal
is to collect temperature samples from neighboring nodes
and compare their average to a local temperature reading.
Conceptually, the program at the collecting node operates
in three phases: 1) sending a request, 2) waiting for replies
(temperature readings), and 3) producing the result after a
timeout.

2.1 The original code
As listed in Figure 1, the code includes a setup function
init remote compare (lines 4-8) and two event-handling
functions message hdl (lines 9-13) and timeout hdl (lines
14-18). In the first phase, the node broadcasts a request mes-
sage to its neighboring nodes prompting them for reports
of their temperature readings (line 6). A report received
in response to that request triggers an invocation of mes-
sage hdl. The function is responsible for aggregating the
received data (lines 9-13). When the timeout expires, the
handler (timeout hdl) compares the average of the remote
temperature readings collected in the meantime to the local
temperature (lines 16-18).

Note that variables num and sum, manipulated by mes-
sage hdl and timeout hdl, realize a variant of MSM. Since

the local stack is unrolled after every action, the local state
is not persistent, and the programmer must store the rele-
vant data explicitly: either globally and statically (as in the
above example), or dynamically (on the heap). Both solu-
tions are flawed. With the first one, the memory is statically
and permanently locked at one task. The latter approach is
ridden with various overheads and susceptible to fragmenta-
tion, which affects all heap-based allocation techniques and
is particularly painful in a non-preemptive (thread-less) en-
vironment with tight RAM. This is because such a system
must be prepared to deal with a (temporary) unavailabil-
ity of dynamic memory. That, in turn, assumes that the
requesting entity is able to block half-way through its ac-
tion (no memory) and resume later (on a memory avail-
able event) as if “nothing happened”, which gets us back
to the problem of automatic and safe context preservation
(for which a per-task stack appears as the most natural solu-
tion). The primary reason why TinyOS implements no heap
is that its activities cannot block half-way through and thus
cannot sensibly wait for memory events.

Another generic way to mitigate the complexity of detailed
context preservation, known as manual flow control (MFC),
is illustrated by the usage of variable sampling active.
That variable acts as a coordinating flag between the han-
dlers message hdl and timeout hdl (lines 3, 5, 10, 15).
Note that by setting the flag to false, timeout hdl disables
the other handler (line 10).

2.2 The PicOS version
PicOS defines a flavor of threads. A single thread can de-
scribe a number of different event-response actions selected
by its dynamic state. Following the model of coroutines, the
states tag the thread’s entry points (the entry statements in
Figure 2), which are the only points where the thread’s ex-
ecution may commence. Cooperative multi-threading takes
place as threads explicitly yield the CPU, usually at the end
of a state code section, using the release command. In order
to resume a thread’s flow of control, each yield is typically
preceded by one or more event wait operations (called wait
requests). A single wait request specifies an event (that the
thread wants to wait for) together with the state to be as-
sumed (entered) by the thread when the event occurs. For
example the state INIT in Figure 2 includes two wait re-
quests: one with when and the other with delay (lines 7-8)
operations. With the former, the thread declares that it
wants to be resumed in state COLLECT upon the occur-
rence of an event represented by the address of a message
object (buffer). Such events can be signaled by explicit trig-
ger operations (not shown here). The delay operation sets
up an alarm clock for the specified number of milliseconds
(1000). The event waking the process at state STOP will
be triggered when the alarm clock goes off. The action of
initiating a new data collection is captured in the invocation
of request remote temp (line 6). While at first sight that
statement might stand for something as simple as broad-
casting a single request message into the neighborhood, we
prefer to make the operation more elaborate. In a realistic
implementation, the request message will be broadcast sev-
eral times (at some intervals), and (most conveniently) by
a separate thread, in order to maximize the likelihood that
all neighbors have perceived the request.

54

1 int sum = 0;
2 int num = 0;
3 bool sampling active=FALSE;
4 void init remote compare() {
5 sampling active=TRUE;
6 request remote temp();
7 register timeout(1000);
8 }
9 void message hdl(MSG msg) {
10 if(sampling active==FALSE) return;
11 sum = sum + msg.value;
12 num++;
13 }
14 void timeout hdl() {
15 sampling active=FALSE;
16 int val = read temp();
17 int average = sum / num;
18 if(average > val) /* ... */
19 }

Figure 1: TinyOS related code [9]

1 int sum = 0;
2 int num = 0;
3 int msg ev;
4 thread (TempAverage)
5 entry (INIT)
6 request remote temp();
7 delay (1000, STOP);
8 when (&msg ev, COLLECT);
9 release;
10 entry (COLLECT)
11 sum = sum + msg.value;
12 num++;
13 when (&msg ev, COLLECT);
14 snooze (STOP);
15 release;
16 entry (STOP)
17 int val = read temp();
18 int average = sum / num;
19 if(average > val) /* ... */
20 end thread;

Figure 2: PicOS code

1 <tuple type> get <tuple name> (fieldx == value|‘*’ , . . .)
2 <tuple type> remove <tuple name> (fieldx == value|‘*’ , . . .)
3 List<tuple type > get group <tuple name> (fieldx == value|‘*’ , . . .)
4 List<tuple type > remove group <tuple name> (fieldx == value|‘*’ , . . .)
5 <tuple type> set <tuple name> [fieldx = value| ⊥ , . . .]
6 <tuple type> tuple send <tuple name> [fieldx = value| ⊥ , . . .]

7 define context{ tuple name, . . . }
8 when tuple(tuple name, next state, boolean (*filter func))

Figure 3: PicOS tuple operations

If multiple events are awaited by the thread, the earliest of
them will wake it up. Once that happens, all the pending
wait requests are erased, an so the thread has to specify
them from scratch at every wake-up. For example in Fig-
ure 2 when the thread resumes in state COLLECT (after
a message event trigger), it preforms aggregation of data in
lines 11-12, while in lines 13-14 it re-issues the wait requests1

before relinquishing the CPU. Finally, once a time-out event
occurs, state STOP is assumed, which concludes the proto-
col cycle. Notice, how the task stages in the PicOS code can
be explicitly organized into an FSM form, which obviates
the need for state management flags (like sampling active
in the traditional variant).

While flow control management in PicOS is more convenient
compared to the TinyOS model, a PicOS thread yielding the
CPU also relinquishes its stack, which forces the program-
mer to resort to MSM schemes. Hence, the global variables
num and sum have been carried over the previous solution
(to be used for essentially the same purpose). Moreover, as
the program evolves and its requirements (data and control
structures) grow, the overhead and complexity of accommo-
dating the new cases into the existing mess of global vari-
ables and flags become more and more difficult to manage.
As noted in [12], programming can become tricky when the

1Operation snooze sets up the alarm clock for the residual
time from the previous delay.

system needs to be extended, especially when global data
requires concurrency control and locking.

3. PICOS THREADS AND TUPLES
Figure 3 outlines the tuple interface that we have added to
PicOS. For brevity and clarity the functions are presented
in a pseudo-code at a high level. The operations are divided
into two sections: the top section includes access operations
to the tuple space, while the bottom part lists the local oper-
ations, which are thread-related. The underlying facilitator
of the tuple abstraction, is the use of a local repository. The
repository acts as the focal point of data sharing and commu-
nication in the multi-tasking environment – both locally and
for the immediate radio-range neighborhood. First it stores
new received tuples and manages tuple buffer allocations in
the repository. Then, it propagates updates as tuple events
to the local program, so the new data can be acted upon. In
the local setting, the multi-threaded abstraction of PicOS
engages the tuple space in the same fashion as Linda [2].
In the network scope, data can be shared through a send
operation which (unreliably) mirrors/copies the tuples to
neighboring nodes. A remotely received tuple is added to
the local repository as if a remote set operation was pre-
formed. Thus, the underlying tuple framework provides a
common interface to handle shared data in the distributed
setting.

55

Operations get and remove correspond to Linda’s rd and
in. They accept templates for matching tuples: each field
can either provide a specific (required) value or a wild-
card ‘*’. Operation remove is similar to get: they both
retrieve a matching tuple from the repository, with remove
additionally removing the tuple. If several tuples match the
arguments of get/remove, one of them is chosen nonde-
terministically. If no matching tuple is found, the function
returns null. Operations get group and remove group
retrieve sets of matching tuples.

Operation set corresponds to Linda’s out, which inserts a
tuple into the repository. Each field can either provide a
valid (assigned) value or be undefined ‘⊥’ (by default). With
send tuple, which is similar to set, the program inserts the
tuple into the local repository and in addition broadcasts the
tuple as a message over the RF channel, which may update
(some of) the tuple repositories at neighboring nodes. At
present, this operation is asymmetric: the issuing node does
not know who will receive the update (there is no guarantee
of delivery).

The define context construct is part of the thread header.
Its role is to define the categories of tuples relevant to the
particular thread, which are then deemed to belong to its
context. As we explain later, context tuples can be auto-
matically assigned by tuple events when waking up threads.

Operation when tuple is a variant of PicOS’s generic wait
request that allows the issuing thread to await a tuple event
triggered when a new tuple appears in the local repository.
The filter function (provided by the programmer) can de-
scribe elaborate qualifying conditions that must be met by
a tuple to trigger the event.

Some notable syntactic detail is that in operations set and
tuple send, we use square brackets [. . .] to encapsulate as-
sociative assignments of data to tuple fields. In the remain-
ing operations from the upper section, the arguments in
round parentheses (. . .) describe field patterns to be matched
to retrieved tuples. Individual tuple fields can be accessed
through a mathematical projection notation, e.g.,
field name(tuple instance).

4. THE EXAMPLE REVISITED
Figure 4 lists the temperature collection example repro-
grammed using PicOS tuples. Note that the comments in
lines 1 and 20 annotate for “option b”, which will be dis-
cussed later. Basically, Figure 4 covers two slightly different
versions of the code, which have been merged for brevity.
We start from the simpler version (option a).

Note that the global variables num and sum have been
replaced by a tuple, aggData, and the temperature readings
are now represented by another tuple, temperature (lines
1-2). One more tuple, reqTemp (line 3), describes requests
sent to neighboring nodes. Such a request includes a sessions
identifier (line 9) used to match readings to requests.

The thread includes a context definition (line 5) describing
the tuples to be handled by the thread. Such definitions can
be viewed as providing placeholders for tuples with some
specific layouts, each placeholder occurring in two instances

(offering two slots): current and new. The current variant
accommodates a local tuple (one residing in the node’s local
repository), while the new part is typically filled by received
(retrieved) tuples, possibly triggering tuple events. Similar
to the previous version, the action of initiating a new data
collection (line 10) may involve multiple invocations of tu-
ple send (from a separate thread).

By calling when tuple (in line 12 and subsequently in line
21) the thread declares that it wants to be resumed in state
COLLECT whenever a tuple qualified by filter func ap-
pears in the node’s view (this may be a tuple received as a
message from a neighboring node). The filter function for
option a (Figure 5) rejects tuples tagged with the wrong ses-
sion identifiers (i.e., belonging to a different collection). A
typical filter function compares (some of) the attributes of
the incoming (new) tuple to the corresponding attributes of
the current variant. The collected temperature readings are
aggregated in state COLLECT (lines 15-19).

Another point to notice is that the context’s current in-
stance persists across state invocations; in the present ver-
sion of the system, the programmer is responsible for the
integrity of current context setting as well as the specifi-
cation of predicates triggering the tuple condition (which
wakes up the thread in the respective state). As will be
shown in option b, such settings can be carried out from
within the filter func code.

Operational model: filtering. Tuple events are generally
scheduled using a FIFO model. Any tuple appearing at
the head of the FIFO queue that is not explicitly waited for
(does not match any filter function of a pending wait tuple
request) is removed from the queue and ignored (dropped).
Formally, such a tuple is not relevant to any of the current
contexts and thus not needed by the program. This process
becoms a natural (pre)filtering mechanism whose semantics
seem to well match a tight-memory implementation (as the
program doesn’t have to worry about storing outstanding
tuples). A more lax scheme is possible whereby tuples are
stored for a limited time, such that they can be accessed later
(when their contexts come to life). The timeout may be ex-
plicit; alternatively, a certain dedicated amount of memory
(buffer pool) can be set aside to accommodate the unclaimed
tuples. The pool can be recycled as needed to accommodate
new tuples, e.g., by discarding those that have remained
untouched for the longest time.

An extension: per-node average. At first sight, it may
appear that the migration to the tuple-space paradigm adds
unnecessary overhead to our otherwise simple application.
To see the benefits of this paradigm, consider an additional
requirement: we would like to keep track of the average tem-
perature at every reporting node, and derive a total average
of averages at the end of the collection process. Notably, this
kind of“enhancement”of the original solution (Figure 4) can
be achieved quite easily by switching to option b, which in-
volves simple changes in lines 1 and 20 and replacing the
filter function. With the modification in line 1, we extend
the original layout of aggData by an ownerId field, to be
able to associate the data stored in the tuple with a spe-
cific node (representing the per-node average). The change
in line 20 makes sure that the set command references the

56

1 define tuple aggData [int sum, int num] /* option b: [..., nid ownerId] */
2 define tuple temperature [nid owner, int sessId, int value]
3 define tuple reqTemp [int sessId]

4 thread (TempAverage)
5 define context{ aggData, temperature }
6 entry (INIT)
7 set current.aggData [sum = 0, num = 0];
8 set current.temperature [owner = nodeId, sessId =1, value = ⊥]
9 set current.reqTemp [sessId =1]
10 request remote temp(current.reqTemp);
11 delay (1000, STOP);
12 when tuple (temperature, COLLECT,filter func(¤t, &new))
13 release;
14 entry (COLLECT)
15 if (owner(new.temperature) != nodeId) {
16 int sum l = sum(current.aggData) + value(new.temperature);
17 int num l = num(current.aggData)++;
18 set current.aggData[sum = sum l, num = num l] /* option b: [..,ownerId = owner(new.temperature)] */
19 remove temperature;}
20 snooze (STOP);
21 when tuple (temperature, COLLECT, filter func(¤t, &new));
22 release;
23 entry (STOP)
24 current.temperature = get temperature(owner == nodeId, *) //context pattern
25 int average = sum(current.aggData) / num(current.aggData);
26 if(average > (value(temperature)) /* ... */
27 end thread;

Figure 4: PicOS Tuples - Temperature Collection

boolean filter_temp (byte *current, byte *new)
{
if (sessId(current.temperature)!=

sessId(new.temperature))
return TRUE; // drop tuple event

else
return FALSE; // pass event

}

Figure 5: a. Simple filter function

boolean filter_temp (byte *current, byte *new)
{
if (sessId(current.temperature)!=

sessId(new.temperature)) {
return TRUE; // drop tuple event

}
current.aggData = get aggData

(ownerId==owner(new.temperature), *, *)
if (current.aggData == NULL) {

current.aggData = set aggData
[0, 0, ownerId = owner(new.temperature)]

}
return FALSE;
}

Figure 6: b. Extended filter function

new field in aggData. Finally, we have to take care of agg-
Data’s context. Note that previously the node dealt with a
single tuple of this layout (storing the global variables sum
and num), while now a separate tuple will be needed for ev-
ery neighbor. As we do not know the identities of all those
neighbors in advance, we shall use a new filter function (see
Figure 6). In addition to the the previous test, the new func-
tion includes a get command to query the (local) repository
for the context of the reporting node. If it doesn’t exist, then
we have received the first report from this particular neigh-
bor, and we have to set up a new entry. In any case, by the
time the event is triggered (and the thread wakes up in state
COLLECT) the context is set properly to the tuple of the
reporting node. Despite its utmost simplicity, the example
well illustrates the power of the context-setting operation:
the modification at state COLLECT is extremely simple and
intuitively clear, even though the action carried out at that
state is now considerably different from the previous version.
One more easy modification (skipped for brevity) needed to

make the code complete is in state STOP, where the final
calculation must now be based on the per-node averages.

Summary of benefits. The new approach has eliminated
the following (displeasing) elements from the original ver-
sion: a) the need to explicitly replicate global variables for
each context of reporting nodes; b) conditional control in-
structions (or indexing) in each state and retrieval of the
relevant context or, alternatively, spawning multiple threads
for each context (which would be memory-expensive); c) the
need to decode every message in a special thread and coor-
dinate among the multiple threads (via explicit triggers)

As noted in [12], the major difficulty in program extension
is preventing race conditions when accessing shared state.
In our solution, shared state is managed through the use
of a centralized local repository. Section 7 details the im-
plementation, which in essence specializes an existing buffer
management mechanism of the PicOS kernel. Moreover, al-

57

most no overhead code is needed to translate the new code
constructs to basic PicOS code.

5. THREAD CONTEXT ASPECTS
As demonstrated, programs expressed in the tuple-space
paradigm can be modified by changing the conditions trig-
gering tuple events with minor, if any, modifications to the
“proper” code. Consequently, a good way of integrating use-
ful/popular features into the system must assume that those
conditions amount to a powerful programming tool. In par-
ticular, it makes sense to view them as modular rules and
provide for some natural mechanism of applying them. For
example, the filtering conditions in some routing protocols
for WSN [4] have the form of a chain of rules that are applied
sequentially to every received packet, stopping as soon as a
reason is found not to rebroadcast it. The general principle
of such schemes is to utilize cached data as the knowledge
base for the rules. In the absence of data, the rules will fail
to find reasons for not forwarding, so the protocol will op-
erate redundantly (erring on the side of over-eager, but oth-
erwise harmless, collaboration). As more data (knowledge)
is collected, the rules will succeed more often, thus trim-
ming down the (redundant) retransmissions and improving
the quality of routing.

Our data-centric approach boils down to a rather simple fil-
tering process whereby context tuples are passed as param-
eters to filter functions appended to the basic wait tuple
trigger conditions. We suggest that by refining these con-
ditions and organizing them into configurable chains we
can relatively easily build a wide range of different, very
dynamic, possibly quite complex, distributed algorithms
runnable on possibly large sets of resource-constrained com-
municating nodes. Inspired by aspects in the synchronous
framework [6], we have found that those aspects that are
categorized as regulative advices [10], i.e., ones that only re-
strict the reach space of the base system, can be effectively
formed within our system.

We define an aspect advice as a set of additional conditions
and functions at PicOS state boundaries, which, in our sys-
tem, can be incorporated as part of the triggering conditions
for when tuple operation. Their parameters are exactly
the same as the filter func used within the when tuple
definition (i.e., current, new), which gives them the same
kind of access to the context data. Needless to say, it is easy
to organize them into a chain of rules for natural sequen-
tial evaluation. The additional functionality is configurable
through the use of a syntactic tool applied in the compila-
tion phase and using a certain template format for describing
aspects in the FSM framework (adapted from [6]).

Temperature collection with regulative aspects. Let us
revisit once again the temperature collection example and
consider a modification whereby the temperature reports are
solicited from a specific subset of the neighboring nodes. The
selected subset is determined by a neighbor-group service,
which sets a node group tuple in the repository. The layout
of that tuple is:

tuple nbr group = (nid nbr1, nid nbr2, . . ., nid nbrn)

We can now describe the requested additional behavior with
the aspect template definition Temp Group and its corre-
sponding filter advice function listed in Figure 7 (left and
right side correspondingly). The aspect defines point-cuts
on transition points expressed by a wait tuple system call
(lines 4-5), which covers two join-points from the base pro-
gram (see lines 12 and 21 in Figure 4). Note the wild card
option applied to the state field. If required, we can easily
add an option to restrict join-points to specific thread in-
stances and states (or their subsets). The transformation
advice (TRNS ADVISE in lines 6-7) adds a conjunct fil-
ter function, filter advice, to the event filter function from
the original program. With the new function, if the tem-
perature reporting source is not in the nbr group tuple, the
event is dropped. Note that the transition advice is actually
a “do-nothing” advice, which effectively restricts the reach
space of the base program. Thus, we attain the required
functionality with no need to change the original code. This
functionality can be compared to AspectJ’s [11] around op-
eration where there is no use of the proceed call.

Comments and summary. The regulative aspect type ap-
pears to be useful and natural in those cases when the origi-
nal functionality has to be trimmed down, possibly in a com-
plex manner. While this may be natural in many problems,
especially when the base solution has been devised as reason-
ably general, the regulative type is rather counter-intuitive
to most aspect advices (although possible with AspectJ’s
around operation), since it restricts rather than adds func-
tionality. A point to notice is that the default filter func
used in the definition of when tuple has a similar role to
filter advice functions, except for its additional side-effect
of setting the current context (using current parameter by
a reference). Thus, should the programmer be interested in
exercising complete control over state-transitions through
advice constructs, she can define a trivial filter func in the
base program and override context settings in the consecu-
tive stages of advice. We also plan to include in the filtering
advice an implication action (through a → operation) added
to the aspect template, which will kick in when the advice
fails (i.e., the filter passes the data). This implication ac-
tion can be used to add an independent advice on transitions
complementing the restrictive form.

Finally, in order to ensure that aspects do not cause faults in
the base program, we note that the advice code needs to ad-
here to the basic requirements of PicOS threads, i.e., never
block within a state and avoid hogging the CPU with ex-
tensive computations. This way the CPU never gets locked
in a single task and the system appears responsive to all
threads. Another responsibility of the aspect programmer
is to make sure that the advice code “safely” updates the
program’s variables, i.e., in a way that does not affect the
correctness of the base program.

6. RELATED WORK
The concepts of Linda [2] have been extensively investigated
and implemented in various platforms. KLAIM [18] is a
calculi based coordination language, that extends the tuple-
space abstraction with localities primitives. The tuple-space
is split to into multiple localities making it possible to handle
data and computation in the distributed and mobile environ-
ments. A related approach can be found in LIME [16], which

58

1 Thread Aspect Temp Group
2 VAR: // base program
3 context { temperature, aggData}
4 POINTCUT: // transition type
5 when_tuple (temperature, *, filter_*)
6 TRNS ADVISE : // add filter function
7 ...and filter_advice()

boolean filter_advice (byte *current, byte *new)
{
nbrs =get nbr_group ;
if (owner(new.temperature) /∈ nbrs)

return TRUE; // drop event
else return FALSE; // do nothing

}

Figure 7: Aspect template of temperature collection example.

also adjusts the global tuple space to fragmented transient
local tuples. The latter sematics are modeled by state-based
logic based on Mobile Unity [17]. Both platforms have been
subject to several domain-specific extensions and implemen-
tations.

Our approach to network tuple sharing resembles the Hood
neighborhood abstraction [15]. In that view, local data can
be mirrored to a set of neighborhood nodes through a primi-
tive RF broadcast operation. The mechanism of group shar-
ing corresponds directly to the asymmetric (unreliable) na-
ture of the broadcast medium, i.e., a node is not necessarily
aware of the neighbors that mirror its data (whose configu-
ration can dynamically change). In addition, the Hood ab-
straction provides a data filtering mechanism which is used
both for data sharing and neighborhood discovery. This ap-
proach can be paralleled to our rule based system of event-
filtering. However, the multi-tasking environment of Hood,
implemented on top of TinyOS as a set of language com-
ponents, drastically differs from our scheme. Application
design requires components to be glued (or “wired” in the
language’s terminology) through event interfaces reminis-
cent of TinyOS’s event based programming, and its MFC
challenges.

The TeenyLIME framework [3] preserves the semantics of
tuple-space operations in the (one-hop) neighborhood. On
the one hand, this relieves the programmer from the burden
of managing the configuration changes (and manually track-
ing the neighborhoods, e.g., in the face of node mobility).
On the other hand, the framework comes with a hardwired
(and rather complex) feature which may be superfluous in
many applications. TeenyLIME is implemented on top of
TinyOS as middleware that provides an API for Linda op-
erations. The middleware is a monolithic component with
a fixed set of underlying algorithms. Our approach is more
low-level at its current scope, while sharing many of the
motivations of the previous. We believe that our present
implementation can be extended to support additional fea-
tures, as configuration of reliability of tuple spaces within
the neighborhood, if such features are indeed called for by
the application. In fact, our experience dictates otherwise:
a WSN application works at its best, if it never assumes that
a sizable group of nodes can operate together as a reliable
cohort for any nontrivial amount of time. In this context, a
built-in reliable non-local tuple space does not appeal to us
as a desirable feature.

Another approach somewhat related to ours transpires in the
FACTS language [14], which is both reactive and rule-based.
The high-level rules are compiled to run over a middleware

layer. While our approach shares with FACTS the basic
idea of tuples, our execution model is strongly integrated
with PicOS threads and thus de facto becomes a component
of the kernel software stack. Even though the high-level
flavor of FACTS rules may have some aesthetic appeal, it
also renders those rules less flexible and introduces an extra
layer of complexity. Based on [14], one can suspect that
the middleware rule evaluation engine of FACTS consumes
a significant share of RAM. The framework only supports
a primitive send operation for data sharing. No details
regarding the underlying MAC scheme or the reliability of
abstractions are provided.

Our modular extensions by regulative aspects overlaps with
Co-AOP concepts [8]. This is a general framework for spec-
ifying explicit join points (EJP) with abstract interfaces to
define interaction scopes of aspect advice with the base code.
The authors claim that their approach improves the extensi-
bility of code. Our system provides a fixed scheme of aspect
interaction points with the base code, which are inserted at
state boundaries as explicit join points. Moreover, context
tuples act as exposed arguments for the aspect interaction.

7. IMPLEMENTATION STATUS
PicOS avoids layers (and, consequently, the concept of mid-
dleware) while promoting a flavor of plug-ins as the preferred
way of incorporating new functionality into the kernel [5].
Plug-ins are inserted into a system module dubbed VNETI
(Versatile NETwork Interface) depicted in Figure 8. Our
tuples environment has been prototyped as a plug-in service
taking advantage of the built-in buffer management mecha-
nism of VNETI. Owing to the fact that PicOS threads (in
contrast to activities in TinyOS) can comfortably block at
state boundaries, PicOS can afford a lightweight dynamic
memory allocator, which is used by VNETI to create flexi-
ble pools of transparent linked buffers. Those buffers serve
as the basis for our repository implementation of the tuple
space, both local and distributed (one-hop neighborhoods).
The latter is an almost free feature stemming from the fact
that selected buffers from VNETI pools can be (automati-
cally) queued for transmission over the RF.

Concepts of modular extensions through aspects are cur-
rently at the investigation stage. This work overlaps with
our recent efforts aimed at revising and refining the PicOS
compiler, which allows us to think of new syntactic tools to
be added to the language to facilitate those extensions.

59

Figure 8: PicOS system architecture layout.

8. CONCLUSIONS
We have presented a tuple based extension to the PicOS
threading model aimed at mitigating some of the problems
caused by the frugality of the memory-constrained program-
ming environment characteristic of a low-cost WSN node.
Our extensions follow up on the elegance, simplicity, and
power of Linda’s tuple space concept. In contrast to Linda,
we cannot get away with a single, global, and reliable tu-
ple space; thus, our goal was not to emulate Linda in the
WSN environment, but rather to study the possible ways of
adapting the idea of tuples to the new (and capricious) type
of distributed systems represented by WSNs. Our prelim-
inary work demonstrates that the idea of tuples combined
with thread contexts can significantly simplify programming
without worsening the system’s characteristic regarding its
memory demands. The programs turn out to be consider-
ably more legible and much easier to modify/extend than
with the traditional approach to data structures and com-
munication.

Our future work will include a quantitative evaluation of ad-
ditional protocols and applications to provide assessment of
design parameters such as code complexity, code modularity,
operational efficiency. We will also focus on additional lan-
guage extensions and constructs to provide a viable WSN de-
velopment tool. An important issue is to find a good mecha-
nism for extending the local and neighborhood spaces onto a
global network-wide space. Inspired by TARP’s approach to
routing [4], we envision a fuzzy meta-routing scheme with
rule driven rebroadcasts, which will collectively push the
tuples towards the regions (neighborhoods) where they are
needed. This calls for programming concepts and constructs
that will allow the program to define special rules according
to suggested distributed configurations/roles thereby miti-
gating the inherent unreliability of individual nodes.

9. REFERENCES
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and

J. R. Douceur. Cooperative task management without
manual stack management. In Proceedings of
USENIX’02, pp. 289–302.

[2] N. Carriero and D. Gelernter. Linda in context.
Commun. ACM, 32(4):444–458, 1989.

[3] P. Costa, L. Mottola, Amy L. Murphy, and
G. P. Picco. Teenylime: transiently shared tuple space
middleware for wireless sensor networks. In
Proceedings of MidSens’06, pp. 43–58.

[4] P. Gburzyński, B. Kaminska, and W. Olesinski. A tiny
and efficient wireless ad-hoc protocol for low-cost
sensor networks. In Proceedings of DATE’07, pp.
1562–1567.

[5] P. Gburzynski and W. Olesinski. On a practical
approach to low-cost ad hoc wireless networking.
Journal of Telecommunications and Information
Technology, 2008(1):29–42, January 2008.

[6] M. Goldman and S. Katz. MAVEN: Modular aspects
verification. In Proceedings of TACAS 2007, pp.
308–322, Springer, LNCS, volume 4424.

[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked
sensors. SIGPLAN Not., 35(11):93–104, 2000.

[8] K. Hoffman and P. Eugster. Cooperative
aspect-oriented programming. Science of Computer
Programming, 74(5-6):333–354, 2009.

[9] O. Kasten and K. Römer. Beyond event handlers:
programming wireless sensors with attributed state
machines. In Proceedings of IPSN’05, pp. 7.

[10] S. Katz. Aspect categories and classes of temporal
properties. In Transactions on Aspect-Oriented
Software Development I, pages 106–134. Springer,
LNCS, volume 3880, 2006.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of aspectj.
pp. 327–353, In Proceedings of ECOOP’01 Springer,
LNCS, volume 2072.

[12] P. Levis. TinyOS Programming. Cambridge University
Press, 2009.

[13] W. P. McCartney and N. Sridhar. Abstractions for
safe concurrent programming in networked embedded
systems. In Proceedings of SenSys’06, pp. 167–180.

[14] K. Terfloth, G. Wittenburg, and J. H. Schiller. FACTS
- a rule-based middleware architecture for wireless
sensor networks. In Proceedings of COMSWARE’06

[15] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler.
Hood: a neighborhood abstraction for sensor
networks. In Proceedings of MobiSys’04, pp. 99–110.

[16] A. L. Murphy, G. P. Picco and G. C. Roman. LIME:
A coordination model and middleware supporting
mobility of hosts and agents. ACM Trans. Softw. Eng.
Methodol, 2006.

[17] P. J. McCann and G. C. Roman. Mobile UNITY
Coordination Constructs Applied to Packet
Forwarding for Mobile Hosts. In Proceedings of
COORDINATION ’97. pp. 338–354.

[18] R. De Nicola and G. L. Ferrari and R. Pugliese.
KLAIM: A Kernel Language for Agents Interaction
and Mobility. IEEE Trans. Softw. Eng. pp. 315–330.
IEEE Press, volume 24, 1998.

60

Simulink Analysis of Component-Based Embedded
Applications

Feng Zhou Søren Top Krzysztof Sierszecki Christo Angelov
Mads Clausen Institute for Product Innovation,

University of Southern Denmark
Alsion 2, 6400 Soenderborg, Denmark

+45 6550 1684

{zhou, top, ksi, angelov}@mci.sdu.dk

ABSTRACT
The widespread use of embedded systems requires the creation of
industrial software technology, which will make it possible to
engineer systems that are correct by construction. That can be
achieved through the use of validated (trusted) components,
verification of design models and automatic configuration of
applications from validated design models. These guidelines have
been instrumental for developing COMDES - a component-based
framework for real-time embedded control systems. In this
framework, an application is conceived as a network of distributed
embedded actors that communicate with one another by means of
labeled messages (signals), whereby I/O signals are exchanged
with the controlled plant at precisely specified time instants,
resulting in the elimination of I/O jitter. The paper presents an
analysis method that can be used to validate COMDES design
models using the Simulink environment. It is based on a
semantics-preserving transformation of a COMDES design model
into a Simulink analysis model, which preserves both the
functional and timing behaviour of the original design model. The
discussion is illustrated with an industrial case study – a Medical
Ventilator Control System, which has been used to validate the
developed design and analysis methods.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering; D.2.11 [Software Architectures]: Domain-specific
architectures

General Terms
Design, Experimentation

Keywords
Embedded control systems, component-based design,
domain-specific frameworks, model-based analysis,
semantics-preserving model transformation

1. INTRODUCTION
The widespread use of embedded systems poses a serious
challenge for software developers who have to address a number
of stringent and contradictory requirements: reduced development
costs and time to market, error-free operation and predictable
behaviour under hard real-time constraints, open architecture
featuring reusable components and software reconfiguration, etc.

The conventional development process cannot easily cope with
these problems, since it is largely based on informal design
methods and manual coding techniques. This has a negative
impact on both the economy of production and the safety of
embedded systems. In particular, software safety is severely
affected by design errors that are typical for informal design
methods, as well as implementation errors that are introduced
during the process of manual coding.

Therefore, it is necessary to develop new design methods that will
make it possible to engineer systems that are correct by
construction. This is an ambitious goal that can be eventually
accomplished by combining two complementary methodologies,
i.e. model-driven and component-based design of embedded
software [1]. The main elements of this approach include:
- Repositories of prefabricated and validated (trusted)

components that can be used to build applications in a particular
application domain

- Computer-aided design of applications using formal design
models that are appropriate for the application domain

- Verification of design models with respect to functional and
non-functional requirements via semantics-preserving
transformation of design models into appropriate analysis
models

- Automatic configuration of applications from validated design
models using prefabricated software components

It can be expected that the adoption of the outlined software
development process will result in the creation of industrial
software technology for embedded applications, similar to those
already available in mature areas of engineering such as electronic
design, mechanical engineering, etc.

These guidelines have been instrumental in developing the
COMDES framework and specifically, its third version [4]. This
is a software framework for time-critical distributed control
applications, featuring a hierarchical component model and
signal-based communication between components at all levels of
specification. With that framework, an application is composed

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MOMPES '10, September 20, 2010, Antwerp, Belgium

Copyright © 2010 ACM 978-1-4503-0123-7/10/09... $10.00

61

from actors, which are configured from prefabricated function
blocks. This is an intuitive and simple model that is easy to use
and understand by application experts, i.e. control engineers.

The validation of design models is an important aspect of the
overall development process. There are a number of analysis
methods and tools developed over the years, which are now
widely used by the engineering community. Therefore, our
approach has been to use such tools rather than invent new ones.
However, that is possible if the analysis models used as input to
those tools are consistent with the design models. This requires a
semantics-preserving transformation of design models into
analysis models used by the tools under consideration. Presently,
our research is aimed at developing transformations that will
make it possible to use two such tools, i.e. SIMULINK and
UPPAAL.

This paper presents the transformation of COMDES design
models into consistent Simulink models. Our approach is
somewhat similar to Giotto modeling in SIMULINK [3], but is
much more complex due to the hierarchical nature of the
COMDES design model and the use of prefabricated components
instead of generative programming techniques.

The discussion is illustrated with a case study – a Medical
Ventilator Control System [8], which has been implemented in
COMDES and validated in SIMULINK. The rest of the paper is
structured as follows: Section 2 presents an overview of the
COMDES framework, focusing on the main features of the design
models used and their implications for the software development
process. Section 3 presents the transformation of COMDES
design models into SIMULINK models that preserve the
functional and timing behaviour of the original models. Section 4
presents a discussion of automatic model transformation based on
the corresponding meta-models. Section 5 concludes the paper by
presenting a summary of the proposed analysis method.

2. COMDES FRAMEWORK: AN
OVERVIEW
2.1. COMDES design models
COMDES is a domain-specific framework, which combines open
system architecture with a model of computation that guarantees
highly predictable behaviour, in the context of hard real-time
distributed control systems [4], [5]. Its main features are
summarized below:

A complex control system is decomposed into functional
subsystems. A subsystem consists of one or more actors, i.e.
active objects that are considered to be units of functionality as
well as units of concurrency, such as sensor, controller, actuator,
etc. A distributed embedded application is modeled as an actor
network. Actors interact by exchanging labeled messages
(signals), such as pressure, temperature, etc. Signal-based
communication is transparent, i.e. independent of actor allocation.

Actors are executed in accordance with a clocked synchronous
model of computation known as Distributed Timed Multitasking,
which can be used to engineer highly predictable real-time
systems that are exempt from input and output jitter and provide
for a constant delay from sampling to actuation [5].

The COMDES application model is illustrated with Fig. 1, which
shows the actor network specifying the Medical Ventilator control

system implemented in the case study [8]. It consists of five
communicating actors that can be grouped into two subsystems –
Ventilation Control and MMI Communication. The first
subsystem consists of actors Sensor, Controller and PhaseSwitch.
The Sensor actor reads signals from A/D converters and calculates
the values of process variables such as pressure and airflow,
which are used as input data by the Controller actor. The latter
implements a modal control system with several modes of
operation, whereby the transitions between various modes are
triggered by signals generated by the PhaseSwitch actor. The
second subsystem consists of the Transmitter and Receiver actors,
which are used to maintain communication with a Man-Machine
Interface (MMI) unit over a serial link. System actors
communicate with one another by means of labeled messages
whose identifiers are shown on top of the corresponding
communication links (see Fig.1).

Receiver

Transmitter

Sensor

PhaseSwitch

Controller

RxMsg
(ventStart, I, E, respRate, flowSet)

SMsg
(p1Flow, p4Pressure)

P1Sensor

P4Sensor

RxMsg
(ventStart, I, E, respRate, flowSet)

PSMsg1
(inspExpFlag)

SMsg
(p1Flow, p4Pressure)

PWM_Insp

Relay1OnOff

RxPackage

TxPackage

RxMsg
(ventStart, I, E, respRate, flowSet)

PSMsg1
(inspExpFlag)

SMsg
(p1Flow, p4Pressure)

PSMsg2
(inspTime, respPeriod, swtTick)

PSMsg2
(inspTime, respPeriod, swtTick)

Internal
data bus

Ventilation Control

MMI Communication

Figure 1. Medical Ventilator Control System: actor model

An actor is modeled as an integrated circuit consisting of a signal
processing unit (SPU) and I/O latches, which are composed of
input and output signal drivers, respectively, e.g. Fig. 2. The input
latch is used to receive incoming signals and decompose them into
local variables that are processed by the SPU. The output latch is
used to compose outgoing signals from local variables produced
by the SPU and broadcast them to potential receivers. Physical
I/O signals are treated in the same manner but in this case, the
latches invoke hardware-specific routines in order to exchange
physical signals with the environment.

A control actor is mapped onto a real-time task having three parts:
task input, task body and task output, implementing the input
latch, SPU and output latch, respectively. One or more tasks may
be allocated onto a particular processor, and their execution is
managed by a real-time kernel, such that task inputs and outputs
are activated at precisely specified time instants.

62

SPU
ctlX2.I

ctlX2.E
ctlX2.respRate

ctlX1.inspExpFlagPSMsg1

RxMsg

expValveOutput

pidControvalue PWM_Insp

Relay1OnOff

ctlX1

ctlX2

ctlY1

ctlY2

ctlX3.p1FlowSMsg
ctlX3

ctlX2.flowSet

Figure 2. Controller actor: internal structure

These are relatively short pieces of code whose execution time is
orders of magnitude smaller than the execution time of the actor
task, which is typical for control applications. They are executed
atomically in logically zero time, in separation from the task body
(split-phase task execution). Specifically, task input is executed
when the actor task is released, and task output – when its
deadline arrives or immediately after the computation is finished
if no deadline has been specified (see Fig. 3). Consequently, task
I/O jitter is effectively eliminated as long as the task is
schedulable and comes to an end before its deadline.

Actor SPU

Actor release event Actor deadline event

Task input

Input signals

Task body

preemption
Task output

Output signals

jitter

Deadline

Input latch Output latch

Figure 3. Actor execution under DTM
The COMDES model of computation, i.e. Distributed Timed
Multitasking (DTM), extends the original model [2] to distributed
systems, whereby I/O signals are generated at transaction
release/deadline instants, thereby eliminating transaction I/O jitter
[5].

An actor SPU is specified in terms of a data flow model, i.e. an
acyclic function block network configured from instances of
prefabricated components – function blocks (FBs). Function
blocks are reusable and reconfigurable components that are stored
in a repository in executable, binary format. These can be used to
engineer heterogeneous embedded applications, such as
sequential, continuous and hybrid (modal) control systems, or any
combination thereof. The framework defines several kinds of
function block - basic, composite, signal generator (SG) and state
machine (SM) function blocks.

Basic and composite function blocks are components
implementing different control and/or signal processing functions.
The SM function block implements the reactive (control flow)
aspect of actor behaviour by indicating the current control action
to be executed, in response to a particular event. The SG
implements the transformational (data flow) aspect of actor
behaviour. It is a composite component featuring alternative
sequences of function blocks used to execute different control
actions, as indicated by a master SM.

Figure 4. Controller actor: signal processing unit

The SM and SG function blocks can be composed together in
order to implement actors with stateful behaviour, e.g. those used
in sequential control systems as well as hybrid (modal) control
systems, such as the Controller actor of the Medical Ventilator
case study (see Fig. 4). Its signal processing unit contains an SM
function block instance implementing the state transition graph
shown in the figure, where each state (mode) is associated with a
particular control action. Control actions are executed by the
Signal Generator, which encapsulates instances of function blocks
PID and 2Multiplexor, whose functions are invoked in order to
execute the indicated control actions.

Component design models have been used to develop design
patterns for reusable and reconfigurable components
implementing the above component models [6].

2.2. Implications for the software development
process
The COMDES architecture emphasizes one of the main principles
of systems engineering, i.e. separation of concerns. This makes it
possible to separately treat different aspects of complex systems,
such as system structure and behaviour, computation and
communication, functional and timing behaviour, reactive and
transformational behaviour, etc. [5].

Separation of concerns facilitates the design and analysis of
embedded systems, which is reflected in the adopted software
development process and the supporting software engineering
environment. Consequently, different aspects of system behaviour
can be verified in separation using appropriate techniques and
tools, following a semantics-preserving transformation of system
design models into the corresponding analysis models.

In particular, the behaviour of predominantly continuous systems
can be analyzed through numerical simulation by exporting design

driver

driver

arith

action

setPoint

ctlX3.p1Flow

ctlX2.flowSet

ctlX1.inspExpFlag

ctlX2.I

ctlX2.E

ctlX2.respRate

State Machine

ctrlSM

ctrlSG

calcuSP

SPArithmetic
UWORD-float

Signal
Generator

expValveOutput

pidControlValue

init

close insp
valve

open exp
valve

close exp
valve

pid control

inspExpFlag

!inspExpFlag

a0

a1

a2

a3

a4

H

1

2

Ts

Kd

Ki

Kp

1

0
(EXPOPEN)

(EXPCLOSE)

setPoint

p1Flow

ctrlExpValve
2Multiplexer

U8-U8

ctrlInspValve

PID
float-float

action

expValveOutput

pidControlValue

63

models into the SIMULINK environment, whereas the reactive
behaviour of sequential systems can be investigated through
property verification using model-checking tools such as
UPPAAL. Likewise, separation of concerns makes it possible to
analyze timing behaviour in separation from functional behaviour,
by means of numerical response-time analysis techniques and
tools.

The ultimate goal of our effort is to create a software development
process that will eliminate both design and implementation errors,
resulting in software that is correct by construction. That will be
achieved through the use of validated (trusted) components,
verification of design models and automatic configuration of
applications from validated design models. On the other hand,
timed multitasking makes it possible to engineer highly
predictable systems operating in a flexible, dynamic scheduling
environment.

On-going research is aimed at developing an integrated toolset
supporting the entire software development process: specification,
analysis, code generation and configuration of applications from
prefabricated components [7].

3. SEMANTICS-PRESERVING COMDES-
SIMULINK TRANSFORMATION
The main idea of our approach is to export the original design
model of the system under investigation to the SIMULINK
environment and analyse it via simulation, such that the original
execution semantics is preserved during the simulation.

COMDES employs a hierarchical design model, whereby an
application is modeled as a network of actors interconnected by
communication channels. An actor is modeled as an acyclic
network of function blocks interconnected by signal lines that
visually represent the data flow in the model. Such a network may
not contain loops. However, loops are allowed in the actor
network, but they are effectively broken by the latching of input
signals at the beginning of each period.

A SIMULINK model is very similar, being composed of blocks
and signal lines, whereby constituent blocks can be standard
SIMULINK blocks or System-Function (S-Function) blocks
which are supplied by the user for specific purposes [9].
Hierarchy can also be modeled using SIMULINK subsystems.

There are however a number of issues that have to be addressed in
the process of transformation, so as to take into account the
functional and timing aspects of system behaviour and ultimately,
develop an analysis model, which operates in exactly the same
manner as the original design model. These are discussed in the
following sections.

3.1 Transformation of functional behaviour
This transformation is facilitated by the similarity between
COMDES design models and SIMULINK analysis models
representing the controller part of the system, both of which are
data flow models. Hence, it is possible to export a COMDES
design model to the SIMULINK environment, by wrapping
COMDES components into S-functions and wiring them together,
following the interconnection pattern of the original design model.
This kind of transformation can be characterized as heterogeneous
two-plane modeling in SIMULINK (see Fig. 5).

SIMULINK plane

COMDES plane

PL
AN

T
m

od
el

se
t-

po
int

s

Figure 5. Heterogeneous modeling of embedded systems

With this modeling technique each function block of the original
COMDES model is wrapped into an S-function. S-functions
operate in the SIMULINK plane and are interconnected with each
other using ports. When activated, S-functions invoke the
encapsulated function blocks, which operate in the COMDES
plane. Accordingly, communication between function block takes
place in accordance with the original softwiring technique,
whereby a function block uses pointers to access the output
buffers of other function blocks in order to fetch the necessary
input data.

.

COMDES Components
Library (Function Blocks)

.

.

.

Counter

Comparator

Adder

State Machine

SIMULINK Library of
Wrapped COMDES

Components
(S-Functions)

.

.

.

Counter

Comparator

Adder

State Machine

Mapping

Figure 6. SIMULINK library of wrapped components derived
from the COMDES component library

In order to implement this modeling technique it is necessary to
create a library of wrapped COMDES components in the form of
S-functions. It can be easily seen that the wrapped components
library is a one-to-one mapping from the original COMDES
library (see Fig. 6).

It is also necessary to figure out a way of mapping the COMDES
softwiring technique to the Simulink interconnection technique.
Finally, it is necessary to find appropriate modeling techniques for
complex components such as composite and signal generator
function blocks.

3.1.1 Transformation of basic and state machine
function blocks
Each S-function from the wrapped component library
encapsulates the corresponding COMDES function block, e.g.
Comparator, Counter, etc. The S-function block communicates
with other components in the Simulink plane via input and output
ports, whereas a FB uses input pointers to access memory
locations containing input data. The original version of the

64

wrapping technique is shown in Fig. 7. It assumes that the
encapsulated FB has access to S-function input ports via the
corresponding input pointers (shown as dashed arrows), and the
data stored in the FB’s output buffers is copied to the output ports
of the S-function.

SF

i1

i2

o1

o2
functionX

instanceX

FB
i1

i2

o1

o2

input ports

input pointers output buffers

output ports

Figure 7. Encapsulating a function block into an S-function

The connection between two S-functions say SF_A and SF_B is
shown in Figure 8. In this case SIMULINK takes charge of
copying the data from output ports of SF_A to the input ports of
SF_B.

SF_A

i1

i2

o1

o2
functionX

instanceX

FB_A
i1

i2

o1

o2

SF_B

i1

i2

o1

o2
functionX

instanceX

FB_B
i1

i2

o1

o2

Figure 8. Connecting S-functions

Unfortunately, the above technique does not preserve the original
function block interconnection semantics, i.e. the use of pointers
to access the output buffers of producer function blocks from
within the consumer function block.

This problem can be avoided by copying the address of the FB
output buffer to the corresponding output port of the S-function,
instead of the output data itself. So, the buffer address will be
transferred from the SF_A output port to the connected SF_B
input port and finally assigned to the corresponding FB input
pointer. The latter can be used to directly access the output buffer
of the function block encapsulated in SF_A (see Fig. 9).

In this way, wrapped function blocks communicate in exactly the
same manner as in the original design model, whereby S-functions
provide a shell with which the internal FB can be executed in the
SIMULINK environment, and also – provide access points for
monitoring signals in SIMULINK.

In COMDES, each function block is a type, which can have one
or more instances, and each of them will execute a specific
function (method) on the instance data (see e.g. function blocks
FB_A and FB_B in Fig. 9). In SIMULINK, FB instances can be
specified by means of the corresponding S-function mask. The
mask is used to take the input parameters supplied by the user and
pass them to the internal FBs. This configuration approach has
been applied to all basic function blocks in the wrapped
component repository.

SF_A

i1

i2

o1

o2
functionX

instanceX

FB_A
i1

i2

o1

o2

SF_B

i1

i2

o1

o2
functionX

instanceX

FB_B
i1

i2

o1

o2

Figure 9. Connecting function blocks via the S-function shell

However, the above approach cannot be used when it comes to
configuring an SM instance, because the number and type of
inputs varies with different instances, and each of them requires a
different configuration structure (State Machine Table),
containing the state transition graph of the particular instance.

To solve this problem, a dynamic link library (DLL) is used in
conjunction with the S-function encapsulating the SM instance.
With this approach, the State Machine Table is compiled to a DLL
independently, and it can be subsequently used by the state
machine S-function to implement the desired state machine
behaviour. In this case, the S-function contains only the standard
method of the State Machine type - the so called state machine
driver, which is used to process the state machine table of the SM
instance. Thus, the SM component can be wrapped into an S-
function and used in different applications.

Furthermore, the input ports configuration is also compiled into
the DLL, so as to specify the number and type of inputs used by a
specific SM instance, and their connections. The other
configuration parameters (e.g. instance number, instance function,
etc.) are left for the S-function mask, which is thus identical for all
function block types.

3.1.2 Transformation of composite and signal
generator function blocks
Composite function blocks and signal generators cannot be
wrapped into S-functions in the same way as basic function
blocks. The reason is that they are hierarchical models, whereas
the S-function is a flat model, which rules out the nesting of S-
functions.

However, that problem can be easily solved by means of
SIMULINK subsystems encapsulating S-functions wrapping
constituent COMDES components. A composite function block
contains a single sequence of FB instances. Hence, it can be
modeled by a single subsystem block encapsulating the
corresponding sequence of S-functions.

A Signal Generator is composed of multiple FB sequences, which
are selected for execution by a master state machine indicating the
sequence to be executed during a particular invocation. In
Simulink, each of these sequences is modeled by a component
denoted as Switch Case Action Subsystem. These subsystems are
triggered by a Switch Case block, as shown in Fig. 10, which
depicts the SIMULINK model of a Signal Generator used by the
Controller actor.

3.2 Modeling actor timing behaviour under
Timed Multitasking
Timed multitasking is simulated by means of SIMULINK
subsystems modeling the input and output latches of the actor (see
Fig. 11).

65

Figure 10. SIMULINK model of Signal Generator

Inside the Input Latch subsystem, the incoming messages are
unpacked if they have more than one constituent variable. That is
modeled by Demultiplexor (Demux) components, whose outputs
are connected to Zero-Order Hold (ZOH) blocks. These are used
to sample input signals and keep them unchanged during the
execution period of the actor task.

Figure 11. Internal structure of actor I/O latches

Inside the Output Latch subsystem, several output variables could
be packed into one message. That is modeled by Multiplexor
(Mux) components, whose outputs are connected to Integer Delay
(ID) elements modeling the constant delay from sampling to
actuation, as specified by the actor deadline.

The I/O latch subsystems are combined with a subsystem
modeling the actor task in order to compose a subsystem
modeling a COMDES actor, in accordance with the COMDES
actor model (see Fig. 12). The actor task is composed from
connected S-functions which are chosen from the wrapped
COMDES component library. During simulation, the above
subsystems have to be executed in accordance with the DTM
model of computation: the actor task is released by the

corresponding execution trigger, whereby the input latch is
executed when the task is released and the output latch – when the
task deadline arrives, as shown in Fig. 3.

To that end, they have to be appropriately parameterized. The
ZOH blocks of the Input Latch keep the input signals of the actor
task unchanged during the execution period, so the sample time
for these blocks should be equal to the period expressed as an
integer number of simulation time units. The ID blocks in the
Output Latch delay the output signals for an interval of time equal
to the actor deadline, specified by the corresponding number of
simulation time units.

Period and deadline parameters are supplied via a mask associated
with the actor subsystem. These settings will be passed to the
internal I/O latch and actor task subsystems, and ultimately to
their constituent components, i.e. S-functions and SIMULINK
primitives. In this way, the SIMULINK model maintains the same
timing behavior as the original COMDES design model.

Figure 12. Actor configuration

3.3 Building a SIMULINK model with the
wrapped COMDES components
The outlined modeling technique can be used to build the models
of the actors constituting the entire SIMULINK model under
investigation, e.g. the Controller model shown in Fig. 13. These
can be used to compose the system model as shown in Fig. 14.

Here, the constants on the left-hand side are used to simulate the
Receiver actor task’s output variables, which are combined into
one message (i.e. RxMsg) following the original design model
(Fig. 1), and then this message is sent to both PhaseSwitch and
Controller actors. Besides that message, the two actors also
receive and produce other messages/signals in the same way as in
the design model, i.e. PSMsg1, PSMsg2, SMsg, etc. System actor
models are connected to the Medical Ventilator plant model,
which is derived from the real plant (inspiration valve in the
Medical Ventilator).

The plant is coupled to the Controller actor via the
pidControlValue control signal and SMsg.p1Flow feedback signal
thus forming a closed-loop control system. Finally, the
experimental result can be shown in the scope, which is connected
to two copies of the plant model operating with and without
control respectively, for the purpose of comparison.

66

Figure 13. Simulink model of the Controller actor

Figure 14. Simulink model of the Medical Ventilator control
system

In this way, the control parameters can be tuned before they are
used in the control software of the real machine, which saves both
development time and cost.

Figure 15 shows the signals generated during the Simulink
simulation run, i.e. the PhaseSwitch output signal – inspExpFlag
(the upper diagram) and the system step response (the lower
diagram). The former indicates the different respiration phases
(inspiration or expiration) to the Controller actor, which reacts
accordingly by generating appropriate control signals for the
inspiration and expiration valves of the machine.

Figure 15. InspExpFlag signal and step response of the plant

The simulation result, i.e. the controlled step response (purple
curve), is shown together with the uncontrolled step response
(blue curve) in the second diagram. The comparison between the
two step responses shows that both oscillation and overshoot,
which are dangerous to the patient, have been effectively
eliminated by the implemented control system.

4. AUTOMATIC COMDES-SIMULINK
MODEL TRANSFORMATION
In the above case study, the SIMULINK model of the investigated
system has been built using drag and drop components from the
wrapped COMDES library, as well as primitives from the
SIMULINK standard library. However, this approach is not so
convenient when the system is really complex, i.e. it is time
consuming and error-prone for the user to manually transform the
design model into a consistent analysis model. This has motivated
the investigation into automated transformation of COMDES
design models into SIMULINK analysis models via an
appropriate model-to-model (M2M) transformation process
supported by the Eclipse development platform [11]. This process
requires the development of COMDES and SIMULINK meta-
models, both of which are based on the Ecore meta-meta-model
defined in the Eclipse Modeling Framework (EMF). The
COMDES meta-model has been developed in a previous project
[7] and is now undergoing a process of refinement, whereas the
SIMULINK meta-model has been developed by the Software
Research Group in the University of Salzburg, Austria.

In EMF, there are several tools support the M2M transformation,
such as ATL (ATLAS Transformation Language), QVT
(Query/View/Transformation), SmartQVT, etc., and in this

67

project, ATL has been adopted. With this transformation
language, it is possible to specify how a target model can be
produced from a given source model. Specifically, ATL
introduces a set of concepts such as ATL module, helpers, rules,
etc., which make it possible to describe model transformations.

The transformation process can be summarized as shown in
Fig. 16. The COMDES source model, conforming to the meta-
model MMCOMDES, is transformed into a target SIMULINK
model that conforms to the meta-model MMSIMULINK. The
transformation is defined by the transformation model
COMDES2SIMULINK, which itself conforms to the ATL model
transformation meta-model. Finally, all three meta-models
conform to the Ecore meta-meta-model.

Ecore

MMCOMDES

COMDES

ATL

COMDES2SIMULINK

MMSIMULINK

SIMULINK

conformsTo conformsTo

conformsTo conformsTo conformsTo

transformation

conformsTo

Figure 16. M2M transformation process

The envisioned model transformation process will be
implemented in a special subsystem integrating SIMULINK with
the COMDES development toolset [7].

5. CONCLUSION
The paper presents an analysis technique for component-based
embedded applications in the context of the COMDES
framework, which is based on a semantics-preserving
transformation of COMDES design models into SIMULINK
analysis models.

A two-plane modeling approach to the analysis of embedded
applications has been developed using wrapped COMDES
components (S-functions). In the upper plane, the S-functions are
chained and simulated in Matlab SIMULINK. The dataflow
between the components is maintained the same as in the
COMDES model, and the data themselves are actually processed
by the encapsulated lower-plane COMDES components. This
approach has been further extended to composite components and
system actors.

The presented solution preserves the COMDES semantics in
terms of functional behaviour, which remains unchanged in the
SIMULINK model. The timing behaviour of COMDES
applications is also preserved via specific solutions making it
possible to sample input signals and produce output signals at
precisely specified time instants, in accordance with the timed
multitasking semantics of COMDES design models.

Finally, the formal transformation from a COMDES design model
to a SIMULINK model has been investigated via the ATL

language in the Eclipse Modeling Framework, in order to
automatically generate the target SIMULINK model.

The developed methodology is not strictly limited to COMDES
applications. In a broader context, it offers an analysis method
specifically tailored for embedded applications built from pre-
fabricated executable components that are different from
SIMULINK blocks. In this case, it is not possible to follow the
conventional development process, whereby a control system is
initially designed and simulated in SIMULINK, followed by code
generation from the validated system model. This problem is
addressed by the presented methodology, which makes it possible
to configure an application from prefabricated components, and
then validate the design by exporting it to SIMULINK, such that
the execution semantics of the original design model is preserved.

6. REFERENCES
[1] B. Bouyssounouse and J. Sifakis (Eds.), “Embedded Systems

Design. The ARTIST Roadmap for Research and
Development”, LNCS 3436 (2005)

[2] J. Liu and E.A. Lee, "Timed Multitasking for Real-Time
Embedded Software", IEEE Control Systems Magazine,
special issue on Advances in Software Enabled Control,
February 2003, pp. 65-75

[3] W. Pree, G. Stieglbauer and J. Templ, “Simulink Integration
of Giotto/TDL”, Proc. of ASWSD 2004, LNCS 4147 (2006),
pp. 137-154

[4] C. Angelov, K. Sierszecki and F. Zhou, “A Software
Framework for Hard Real-Time Distributed Embedded
Systems”, Proc. of the 34th EUROMICRO Conference on
Software Engineering and Advanced Applications
SEAA 2008, Parma, Italy, Sept. 2008, pp. 385-392

[5] C. Angelov, K. Sierszecki and Y. Guo, “Formal Design
Models for Distributed Embedded Control Systems”, Proc.
of the 2nd International Workshop on Model Based
Architecting and Construction of Embedded Systems ACES-
MB 2009, Denver, Colorado, USA, Oct. 2009, pp. 43-57

[6] K. Sierszecki, F. Zhou and C. Angelov: Reusable State
Machine Components for Embedded Control Systems. Proc.
of the 7th International Conference on Informatics in Control,
Automation and Robotics, ICINCO 2010, Funchal, Madeira -
Portugal, June 2010

[7] Y. Guo, K. Sierszecki and C. Angelov, “COMDES
Development Toolset”. Proc. of the 5th International
Workshop on Formal Aspects of Component Software
FACS 2008, Malaga, Spain, Sept. 2008, pp. 233-238

[8] F. Zhou, W. Guan, K. Sierszecki and C. Angelov,
“Component-Based Design of Software for Embedded
Control Systems: The Medical Ventilator Case Study”, Proc.
of the Int. Conference on Embedded Software and Systems
ICESS 2009, Hangzhou, China, May 2009, pp. 157-163

[9] The MathWorks, Inc., “Writing S-Functions”, version 6,
http://www.mathworks.com.

[10] The MathWorks, Inc., “Using Simulink”, version 6,
http://www.mathworks.com.

[11] Eclipse Modeling Project, http://www.eclipse.org/m2m

68

http://ptolemy.eecs.berkeley.edu/publications/papers/03/timedmultitasking/�
http://ptolemy.eecs.berkeley.edu/publications/papers/03/timedmultitasking/�

	MOMPES2010-01-frontmatter-withPageNumbers
	MOMPES2010-02-mainContent-withPageNumbers
	MOMPES2010-paper01-Azevedo
	MOMPES2010-paper02-Ciccozzi
	MOMPES2010-paper03-Lafaye
	MOMPES2010-paper04-Mannadiar
	MOMPES2010-paper05-Oliveira
	MOMPES2010-paper06-Polzer
	MOMPES2010-paper07-Rajan
	MOMPES2010-paper08-Shimony
	MOMPES2010-paper09-Zhou

