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A B S T R A C T

Explainable Artificial Intelligence (XAI) methods are valuable tools for promoting understanding, trust, and
efficient use of Artificial Intelligence (AI) systems in business organizations. However, the question of how
organizations should select suitable XAI methods for a given task and business context remains a challenge,
particularly when the number of methods available in the literature continues to increase. Here, we propose
a context-aware decision support system (DSS) to select, from a given set of XAI methods, those with higher
suitability to the needs of stakeholders operating in a given AI-based business problem. By including the human-
in-the-loop, our DSS comprises an application-grounded analytical metric designed to facilitate the selection of
XAI methods that align with the business stakeholders’ desiderata and promote a deeper understanding of the
results generated by a given machine learning model. The proposed system was tested on a real supply chain
demand problem, using real data and real users. The results provide evidence on the usefulness of our metric
in selecting XAI methods based on the feedback and analytical maturity of stakeholders from the deployment
context. We believe that our DSS is sufficiently flexible and understandable to be applied in a variety of
business contexts, with stakeholders with varying degrees of AI literacy.
1. Introduction

1.1. Background and research motivation

Artificial Intelligence (AI) has contributed to significant changes in
business and management processes within organizations, allowing the
extraction of knowledge from data and improving decision-making pro-
cesses in several contexts (Wamba-Taguimdje et al., 2020). Examples
include a wide range of applications of AI techniques in manufac-
turing (Dengler et al., 2021), service quality (Guo et al., 2023), fi-
nance (Roeder et al., 2022) and supply chain management (Toorajipour
et al., 2021), to name a few. The adoption of AI has grown considerably
over the years, both in the public and private sectors, and recent
studies (Gangwani and Zhu, 2024; Brem et al., 2021) have shown
that organizations that take advantage of AI are more able to attract
investment. Indeed, a Forbes article (Haan and Watts, 2023) published
in 2023 reports that the AI global market size is expected to reach $407
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billion by 2027, with expectations of compound annual growth rate of
37.3% until 2030.

While the range of applications for AI techniques is quite extensive,
organizations still face major challenges when it comes to relying on
intelligent systems for automated data-driven decision-making, as well
as to understanding how such systems should be designed and imple-
mented to generate value (Toorajipour et al., 2021; Jan et al., 2023;
Enholm et al., 2022; Burger et al., 2023). These challenges stem from
several factors. Firstly, business processes that impact an organization
performance are usually complex and generally depend on exogenous
information and subjective human factors that are difficult to be mod-
eled by AI systems. Secondly, a large portion of the machine learning
(ML) algorithms proposed in the literature tend to be ‘‘black-boxes’’
when applied to real predictive and prescriptive decisions. While these
algorithms are often more suitable than classical parametric techniques
for modeling nonlinear dynamics, they are also less explainable (James
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et al., 2023) (in the sense of their lack of understanding by humans),
hereby undermining user’s trust in their adoption (Vermeire et al.,

2021). In business practice, this lack of model explainability also
poses challenges in terms of providing insightful explanations to busi-
ness stakeholders (Zhang and Chen, 2020), who increasingly seek to
nderstand the rationale behind the general functioning of AI systems.

The problems related to the explainability of AI systems fall within
the so-called explainable artificial intelligence (XAI) domain (Arrieta
et al., 2020), which has received an increasing attention in recent
ears (Ali et al., 2023; Vilone and Longo, 2021; Adadi and Berrada,

2018; Abusitta et al., 2024; De Bock et al., 2024; Mersha et al.,
2024; Angelov et al., 2021) and application contexts, such as Indus-
ry (Tchuente et al., 2024), Healthcare (Salih et al., 2024; Tjoa and
uan, 2020), and Finance (Weber et al., 2024). XAI can be defined
s the use of ML techniques that, on the one hand, produce more
xplainable ML models while maintaining their ability to generalize
nd, on the other hand, enable humans to understand, trust and man-

age AI-based systems (Minh et al., 2022; Kostopoulos et al., 2024).
Previous research studies on XAI have proposed a comprehensive set
of methods with a well-defined explanation purpose and designed for
a specific target audience, ranging from technical/domain experts to
lay users (Arrieta et al., 2020; Adadi and Berrada, 2018; Brasse et al.,
2023). These methods differ in terms of their dependence on the AI

odel developed (e.g., model-specific/model-agnostic techniques) and
he scope of the explanation (e.g., local/global explanations). However,

the vast majority of AI business studies fail to address the question of
how to choose the most suitable XAI method for a given AI problem
and business context. This decision becomes increasingly challenging as
more XAI techniques emerge from the literature. In addition to the dif-
iculty in selecting an appropriate explainability method (Amarasinghe

et al., 2023, 2024), the process of quantifying and comparing the
degree of explainability of XAI methods is a subject that has received
carce attention (Sovrano and Vitali, 2023; Islam et al., 2020). The
ame applies to XAI implementations in real contexts, where there are
ot only difficulties in their adoption by end-users who are not AI
xperts, but also the problem of ensuring that these methods address

the desiderata (also known as requirements, needs, expectations) of
the business stakeholders, in such a way as to promote the creation of
XAI systems with practical and not just theoretical relevance (Vermeire
t al., 2021; Kotriwala et al., 2021; Langer et al., 2021; Jesus et al.,

2021).

1.2. Research contributions and organization

In this paper, we focus our attention on the problem of choosing,
n a given business context, the most appropriate XAI methods for
 given trained predictive ML model. We are particularly interested
n investigating how useful the explanations given by different XAI
ethods are to the end-users according to their requirements. To

his end, we propose a context-aware decision support system (DSS)
hat incorporates user knowledge and feedback into an application-
rounded metric that estimates the degree of trust-satisfaction of any
AI method, enabling to select those most suitable to a particular busi-
ess environment and research problem. Our primary goal is to build a
etric with a simple mathematical formulation that allows users with

arying degrees of analytical maturity to select the XAI technique that
best suit their explainability needs and the requirements of the business
problem. Research has shown the importance of building systems that
on the one hand can adapt to different problems, users and business
scenarios (Pawlicki et al., 2024; Haque et al., 2023), and on the other
hand can include qualitative evaluation components to promote the
adoption of XAI techniques by users of the application context (Aliyeva
nd Mehdiyev, 2024; Mohseni et al., 2021; Hoffman et al., 2023b). By
ncluding the human-in-the-loop, we intend to foster the selection of
AI methods that are aligned with the business stakeholders’ desiderata
nd that can actually improve decision-making processes in real-world
2 
business operations. The proposed DSS was applied and tested in a
ocus company from an automotive supply chain, and was developed to
e an open-source project for interested academics and practitioners.

In a nutshell, our paper contributes to the XAI research by:

(1) Closing the gap between theory and practice in business
organizations: We propose a systematic process for choosing,
from a set of XAI methods, the ones best suited to a given AI
use case in a particular real-world business context. Our strat-
egy follows a human-in-the-loop approach (Tsiakas and Murray-
Rust, 2022), promoting XAI methods that actually meet the
business stakeholders’ desiderata and that prove useful in their
decision-making processes.

(2) Estimating the extent of suitability to the business context:
We take advantage of user feedback, in the form of ratings for
trust and explanation satisfaction, to introduce a context-aware
DSS comprising an analytical metric that estimates the degree
of trust-satisfaction of any XAI method. In addition to including
domain users’ feedback, this metric is designed to also reflect the
nature of the users’ expertise, thereby enabling the selection of
XAI methods according to the users’ level of analytical maturity
and/or business knowledge in that particular context. To the best
of our knowledge, we are the first to propose this kind of metric.

(3) Empirical validating the system with a real-world applica-
tion context: In sharp contrast to the majority of the existing
literature, we test the practical relevance of our research in a
real business task, with real data and real users from one of
the world leading organizations in the automotive electronics
sector. For the first time in the literature, the applicability of
a DSS for selecting XAI methods in the context of Supply Chain
Management (SCM) is explored, while comparing feedback from
domain experts with that of academic researchers.

In what follows, we present an overview of related literature (Sec-
tion 2) that motivates the proposed DSS (characterized in Section 3).

e proceed with the empirical evaluation of our approach (Section 4),
sing a real-world case study. In Section 5, we present the results from

the empirical evaluation, proving the value and utility of the proposed
system in a real operational context. Finally, we discuss some practical
implications of our work in Section 6 and conclude in Section 7,
outlining possible avenues for future research.

2. Related work

Our research is particularly related to a relevant stream of literature
n the field of XAI: metrics for evaluating the quality and the utility of

explanations generated by XAI methods.
Using metrics to evaluate XAI methods has become a central topic

f research in the ML community (Vilone and Longo, 2021; van der
Waa et al., 2021; Nauta et al., 2023; Pawlicki et al., 2024; Zhou
et al., 2021; Al-Ansari et al., 2024; Doumard et al., 2023), given its
importance in facilitating the effective implementation of AI-based
systems in operational contexts. Doshi-Velez and Kim (2018) were pio-
eers in introducing a concise taxonomy to categorize different metrics

typically used to evaluate XAI methods. Such evaluation process can be
conducted with or without involving the human-in-the-loop.

2.1. Non-human based evaluation

By definition, this type of evaluation of XAI methods does not bene-
fit from any kind of human involvement. In such a setting, functionally-
grounded metrics are used, where the quality of explanations is ob-
jectively evaluated merely in terms of algorithmic measures. Examples
of this type of measures include, but are not limited to, fidelity, accu-
acy and algorithmic complexity of the ML model used to derive the
xplanations (for details see Schwalbe and Finzel, 2023). Although

interesting from a computational point of view, by minimizing time
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and costs associated with human experimentation (Doshi-Velez and
im, 2018), functionally-grounded metrics suffer from a limitation: the

inability to fully satisfy the interests, needs and expectations of end-
sers (hereinafter referred to as domain experts) who use the ML model
eing explained to support various business operations on a day-to-
ay basis. Notwithstanding its limitations, this type of metrics may
owever be suitable whenever the XAI methods under evaluation have
lready been properly tested and validated in environments involving
umans (Doshi-Velez and Kim, 2018).

2.2. Human subject-based evaluation

Human subject-based evaluation allows explanations to be evalu-
ted on the basis of human-based experimental procedures. In this

context, two types of evaluation metrics can be employed: human-
rounded and application-grounded metrics. While the former take
dvantage of simple lay-human-based experimental procedures that
imic the real context in which the explanations are intended to be
sed, the latter consider real humans and real tasks throughout the
valuation procedure. In the case of application-grounded metrics, the
uality of a given explanation is evaluated in the context of its end-task,
sing domain experts (Doshi-Velez and Kim, 2018).

Some efforts have been made to develop explainability metrics
and methodologies involving the human-in-the-loop. Hoffman et al.
(2023b) provide an interesting set of recommendations and measures
for selecting XAI methods that produce meaningful explanations for
nd-users. Each domain expert is also provided with a scoring system
hat allows them to evaluate the explanations given by different XAI
ethods according to different indicators. A second example is the
ork of Vermeire et al. (2021), who explored an initial version of
 practical methodology to support developers in providing useful
xplanations for domain experts. Although relevant in terms of of-
ering instruments to promote the evaluation and selection of XAI
ethods according to the business stakeholders’ desiderata, none of

he aforementioned works evaluates their proposals with real users
nd real business tasks. While previous research widely acknowledges
hat domain experts should be an integral part of the evaluation of
AI systems (Vermeire et al., 2021; Langer et al., 2021; Riveiro and
hill, 2021), the evaluation of explanations according to their align-

ment with the business desiderata and their real impact on decision-
aking remains poorly explored (Langer et al., 2021; Jesus et al., 2021;

Amarasinghe et al., 2023, 2024).

2.3. On the need to evaluate XAI methods in real-world business contexts

As reported in Table 1, the literature abounds with functionally-
rounded and human-grounded XAI evaluation practices, whereas
carce attention has been paid to application-grounded evaluations.
ecent research (Amarasinghe et al., 2023, 2024; Rong et al., 2024)
as demonstrated the need for application-grounded evaluation studies

as a way of fostering the adoption of XAI methods that actually reflect
he needs of the business context in which they are applied. From
he literature examined, the works Jesus et al. (2021), Amarasinghe

et al. (2024) are, to the best of our knowledge, the only ones providing
an application-grounded methodology, validated with real domain
xperts, to evaluate and compare the practical relevance of the expla-
ations given by a different set of XAI techniques. Nevertheless, we
ailed to find any empirically validated work proposing an application-
rounded methodology for choosing the most suitable XAI methods for
 given business organization in the context of SCM, a field that lacks
xplainable data-driven models capable of supporting proactive and
usiness-valuable decisions (Nimmy et al., 2022; Olan et al., 2024).

As supply chains are the backbone of any organization (Barbosa-Póvoa
et al., 2018), the evaluation of XAI techniques in this context is relevant
in order to facilitate the adoption of AI-based approaches that prove
useful in decision-making business processes.
 c

3 
In response to these gaps, we developed a DSS that allows or-
ganizations to find the XAI methods that best suit a given AI use
ase and the needs of domain experts that regularly work on it. Our

paper differs from the existing literature by proposing an application-
grounded analytical metric that relies on the feedback and experience
of domain experts to select the XAI method that best adapts and brings
real utility to the target context. We test our system in a segment of a
major supply chain with a real business task involving real users. The
proposed system has the potential to strengthen the trust of domain
experts in AI solutions, suggesting the selection of intelligible, trust-
worthy and satisfactory explanations that are aligned with the business
stakeholders’ desiderata.

3. Context-aware system for selecting XAI methods

The proposed system for selecting XAI methods in business organi-
zations is presented in Fig. 1. Our system is context-aware in the sense
hat it is totally driven by the preferences of the business stakeholders
including developers and domain experts) who are going to use it in a
eal-world context, so as to meet their explainability interests, the busi-
ess requirements of the context in which they operate, as well as their
evels of satisfaction and trust in the overall XAI evaluation system. In
ine with other authors (Kotriwala et al., 2021; Schoonderwoerd et al.,

2021; Amarasinghe et al., 2024), our interest lies in encouraging the
doption of XAI methods that actually meet the needs of the target

users. We argue that the utility and application interest of an XAI
method should be fully dependent on the application context, meaning
that a given XAI method may be the most suitable in a given domain,
characterized for instance by stakeholders with advanced analytical
maturity, but this might not necessarily be the case for another domain
where such maturity is lower.

As depicted in Fig. 1, the DSS consists of three main stages involving
the human in the loop: (1) the construction of an explanandum, which
acts as the computational object for which explanations are generated
(orange box, Section 3.1); (2) the selection of a pool of XAI methods
that meet the stakeholders’ needs and which are responsible for gen-
rating the explanations for the constructed explanandum (blue boxes,
ection 3.2); and (3) the XAISelector (Section 3.3), an application that
acilitates the evaluation of explanations by stakeholders (red boxes,
ection 3.3.1) and the estimation of their Degree of Trust-Satisfaction
DoTS) with respect to each selected XAI method (green boxes, Sec-
ion 3.3.2), making it possible to select those that best fit the needs of

the business context and problem.
In what follows, we characterize each of these stages together with

heir main components.

3.1. Construction of an explanandum

The first step towards applying the proposed DSS is the existence of
a given ML model built and tested for a particular business problem.
Hereafter, we refer to such a model as the explanandum.

In this work, we develop an explanandum for a specific business
task within a real-world supply chain context. In this process (detailed
in Section 4.2), we included domain experts in the loop, in order to
ensure that the model meets business requirements. This contrasts with
current practices in organizations, where the development of ML mod-
els is essentially focused on data scientists. Examples of collaboration
between data scientists and domain experts include verifying that the
model operates correctly and learns relationships between features gen-
uinely relevant to the underlying problem, and that it does not exhibit
significant biases during the learning stage (Dwivedi et al., 2023). This
interpretation process also enables business stakeholders to conduct,
if necessary, fine-tuning actions in order to train the best performing
model to be deployed. Following this process, the goal is to ensure
that the final model is coherent and free of any inconsistency that

ompromise its validity and the quality of the explanations generated
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Table 1
Overview of different XAI evaluation practices in the literature.

Source Type of evaluation Desiderata Real business task Business context

Schmidt and Biessmann (2019) Human-grounded Trust No –
Islam et al. (2020) Functionally-grounded Comprehensibility No –
Hase and Bansal (2020) Human-grounded Simulatability No –
Vermeire et al. (2021) Human-grounded Utility No –
Rosenfeld (2021) Functionally-grounded Performance,

Fidelity,
Complexity,
Stability

No –

Jesus et al. (2021), Amarasinghe et al. (2024) Application-grounded Utility Yes Finance
Cugny et al. (2022) Functionally-grounded Stability,

Infidelity,
Complexity

No –

Arias-Duart et al. (2022) Functionally-grounded Fidelity No –
Agarwal et al. (2022) Functionally-grounded Fidelity,

Stability,
Fairness

No –

Hoffman et al. (2023b) Human-grounded Satisfaction,
Trust,
Comprehensibility,
Effectiveness

No –

Hoffman et al. (2023a) Human-grounded Effectiveness No –
Sovrano and Vitali (2023) Human-grounded Explainability No –
Miró-Nicolau et al. (2024) Functionally-grounded Fidelity No –
This paper Application-grounded Trust,

Satisfaction
Yes Supply chain

management
Fig. 1. Business Process Model and Notation (BPMN) model of the workflow of the proposed DSS for selecting XAI methods in business organizations.
f

g

D
s
d
s

from it. As the explanations produced by the XAI methods rely on
he deployed model, the engagement of the relevant stakeholders in
he model-building process is an important factor to promote a better
nderstanding of its general functioning and to increase the levels of
atisfaction and trust in the overall XAI system.

3.2. Pre-selection of XAI methods and generation of explanations

The constructed explanandum is the basis for the production of
xplanations from a comprehensive pool of XAI methods, carefully
elected to best suit the business stakeholders’ desiderata. We propose
o select this pool of methods by conducting interviews with relevant
usiness stakeholders, led by the data scientist. The main purpose of
he interviews is to understand and identify critical aspects, including

the application problem for which the explanations are to be built, the
profile and analytical maturity of the end-users, as well as their needs
nd constraints. In this process, we take advantage of the questionnaires
roposed by Vermeire et al. (2021), which include questions that
rovide a general overview of the characteristics of the stakeholders
nd the context in which they operate — factors considered to influence
he relationship between the explanatory information and understand-
ng (Langer et al., 2021). Throughout this stage, we assume that the
4 
data scientist has sufficient technical knowledge to discard XAI methods
that are too complex for the application context or that do not meet,
or example, some of the stakeholders’ visualization requirements.

Once the pool of XAI methods has been selected, explanations are
enerated for the explanandum, one for each individual method.

3.3. The XAISelector

In order to collect human feedback on the derived explanations, our
SS comprises the XAISelector, a web application that facilitates the

takeholders’ evaluation regarding the utility of the explanations pro-
uced by XAI methods according to two main aspects: (1) the business
takeholders’ trust in the ML model provided with explanations and (2)

their satisfaction with the explanations produced. In our work, these
aspects form the basis for determining the most suitable XAI method for
a given business context, depending on the needs of the stakeholders
operating within it (see Section 3.3.2). We publish the source code1

of XAISelector, for the sake of reproducibility and for the primary

1 https://github.com/mindior/xaiselector/.

https://github.com/mindior/xaiselector/
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purpose of making it a useful solution for interested researchers and
ractitioners. A Flask Python web application framework was used to
evelop a working system prototype, making it available online for
ider visibility. The application architecture follows the Model-View-
ontroller (MVC) pattern (Leff and Rayfield, 2001), in which models,
ontrols, and interfaces are separated into different components. The
ollowing processor and software were used for implementing the

XAISelector: Intel(R) Core(TM) i7-10850H CPU-22.70 GHz 32 GB RAM,
Windows 10. In what follows, we detail the main components of the
XAISelector.

3.3.1. Evaluating explanations involving the human-in-the-loop
XAISelector facilitates the online implementation of two experimen-

tal stages to evaluate the utility of the explanations derived from a
iven pre-selected pool of XAI methods with business stakeholders.
n the first stage, before having contact with the explanations, the
takeholders evaluate their trust in the developed ML model. For that,
e propose to use the Trust Scale Recommended for XAI by Hoffman
t al. (2023b) as evaluation instrument, consisting of a questionnaire
ith 8 items on a 5-point Likert-type scale. This first evaluation process

akes place after presenting the results of the deployed ML model to the
takeholders, where the data scientist showcases its predictive perfor-
ance and provides examples of model predictions supported by some

elevant evaluation metrics (e.g., bias, prediction errors, coefficient of
etermination). In a second stage, the data scientist presents to the

stakeholders the explanations produced from the different explainabil-
ty methods so as to further evaluate their trust in the deployed model

after having contact with such explanations, using the same evaluation
instrument as before. Following this strategy, we are interested in
comparing, for each XAI method, the stakeholders’ levels of trust in the
XAI-based ML pipeline prior to and after contact with the corresponding
explanations. Finally, stakeholders are asked to rate their level of
satisfaction with each explanation produced. To this end, we propose
to employ the Explanation Satisfaction Scale, proposed by Hoffman et al.
(2023b), which also consists of a questionnaire with 8 items on a
-point Likert-type scale.

The two evaluation scales described above are implemented in
the XAISelector application, in order to facilitate the collection of
responses from business stakeholders. In what follows, each of these
scales is used to build a quantitative metric for estimating the degree
of trust-satisfaction of each individual XAI method.

3.3.2. Estimating the degree of trust-satisfaction of XAI methods
In Section 3.3.1, we propose evaluating explainability methods

sing a human-in-the-loop approach, i.e., exploiting stakeholder’s trust
nd satisfaction as a way of gauging the quality and the utility of the
xplanations obtained. Yet, the existence of two independent evaluation
easures built on Likert-type scales makes it difficult to find which XAI
ethod provides the greatest practical utility for domain experts. This

s particularly evident when the feedback obtained stems from different
takeholders with varying degrees of business expertise and analytical
aturity, as is the case in most real-world organizations. In practice,
AI methods should be designed and selected according to their appli-
ation context and the nature of the underlying problem (Amarasinghe

et al., 2023, 2024). However, this task can become unfeasible, given
the multitude of existing problems and business settings.

To address these challenges, we introduce a new analytical metric
o establish an estimate of the Degree of Trust-Satisfaction (DoTS) of a
re-defined set of XAI methods. This metric can serve as a basis to select
he methods that best suit the context, the problem and the business
takeholders operating therein. The rationale for creating this metric
rises from the need to create evaluation strategies for XAI methods
hat reflect the actual needs of the context in which they are applied.
o far, the literature has undervalued this issue, proposing metrics that
o not take advantage of feedback from real target users and that

re not defined to suit their business requirements. Consequently, it

5 
becomes difficult to evaluate XAI methods according to the specific
characteristics of each application context, thus posing barriers to their
adoption by the real-world users (see Amarasinghe et al., 2023, 2024,
for a detailed discussion). We propose that DoTS depends on the
stakeholders’ feedback on the explanations generated, by measuring
the two measures presented in Section 3.3.1: the stakeholders’ level
of trust in the XAI-based ML model, and the stakeholders’ level of
satisfaction with provided explanations. Previous studies (Kim et al.,
2009) have demonstrated the importance of these two measures in
building successful business relationships and in promoting the adop-
tion of XAI techniques by users (Aliyeva and Mehdiyev, 2024; Hoffman
et al., 2023a,b).

Next, we constructively describe the DoTS metric in a formal way,
tarting by defining some of its fundamental concepts.

Definition 1 (XAI method). In a classical supervised learning setting,
there is an input space  ⊆ R𝑝 and an output space  ⊆ R. Let 
be the space of predictive models that can map  into  . In such a
setting, let 𝑓 ∈  ∶  →  be the selected ML model that computes
a predictive estimate (𝑦̂) when fed with a 𝑝-dimensional input vector
(𝐱 ∈ ), resulting in 𝑦̂ = 𝑓 (𝐱) ∈  . An XAI method is a function
𝑔 ∶ ( , , 𝑓 ) → 𝐸, where 𝐸 is a set (or a singleton set) of explanations
generated for the model 𝑓 .

Definition 2 (Trust in the constructed explanandum). Let 𝑄𝑇 be a set of
Likert-type questions, ranging from a minimum score value of 𝑚𝑇 to
a maximum score value of 𝑀𝑇 , designed to measure the stakeholders’
trust in a given predictive model 𝑓 . For a given respondent 𝑟 ∈ 𝑅,
we define the overall trust level in the model 𝑓 explained by an XAI
method 𝑔 (𝑇𝑔 ,𝑟) as the average of the normalized difference between
the trust levels obtained with and without the explanations generated
by 𝑔 across all questions 𝑞𝑡 ∈ 𝑄𝑇 . Formally, we have

𝑇𝑔 ,𝑟 = 1
|𝑄𝑇 |

∑

𝑞𝑡∈𝑄𝑇

(

𝑇𝑔 ,𝑟,𝑞𝑡 − 𝑇𝑟,𝑞𝑡
)

− (𝑚𝑇 −𝑀𝑇 )

(𝑀𝑇 − 𝑚𝑇 ) − (𝑚𝑇 −𝑀𝑇 )
, (1)

with 𝑇𝑔 ,𝑟,𝑞𝑡 and 𝑇𝑟,𝑞𝑡 denoting the trust levels obtained with and without
he explanations generated by 𝑔 for the respondent 𝑟 in question 𝑞𝑡,
espectively.

The overall 𝑇𝑔 can then be calculated as the arithmetic mean of 𝑇𝑔 ,𝑟
cross respondents 𝑟 ∈ 𝑅. In the definition of 𝑇𝑔 ,𝑟, we employ a min–
ax normalization (James et al., 2023), where min = 𝑚𝑇 − 𝑀𝑇 and
ax = 𝑀𝑇 − 𝑚𝑇 are respectively the minimum and maximum values

hat the difference 𝑇𝑔 ,𝑟,𝑞𝑡 − 𝑇𝑟,𝑞𝑡 can take, for all 𝑞𝑡 ∈ 𝑄𝑇 and 𝑟 ∈ 𝑅. All
alues of 𝑇𝑔 ,𝑟 thus lie in the interval [0, 1]. Looking at the structure of
q. (1), we seek to find an XAI method 𝑔 such that 𝑇𝑔 ,𝑟,𝑞𝑡 > 𝑇𝑟,𝑞𝑡 , for all

𝑟 ∈ 𝑅 and 𝑞𝑡 ∈ 𝑄𝑇 . Hence, from the perspective of trust, XAI methods
with higher 𝑇𝑔 are considered superior to those with lower 𝑇𝑔 .

At this point, note that the sum of the differences of multiple Likert-
type answers reflected in Eq. (1) is justified as we are interested in
constructing a subjective evaluation index of the overall trust level in
he explained model, rather than in interpreting the values of 𝑇𝑔 ,𝑟 ac-
ording to the underlying characteristics/labels of each Likert number
i.e., ‘‘I strongly disagree’’ to ‘‘I strongly agree’’) (Allen and Seaman,

2007; Norman, 2010; Batterton and Hale, 2017). We chose to calculate
the average value (rather than the median) 𝑇𝑔 across respondents 𝑟 ∈ 𝑅
nd questions 𝑞𝑇 ∈ 𝑄𝑇 , because the trust index constructed is intended

to be sensitive to small variations in respondents’ answers, and not
based on the most repeated value in each question. We do, however,
acknowledge that this aggregation of scales should be evaluated for
internal consistency between the answers (Allen and Seaman, 2007),
.g., using Cronbach’s Alpha (Cronbach, 1951).

According to Definition 2, and following the rationale presented in
Section 3.3.1, the use of the Trust Scale Recommended for XAI proposed
y Hoffman et al. (2023b) implies that the value of the subjective index

𝑇𝑔 , for a given 𝑔, is based on the answers to a questionnaire with eight
(|𝑄𝑇 | = 8) Likert-type items ranging from 𝑚𝑇 = 1 (‘‘I disagree strongly’’)
to 𝑀 = 5 (‘‘I agree strongly’’).
𝑇
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𝐷 𝑜𝑇 𝑆𝑔 =

∑

𝑟∈𝑅
𝑤𝐸 ,𝑟

(

𝑤𝐼 ,𝑟𝑇𝑔 ,𝑟 + (1 −𝑤𝐼 ,𝑟)𝑆𝑔 ,𝑟
)

∑

𝑟∈𝑅
𝑤𝐸 ,𝑟

=

∑

𝑟∈𝑅
𝑤𝐸 ,𝑟

⎛

⎜

⎜

⎜

⎝

𝑤𝐼 ,𝑟
|𝑄𝑇 |

∑

𝑞𝑡∈𝑄𝑇

(

𝑇𝑔 ,𝑟,𝑞𝑡 − 𝑇𝑟,𝑞𝑡
)

− (𝑚𝑇 −𝑀𝑇 )

2(𝑀𝑇 − 𝑚𝑇 )
+

1 −𝑤𝐼 ,𝑟
|𝑄𝑆 |

∑

𝑞𝑠∈𝑄𝑆

𝑆𝑔 ,𝑟,𝑞𝑠 − 𝑚𝑆

𝑀𝑆 − 𝑚𝑆

⎞

⎟

⎟

⎟

⎠

∑

𝑟∈𝑅
𝑤𝐸 ,𝑟

, (4)

Box I.
u
f

X

t

o

a

Definition 3 (Satisfaction with explanations). Let 𝑄𝑆 be a set of Likert-
ype questions, ranging from a minimum score value of 𝑚𝑆 to a maxi-
um score value of 𝑀𝑆 , designed to measure stakeholders’ satisfaction
ith the explanations provided by an XAI method 𝑔. For a given

respondent 𝑟 ∈ 𝑅, we define the overall satisfaction level with the
explanations generated by 𝑔 (𝑆𝑔 ,𝑟) across all questions 𝑞𝑠 ∈ 𝑄𝑆 by

𝑆𝑔 ,𝑟 = 1
|𝑄𝑆 |

∑

𝑞𝑠∈𝑄𝑆

𝑆𝑔 ,𝑟,𝑞𝑠 − 𝑚𝑆

𝑀𝑆 − 𝑚𝑆
, (2)

with 𝑆𝑔 ,𝑟,𝑞𝑠 denoting the satisfaction level with the explanations gener-
ated by 𝑔 for the respondent 𝑟 in question 𝑞𝑠.

The overall 𝑆𝑔 can then be calculated as the arithmetic mean of
𝑆𝑔 ,𝑟 across respondents 𝑟 ∈ 𝑅. Similarly to the construction of 𝑇𝑔 , we
normalize the values of 𝑆𝑔 ,𝑟,𝑞𝑠 into the interval [0, 1] by considering
in = 𝑚𝑆 and max = 𝑀𝑆 as the minimum and maximum values

hat 𝑆𝑔 ,𝑟,𝑞𝑠 can take, for all 𝑞𝑠 ∈ 𝑄𝑆 and 𝑟 ∈ 𝑅. The assumption of
anipulating Likert scales as interval values follows the rationale given

bove when defining 𝑇𝑔 . Analogously to the trust measure, we seek to
ind an XAI method 𝑔 that maximizes 𝑆𝑔 for all 𝑟 ∈ 𝑅 and 𝑞𝑠 ∈ 𝑄𝑆 .

In such a setting, the use of the Explanation Satisfaction Scale pro-
osed by Hoffman et al. (2023b) implies that, for a given 𝑔, the value

of the subjective index 𝑆𝑔 is based on the answers to a questionnaire
ith eight (|𝑄𝑆 | = 8) Likert-type items ranging from 𝑚𝑆 = 1 (‘‘I disagree

trongly’’) to 𝑀𝑆 = 5 (‘‘I agree strongly’’), enabling stakeholders to rate
uitable and unsuitable explanations.

Using both definitions above, we are able to define the Degree of
Trust-Satisfaction (DoTS) of an XAI method:

Definition 4 (Degree of Trust-Satisfaction). The basis of DoTS of an XAI
method 𝑔 is defined as the combination of the normalized measures 𝑇𝑔 ,𝑟
and 𝑆𝑔 ,𝑟, intended to be maximized across all respondents 𝑟 ∈ 𝑅, i.e.,

𝑇𝑔 + 𝑆𝑔 = 1
|𝑅|

∑

𝑟∈𝑅
𝑇𝑔 ,𝑟 + 𝑆𝑔 ,𝑟

= 1
|𝑅|

∑

𝑟∈𝑅

⎛

⎜

⎜

⎜

⎝

1
|𝑄𝑇 |

∑

𝑞𝑡∈𝑄𝑇

(

𝑇𝑔 ,𝑟,𝑞𝑡 − 𝑇𝑟,𝑞𝑡
)

− (𝑚𝑇 −𝑀𝑇 )

2(𝑀𝑇 − 𝑚𝑇 )

+ 1
|𝑄𝑆 |

∑

𝑞𝑠∈𝑄𝑆

𝑆𝑔 ,𝑟,𝑞𝑠 − 𝑚𝑆

𝑀𝑆 − 𝑚𝑆

⎞

⎟

⎟

⎟

⎠

. (3)

This formulation assumes equal weights for both measures 𝑇𝑔 ,𝑟 and
𝑔 ,𝑟. Yet, in practice, stakeholders may be interested in giving more

importance to one measure than another, depending on the problem
and business context. On the other hand, Eq. (3) does not take into
account the level of expertise of the stakeholder evaluating the explain-
bility method 𝑔. Assuming different weights to be assigned to the trust
nd satisfaction components, we can thus write the DoTS metric as a
eighted combination of the normalized measures 𝑇𝑔 ,𝑟 and 𝑆𝑔 ,𝑟 across

espondents 𝑟 ∈ 𝑅, as defined by Eq. (4) in Box I.
6 
where 0 < 𝑤𝐸 ,𝑟 ≤ 1 is the weight quantifying the expertise of the
stakeholder 𝑟, whereas 0 ≤ 𝑤𝐼 ,𝑟 ≤ 1 and 1 − 𝑤𝐼 ,𝑟 reflect the relative
importance assigned by stakeholder 𝑟 to the evaluation components
𝑇𝑔 ,𝑟 and 𝑆𝑔 ,𝑟, respectively. At this point, note that 𝑤𝐼 ,𝑟 is the only
controllable parameter that comprises the DoTS metric. The effect of
varying this parameter on the overall dynamics of the DoTS is studied
in Section 5.3. The weight 𝑤𝐸 ,𝑟 can be understood as a way of balancing
the subjectivity of the evaluations, assuming that the ratings provided
by more experienced stakeholders and/or those with greater analytical
maturity should have a stronger impact when determining the DoTS of
an XAI method (Doshi-Velez and Kim, 2018).

Of practical interest, the DoTS was conceived and designed to
be a metric of easy mathematical interpretation in order to promote
nderstandability for the domain users – a relevant aspect in the
ield of operational research (De Bock et al., 2024). On the other

hand, the DoTS is an analytically tractable expression bounded in the
interval [0, 1], making its interpretation more convenient for business
stakeholders. If the value of 𝐷 𝑜𝑇 𝑆𝑔 is close to 0, it means that the

AI method 𝑔 reveals a low degree of trust-satisfaction and little utility
to the context and stakeholders’ needs, whereas values of DoTS close
to 1 indicate a significant degree of trust-satisfaction for 𝑔. Following
this intuition, given a set of XAI methods 𝐺, the one that should be
selected as the method that best suits the stakeholders’ needs according
o their organizational context and analytical maturity is given by
𝑔∗ = ar g max𝑔{𝐷 𝑜𝑇 𝑆𝑔 ∶ 𝑔 ∈ 𝐺}. As the DoTS is a metric that depends
n subjective feedback, which can naturally vary from stakeholder to

stakeholder, we suggest complementing it by also measuring the inter-
rater agreement among the target stakeholders involved in the selection
of 𝑔∗. For that, we consider the weighted kappa statistic (Cohen, 1968),
ppropriate for Likert scales.

3.3.3. On the adequacy and applicability of the DoTS
The DoTS metric has three important properties that make it suit-

able to be used in practical contexts. In what follows, we elaborate on
such properties.

Sensitivity to the context and conditions of the problem. The DoTS
metric, being dependent on human feedback, makes it possible for real
users of the application context to select XAI methods that, on the one
hand, yield satisfactory explanations for the explanandum constructed
and, on the other hand, provide a better understanding of its outputs.
In addition, the metric is sensitive to the analytical maturity of the
stakeholders operating in the business context. To motivate the latter
idea, we present the following example.

Example 1. Consider a set 𝑅 = {𝑟1, 𝑟2, 𝑟3} of three decision-makers
who use a particular explanandum built to address a given business
problem. Let 𝑤𝐸 ,𝑟1 = 𝑤𝐸 ,𝑟2 = 0.25 and 𝑤𝐸 ,𝑟3 = 1 be the weights
that reflect the degree of analytical maturity of the different decision-
makers, measured, for instance, by work experience in the problem
context. Take a scenario where all decision-makers consider that the
measures of trust (𝑇 ) and satisfaction (𝑆 ) generated by a given XAI
𝑔 𝑔
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method 𝑔 are equally relevant (i.e., 𝑤𝐼 ,𝑟1 = 𝑤𝐼 ,𝑟2 = 𝑤𝐼 ,𝑟3 = 0.5).
uppose that while decision-makers 𝑟1 and 𝑟2 agree that the XAI method
is optimal in the sense of maximizing both the measures 𝑇𝑔 and 𝑆𝑔

i.e., 𝑇𝑔 ,𝑟 = 𝑆𝑔 ,𝑟 = 1,∀𝑟 ∈ {𝑟1, 𝑟2}), decision-maker 𝑟3 finds the method 𝑔
nappropriate for the business problem in question (i.e., 𝑇𝑔 ,𝑟3 = 𝑆𝑔 ,𝑟3 =
). In this context, considering the feedback from the three decision-
akers, the overall score obtained using the DoTS metric for the XAI
ethod 𝑔 is 𝐷 𝑜𝑇 𝑆𝑔 = 1∕3 (≈ 33.3%). In other words, the negative

eedback from a single experienced decision-maker heavily impacts the
egree of utility of the XAI 𝑔 method for the underlying problem. In
ontrast, let us now assume that 𝑤𝐸 ,𝑟1 = 𝑤𝐸 ,𝑟2 = 1 and 𝑤𝐸 ,𝑟3 =
.25. Preserving all other problem assumptions, this yields a score of
 𝑜𝑇 𝑆𝑔 ≈ 0.89. This means that in a context operated by experienced
sers, the feedback from an inexperienced user, although valuable, does
ot impact strongly on the choice of a particular XAI method as the
ost adequate for the problem.

Consistency and comparability. The DoTS metric is deterministic,
which guarantees the same scores given the same inputs collected from
takeholders, regardless the application context. This makes the metric
eneralizable and comparable between business environments.

Scalability and interpretability. Following the formulation (4), the
construction of the DoTS metric involves three fundamental steps. The
irst step is the calculation of 𝑇𝑔 , in which we start by computing, for

each respondent 𝑟 ∈ 𝑅, the normalized trust level obtained in each
question 𝑞𝑡 ∈ 𝑄𝑇 . This results in a complexity of (|𝑅| × |𝑄𝑇 |) for the
computation of 𝑇𝑔 . The second step is the computation of 𝑆𝑔 which,
following the same rationale as that used to compute 𝑇𝑔 , results in a
omplexity of (|𝑅|× |𝑄𝑆 |). The third and final step in the construction

of the DoTS consists of combining the measures 𝑇𝑔 and 𝑆𝑔 obtained
or each respondent 𝑟 ∈ 𝑅, considering the weights 𝑤𝐼 ,𝑟 and 𝑤𝐸 ,𝑟.

The total complexity of the evaluation of the DoTS metric is therefore
inear – expressed as (|𝑅|× (𝑄𝑇 +𝑄𝑆 )). The pseudo-code in Algorithm

1 summarizes the process of computing the DoTS metric. The DoTS
s therefore interpretable and computational efficient, which makes it
ppealing for application in multiple business contexts.

Algorithm 1: The DoTS algorithm
Input: 𝐺 , 𝑅, 𝑄𝑇 , 𝑄𝑆 , 𝑇𝑔 ,𝑟,𝑞𝑡 , 𝑇𝑟,𝑞𝑡 , 𝑆𝑔 ,𝑟,𝑞𝑠 , 𝑚𝑇 , 𝑀𝑇 , 𝑚𝑆 , 𝑀𝑆 , 𝑤𝐼 ,𝑟, 𝑤𝐸 ,𝑟
Result: 𝑔∗ // the XAI method with the highest utility

and adaptability to the business context
for 𝑔 ∈ 𝐺 do

𝐷 𝑜𝑇 𝑆𝑔 ← 0
for 𝑟 ∈ 𝑅 do

𝑇𝑔 ,𝑟 ← 0, 𝑆𝑔 ,𝑟 ← 0
for 𝑞𝑡 ∈ 𝑄𝑇 do

𝑇𝑔 ,𝑟 ← 𝑇𝑔 ,𝑟 +
(

𝑇𝑔 ,𝑟,𝑞𝑡−𝑇𝑟,𝑞𝑡
)

−(𝑚𝑇 −𝑀𝑇 )

(𝑀𝑇 −𝑚𝑇 )−(𝑚𝑇 −𝑀𝑇 )
end
𝑇𝑔 ,𝑟 ← 1

|𝑄𝑇 |
𝑇𝑔 ,𝑟 ⊳ Definition (1)

for 𝑞𝑠 ∈ 𝑄𝑆 do
𝑆𝑔 ,𝑟 ← 𝑆𝑔 ,𝑟 +

𝑆𝑔 ,𝑟,𝑞𝑠−𝑚𝑆
𝑀𝑆−𝑚𝑆

end
𝑆𝑔 ,𝑟 ← 1

|𝑄𝑆 |
𝑆𝑔 ,𝑟 ⊳ Definition (2)

𝐷 𝑜𝑇 𝑆𝑔 ← 𝐷 𝑜𝑇 𝑆𝑔 +𝑤𝐸 ,𝑟(𝑤𝐼 ,𝑟𝑇𝑔 ,𝑟 + (1 −𝑤𝐼 ,𝑟)𝑆𝑔 ,𝑟)
end
𝐷 𝑜𝑇 𝑆𝑔 ← 𝐷 𝑜𝑇 𝑆𝑔∕

∑

𝑟∈𝑅 𝑤𝐸 ,𝑟 ⊳ Definition (4)
end
𝑔∗ = ar g max𝑔{𝐷 𝑜𝑇 𝑆𝑔 ∶ 𝑔 ∈ 𝐺}

4. System evaluation

To test the effectiveness and practical utility of the proposed DSS,
we resort to a real business problem from a leading focus company in
7 
the automotive sector: Bosch Automotive Electronics Portugal (AE/P).
The problem falls within the area of supply chain demand estimation
and was modeled using a multivariate ML approach. The constructed

odel serves as the explanandum for constructing explanations from a
pool of pre-selected XAI methods and carrying out experiments with
real business stakeholders. In this process, XAISelector is used as a
way of collecting stakeholders’ feedback on the practical utility of
the explanations produced. The following software and libraries were
used for implementing the explanations and carry out the experiments
presented throughout this section: Python 3.9; R 4.1.0; Scikit-learn
0.23; SHAP 0.41.0; LIME 0.2.0.1; ALE 1.1.3 and rminer 1.4.6.

4.1. Case study

Our research context is the central logistics department of Bosch
E/P, operating on a daily basis with a multitude of customers, manu-

acturing components and suppliers. Given the complexity of its supply
hain, the main focus is on the efficient management of the business
rocesses. One of the processes with greatest impact on the organiza-
ion is the demand management, in particular the proactive manage-
ent of variations in the manufacturer’s demand for components. In

uch a setting, the organization is interested in proactively estimate,
ver the planning horizon, the demand variation during the period in
hich no changes in supplier orders are allowed (also known as the

rozen period (Lian et al., 2006)). This interest stems from the fact that
he actual demand signals at the moment immediately after the end of
he frozen period tend to differ from those planned at the beginning of
he frozen period for that same moment. This is typically motivated by
hort-term changes in customer orders, which lead to a constant change

in suppliers’ order plans.
To address this problem, we develop a supervised learning strategy

that makes it possible to estimate the variation in demand at the
moment immediately after the end of the frozen period compared to
that planned at the beginning of that period. A proprietary dataset of
historical demand information provides the support for the proposed
strategy, outlined in detail throughout Section 4.2.

4.2. On the construction of the explanandum

In the context of the business problem previously presented, we
construct a specific explanandum, in the form of a ML model, to serve as
n object for the generation of explanations and their subsequent evalu-
tion using the DoTS metric. Nevertheless, note that the proposed DSS –
ncluding the DoTS metric – can be applied to any other explanandum.

4.2.1. Model definition and learning setup
Let 𝐷 = {(𝐱𝑖, 𝑦𝑖)}𝑛𝑖=1 be a dataset with 𝑛 = |𝐷| instances in the form

of input–output pairs (𝐱𝑖, 𝑦𝑖), where 𝐱 is a 𝑝-dimensional feature vector
f input (independent) variables from the space  ⊆ R𝑝 and 𝑦 is the
arget (dependent) variable from the space  ⊆ R. In our case, the

target variable is the actual demand at the moment immediately after
the end of the frozen period. Let 𝑡 ∶  →  be the target function that

aps the input data encoded in 𝐱 to the desired outputs values 𝑦𝑖 ∈  .
ollowing the empirical risk minimization principle (Vapnik, 1999), we

are interested in finding a predictive model 𝑓 ∈  ∶  →  that is close
to the target function 𝑡 on the training examples, where  is the space
of predictive models (or hypotheses).

In the context of our business problem, we consider two groups
of variables that form our input data 𝐱 = [𝐰, 𝐳], one describing the
tructure of the component (𝐰) and the other describing its demand
ynamics (𝐳), which explain the variations in 𝑦 during the frozen
eriod. Table 2 presents a characterization of the variables, in terms of

their type and the transformation employed for modeling purposes. The
variables collected were selected with the assistance of business stake-
holders, in order to promote the inclusion of meaningful explanatory
information.



M.I. Reis et al.

l
[

c
p

ℎ

g
a
g

t
d

A
b
w
o
a

a
o
b
t

Computers in Industry 165 (2025) 104233 
Table 2
Input variables used in the predictive model 𝑓 .

Feature group Variable Description Type of variable Transformation

𝑤 𝑊1 Type of component Categorical One-hot-encoding
𝑊2 Distinct number of finished products using the component Numerical 𝑧-score
𝑊3 Distinct number of customers depending on the component Numerical 𝑧-score

𝑧 𝑍1 Planned demand at the beginning of the frozen period Numerical 𝑧-score
𝑍2,𝑙 Weekly lags (𝑙 = 1,… , 4) of planned demand Numerical 𝑧-score
𝑍3 Variance of the lags of planned demand Numerical 𝑧-score
𝑍4 Average of the lags of planned demand Numerical 𝑧-score
𝑍5 Amplitude (max − min) of the lags of planned demand Numerical 𝑧-score
i

a
p
t
o
t

a

Our modeling goal is to determine a predictive function 𝑓 (⋅) that
earns the relationships between the input variables encoded in 𝐱 =
𝐰, 𝐳] and the target variable, in order to further derive accurate esti-

mates of the actual demand 𝑦 at the moment immediately after the end
of the frozen period, i.e.,

𝑦𝑖 = 𝑓 (𝐰𝑖, 𝐳𝑖) + 𝜀𝑖, (5)

where 𝜀 is the stochastic error process. Such predictive function 𝑓 (⋅)
an be derived by solving the following mathematical optimization
roblem:

𝑓 = ar g min
ℎ∈

1
𝑛

𝑛
∑

𝑖=1

(

ℎ(𝐰𝑖, 𝐳𝑖; 𝜃), 𝑦𝑖
)

, (6)

where 𝜃 is a 𝑚-dimensional vector of model hyperparameters that shape
the structure of the hypothesis ℎ, whereas  ∶  ×  → R is the
loss function that measures the quality of the approximation of 𝑦𝑖 by
(𝐰𝑖, 𝐳𝑖; 𝜃) over the training instances 𝑖 = 1,… , 𝑛. We implement the

regression strategy (5) by considering six predictive ML algorithms, as
given in the SKLearn library (Pedregosa et al., 2011), namely Multilayer
Perceptron (MLP) (Pinkus, 1999), Random Forest (Breiman, 2001),
eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016), Bag-
ing (Breiman, 1996), k-Nearest Neighbors (kNN) (James et al., 2023)
nd Support Vector Regression (SVR) (Cortes and Vapnik, 1995). The
rid-search optimization of the hyperparameters of the different mod-

els follows the configuration presented in Table 3. The choice of
hese algorithms stems from their widespread use in the context of
emand estimation (Abolghasemi et al., 2020; Joseph et al., 2022;

Bertolini et al., 2021), including in previous studies carried out in Bosch
E/P (Gonçalves et al., 2021; Barros et al., 2023) in the context of
usiness analytics. During the model-fitting process, the target variable
as standardized using a 𝑧-score transformation (James et al., 2023)
ver the training set. The model predictions are then post-processed by
pplying the inverse of the transformation.

4.2.2. Model evaluation and validation
Following the setup described in Section 4.2.1, the evaluation and

nalysis of the generalization capacity of the ML models are conducted
n a dataset 𝐷 comprising 𝑛 = 63,203 records, captured in a weekly
asis for 4342 different manufacturing components. Each record in
he dataset is characterized by both the input features presented in

Table 2 and the target variable 𝑦. We split such dataset into three
time ordered portions: training data (50%, with the oldest records),
validation data (20%) and test data (30%, with the most recent data
samples). The validation data serves as the basis for tuning the model
hyperparameters, following a grid-search optimization procedure. In
this setup, the objective function to be minimized is the Mean Absolute
Error (MAE) between the estimated and the actual demand. Once the
hyperparameters are fixed, we then apply a rolling window evaluation
scheme (Tashman, 2000), which produces 20 training and testing
iterations through time. This is obtained by partitioning the original
test data (the previously mentioned 30%) into 20 independent (non-
overlapping) and equally sized test windows, each with 1.5% of the
data. During this procedure, the training window (corresponding to
70% of the full data) rolls forward in each iteration by discarding the
oldest 1.5% records and adding more recent 1.5% ones. Each iteration
8 
Table 3
Hyperparameters of the learning regression models.

Algorithm Parameters

Multilayer Perceptron {100𝑘 ∣ 𝑘 = 1, 2,… , 9}
activation: Identity; ReLU

Random Forest n_estimators ∈ {150, 300, 450}
max_depth ∈ {‘‘None’’, 50, 100}
max_features ∈ {0.6, 0.8, 1.0}
bootstrap ∈ {1, 0}

XGBoost n_estimators ∈ {150, 300, 450}
max_depth ∈ {50, 100, 150}
learning_rate ∈ {0.0001, 0.001, 0.01}
subsample ∈ {0.6, 0.8, 1.0}

Bagging n_estimators ∈ {150, 300, 450}
max_samples ∈ {0.6, 0.8, 1.0}
max_features ∈ {0.6, 0.8, 1.0}
bootstrap ∈ {1, 0}

kNN n_neighbors ∈ {3, 5, 7}
weights ∈ {‘‘uniform’’, ‘‘distance’’}
metric ∈ {‘‘Euclidean’’, ‘‘Manhattan’’, ‘‘Minkowski’’}

SVR kernel ∈ {‘‘linear’’, ‘‘poly’’, ‘‘rbf’’}
degree ∈ {2, 3, 4}
C ∈ {‘‘scale’’, ‘‘auto’’}
gamma ∈ {0.001, 0.1, 1}

Table 4
Summary of prediction performance (expressed in %NMAE and Adj. 𝑅2) obtained from
the different models over 20 rolling window iterations. The best values are highlighted
n boldface. The values in round brackets represent the ranking within the column.

%NMAE [Std. Err.] Adj. 𝑅2 [Std. Err.]

MLP 0.237 [0.117] (4) 0.973 [0.013] (4)
Random Forest 0.205 [0.113] (2) 0.975 [0.017] (2)
XGBoost 0.259 [0.163] (5) 0.974 [0.015] (3)
Bagging 0.206 [0.111] (3) 0.975 [0.016] (2)
kNN 0.184 [0.112] (1) 0.976 [0.023] (1)
SVR 0.274 [0.181] (6) 0.972 [0.019] (5)

of the rolling window is then used to evaluate the performance of the
predictive models. Following this strategy, the generalization ability of
each model is tested with different and sequential test windows, thus
making the evaluation robust and realistic in the sense of simulating
the operation of a classical demand planning system.

To ensure the practical applicability of our explanandum and its
lignment with the business objectives, several technical domain ex-
erts from the organization were included in the process of developing
he predictive model. This process involved multiple rounds of testing
n the modeling methodologies employed, enabling to gradually refine
he final model obtained. Table 4 presents a summary of the average

predictive performance of the different models over the 20 rolling win-
dow iterations, expressed in terms of the Normalized (by the amplitude
of the full test interval in each iteration) MAE (NMAE) and of the
Adjusted 𝑅2 (James et al., 2023).

The NMAE is easily interpreted, as it expresses the error as a per-
centage of the target values, and it is scale-independent, enabling the
ggregation of errors measured at different scales. We further evaluate

Adjusted 𝑅2 to extract insights regarding the goodness-of-fit of the
different regression models.
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The results show that the model with the best predictive perfor-
ance is kNN. However, the kNN is explainable by nature and we

re interested in evaluating the potential of explainability methods
pplied to a black-box regression model. For this reason, we selected
he Random Forest as our explanandum, as it is commonly treated as

a black-box algorithm (Guidotti et al., 2018; Zhao and Hastie, 2021)
nd proved to be the second most accurate predictive model for our
ata. Indeed, the use of the hyperparameter configuration shown in

Table 3, together with the pre-processing and transformation strategies
used to create the model inputs (see Table 2), make the Random
orest regression model less interpretable for business decision-makers.
evertheless, it should be noted that the proposed DSS is agnostic to

he ML algorithm used. Recalling that the main purpose of this system
s to facilitate the selection of XAI techniques and not ML algorithms,

the choice of the Random Forest (or another black-box algorithm) is,
n the context of this research, justified.

4.3. XAI methods

Once the explanandum is defined, we select a pool of XAI methods
o produce the explanations. For that, we conducted an interview
ith a senior domain expert to identify the business stakeholders’

desiderata for implementing an XAI system to support the business
problem presented in Section 4.1. In this process, we took advantage
of the questionnaire proposed in Vermeire et al. (2021) (as described
earlier in Section 3.2). For this particular problem and context, the
only desideratum identified was the need for visual explanations. This
inding is in line with the study by Kim et al. (2023), which showed that
isual explanations tend to be preferred by users. Thus, we decided to
est a set of explainability methods in the form of visual representations
ommonly used in practice, namely the Accumulated Local Effects
ALE) (Apley and Zhu, 2020), the Local Interpretable Model-agnostic
xplanations (LIME) (Ribeiro et al., 2018), the Variable Effect Charac-

teristic (VEC) Contour and Surface (Cortez and Embrechts, 2011, 2013),
as well as the SHapley Additive Explanations (SHAP) (Dwivedi et al.,
2023; Lundberg and Lee, 2017), including the Decision, Dependence,
Summary and Waterfall plots. In total, eight distinct XAI methods were
adopted to generate explanations of the explanandum.

Despite the fact that, in this specific context, we have selected a
limited and non-exhaustive set of XAI methods with visual explana-
tions, it is important to highlight that the DoTS metric is agnostic to
the explainability method used. The DSS can therefore be adapted to
test any XAI method, not just the ones addressed in this case study.

4.4. Experimental design and evaluation of the XAISelector

The explanations generated by the XAI methods selected in Sec-
tion 4.3 were presented to a set of stakeholders, in order for them to
evaluate their quality and utility in practice. Given the structure of the
DoTS metric, which is based on human feedback in a real context, we
adopted the strategy of field testing to evaluate the proposed system.
Such a strategy enables an XAI system to be evaluated according
to three fundamental principles, namely in terms of its performance
capacity, its degree of understandability and its responsibility compo-
nent (for details see De Bock et al., 2024). Note that the field testing

ethodology matches one of the basic assumptions of the construction
f an application-grounded metric, i.e., the evaluation of explanations
n a real task with real stakeholders. We asked two different groups of
takeholders to take part in this evaluation process:

1. Technical domain experts. We selected five Bosch AE/P domain
experts, mainly data science professionals with varying real-
world experience in the SCM context. A demographic analysis of
the participants revealed that three were between 25–30 years
old and two were between 18–24. The highest academic qual-

ification of the participants was ‘‘master’s degree’’: 4, followed

9 
Table 5
XAI measures and corresponding questions (adopted from Hoffman et al. (2023b)) used
for the general evaluation of the practical utility of the explanations provided. All the
questions are Likert-type, with a response range ranging from 1 (‘‘I strongly disagree’’)
to 5 (‘‘I strongly agree’’).

Measure Question Description

Trust Q1T I am confident in the ML model. I feel that it
works well.

Q2T The outputs of the ML model are very
predictable.

Q3T The ML model is very reliable. I can count on
it to be correct all the time.

Q4T I feel safe that when I rely on the ML model I
will get the right answers.

Q5T I am wary of the ML model.
Q6T The ML model can perform the task better than

a novice human user.
Q7T I like using the ML model for decision making.

Satisfaction Q1S From the explanation, I understand how the
ML model works.

Q2S This explanation of how the ML model works
is satisfying.

Q3S This explanation of how the ML model works
has sufficient detail.

Q4S This explanation of how the ML model works
seems complete.

Q5S This explanation of how the ML model works
tells me how to use it.

Q6S This explanation of how the ML model works
is useful to my goals.

Q7S This explanation of the ML model shows me
how accurate the ML model is.

Q8S This explanation lets me judge when I should
trust and not trust the ML model.

by ‘‘bachelor’s degree’’: 1. In terms of work experience in SCM,
one participant has between 4–6 years of experience, while
the remaining have up to three years of experience. All the
participants expressed knowledge in AI and Analytics.

2. Researchers. We also invited five researchers, other than the
authors of this paper, to take part of the process of evaluating the
practical utility of the explanations. This group of stakeholders
may act as end users of the proposed system. We are interested
in contrasting the perspectives of domain experts from the orga-
nization with those of other professionals working in the same
context but from an academic and scientific perspective. An
analysis of the age distribution of the researchers revealed that
four were over 41 years old, while one was between 25–30 years
old. Only one of the participants holds a master’s degree, while
all the others have a doctorate in areas related to SCM. A
single researcher claimed to have no knowledge whatsoever of
AI-based systems.

As described in Section 3.3.1, the participants from both groups
were asked to answer two questionnaires, one focused on evaluating the
xplanandum developed with and without explanations and the other
n evaluating their satisfaction with the explanations produced. Table 5

summarizes the items in each questionnaire.
In this process, stakeholders were not interested in checking the

efficiency of the XAI system. We have therefore removed one question
regarding the assessment of the speed of the system from the trust scale.
This leaves the trust questionnaire with seven questions rather than
the original eight proposed in Hoffman et al. (2023b). The participants
answered the questions directly in the XAISelector application, which
implements both questionnaires for each XAI method in the pool and
makes it possible to use the responses provided to determine the general
levels of trust in the explained model (using Eq. (1)), the satisfaction
levels with the explanations produced (using Eq. (2)), and consequently
the DoTS metric (using Eq. (4)). Fig. 2 provides examples of trust
and satisfaction questionnaires (panels A and B, respectively) imple-
mented in the XAISelector for the different XAI methods, presented
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Fig. 2. Screenshots of trust (panel A) and satisfaction (panel B) questionnaires implemented in XAISelector.
to stakeholders in the form of plots. Prior to collecting the answers
to the questionnaires, each stakeholder was instructed on how each
plot should be analyzed in the context of the business problem, thus
ensuring that all plots were interpreted correctly.

5. Results and discussion

This section presents the results of applying the proposed DSS to
our case study, according to the experimental design described in Sec-
tion 4.4. Following Amarasinghe et al. (2024), we intend to highlight
the interest of using the proposed DSS, in particular the DoTS metric,
to select XAI methods with real-world practical utility, in line with
feedback from stakeholders in the deployment context, so as to tackle
different real-life case studies involving users with different levels of
AI literacy. For each group of stakeholders, we analyzed the results
in three dimensions, providing insights into how the XAI methods
presented in Section 4.3 impact the levels of trust and satisfaction of
the users and how the suggested context-aware system may be useful
in selecting XAI methods with practical interest.

• Section 5.1 starts by examining how the different explanations
provided by XAI methods impact stakeholders’ levels of trust in
the explanandum.

• Section 5.2 analyzes stakeholders’ levels of satisfaction with the
explanations produced by each of the different XAI methods, as
10 
well as how these explanations might contribute to their decision-
making process.

• Lastly, Section 5.3 presents and discusses the results of the ap-
plication of the DoTS metric, which combines the levels of trust
and user satisfaction in the overall XAI system so as to provide
estimates of both suitability and utility of each XAI method to
each stakeholder group and to the problem under analysis.

5.1. On the trust in the explanandum provided with explanations

We start by analyzing and comparing the stakeholders’ overall levels
of trust (𝑇𝑔) in the explanandum after introducing the explanations
provided by each XAI method. Such levels are derived directly from
Eq. (1). Fig. 3 shows the trust levels obtained for the different XAI
methods on both stakeholder groups (the technical domain experts and
researchers).

We found that the consistency between the answers to different
items in the Trust Scale Recommended for XAI was satisfactory to high,
as reflected by Cronbach’s alpha values obtained across methods within
each group (𝛼 ∈ [0.64, 0.98]). The results show that the trust levels
obtained are modest regardless of the XAI method used. This means
that, for our population sample, the generation of explanations for the
explanandum do not reflect in a significant increase in the trust levels of
stakeholders. A comparison of the trust levels obtained for the different
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Fig. 3. Trust indexes in the explanandum provided with explanations. The error bars represent the standard error of 𝑇𝑔 across stakeholders.
Fig. 4. Satisfaction indexes with the explanations provided by the XAI methods. The error bars represent the standard error of 𝑆𝑔 across stakeholders.
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XAI methods reveals that the Waterfall plot is the one that induces the
highest level of trust in technical domain experts, followed by the ALE
lot and the LIME plot. In contrast, the Summary plot and Decision
lot methods are the ones that elicit the highest levels of trust in the
roup of researchers, albeit without significant differences between
hem. Here, it is interesting to note some disagreement and conflicting
erspectives among the two groups. In particular, the two methods that
nduce the highest levels of trust in the group of researchers (Summary

plot and Decision plot) are also those that generate high levels of
mistrust among technical domain experts. Both groups seem to agree,
however, that VEC contour plot is the least supportive of trust in the
explanandum.

5.2. On the satisfaction with explanations

In a second experiment, we examined the stakeholders’ levels of
atisfaction with the explanations produced by the different XAI meth-

ods (𝑆𝑔 , Eq. (2)). Here, we also found that the consistency between
the answers to different items in the Explanation Satisfaction Scale was
atisfactory to high, as reflected by Cronbach’s alpha values obtained
cross methods and groups (𝛼 ∈ [0.66, 0.97]). Fig. 4 shows the different
evels of satisfaction obtained for each explainability method in each
f the test groups.

The results show that the levels of stakeholders’ satisfaction with
he explanations produced are, in general, higher than those related
o stakeholders’ trust in the explanandum provided with explanations,

regardless of the XAI method considered. This suggests that in spite of
he fact that the explanations provided fail to induce sizable increases
n the trust levels with the explanandum, stakeholders are satisfied
 H
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with the quality of the explanations produced. In particular, the results
reveal that the Waterfall plot is the best-performing method in terms
of satisfaction levels among technical domain experts and the second-
est among researchers, followed by the Summary plot. However, as

with the evaluation of trust, there are also some contrasting eval-
uations in this case. While the ALE plot is the third method with
he highest satisfaction index among technical domain experts, it is
he second worst method among researchers together with the VEC
ontour plot. By contrast, the Decision plot is the best explainability
ethod for researchers in terms of satisfaction with the explanations
erived therefrom, but it ranks in the bottom three for technical domain
xperts.

In order to better understand the utility of the explanations pro-
uced by each XAI method in the stakeholders’ decision-making pro-
ess, we focused our attention on the answers to the question ‘‘Q6S:
his explanation of how the ML model works is useful to my goals’’ (Fig. 5).

The results agree with those shown in Fig. 4, with Summary, Wa-
erfall and Decision plots being leading methods for producing expla-

nations with practical utility for carrying out business tasks.

5.3. On the degree of trust-satisfaction of XAI methods

When looking at the measures of trust and satisfaction, we can
grasp interesting insights into the value of the different XAI methods
to both groups of stakeholders. However, the use of these measures in
isolation can hamper the process of deciding which of these methods
best suits the context and the business problem at hand. This holds
true particularly when the number of explainability methods increases.

ence, we propose to take advantage of the DoTS metric (Eq. (4)),
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Fig. 5. Distribution of satisfaction scores across stakeholders within each test group for the question Q6S.
Fig. 6. Distribution of DoTS for each stakeholders’ group using different combinations of weights (𝑤𝐼 ,𝑟 , 1 −𝑤𝐼 ,𝑟). The color gradient illustrates the agreement, via weighted kappa
statistic (𝜅), between all the 𝑟 ∈ 𝑅 stakeholders within each group when evaluating each XAI method. Darker red colors reflect greater agreement. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
which combines these two measures so as to facilitate the selection
f the XAI methods with the greatest utility for business stakeholders.

Fig. 6 shows the distribution of the DoTS values for each method and
stakeholders’ group, assuming different weights for the level of trust
in the explained model (𝑤𝐼 ) and for the level of satisfaction with the
explanations produced (1 −𝑤𝐼 ), ranging from 0 to 1 in steps of 0.025.

We consider that 𝑤𝐸 = 0.25 if the stakeholders have less than
 years’ experience; 𝑤 = 0.5 for stakeholders’ experience within [4, 6]
𝐸

12 
years; 𝑤𝐸 = 0.75 for stakeholders’ experience within [7, 10] years; and
𝑤𝐸 = 1 if stakeholders’ experience is greater than 10 years.

To probe deeper into the stakeholders’ preferences, we also evaluate
the agreement between the responses in each group for each XAI
method. To do this, we compute the pairwise agreement between all
stakeholders 𝑟 ∈ 𝑅 within each group using the weighted kappa
statistic (Cohen, 1968). Then, for each explainability method, we cal-
culate the average agreement (𝜅), consisting of the average pairwise
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Fig. 7. Sensitivity analysis of the DoTS metric for different combinations of (𝑤𝐼 ,𝑟 , 1 −𝑤𝐼 ,𝑟).
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agreement among stakeholders. This is illustrated in Fig. 6 by a color
radient scheme, where darker red colors reflect greater agreement
mong stakeholders.

A first comparison between both groups reveals that the overall
evels of DoTS obtained for researchers are slightly higher than those
btained for technical domain experts, regardless the XAI method.

Comparing the XAI methods ranked according to the levels of trust
and satisfaction obtained from the interaction with the different stake-
holders (Figs. 3 and 4, respectively), we can observe that the DoTS
metric reflects their actual feedback. This validates the DoTS metric
n the sense that it adequately quantifies human inputs. Focusing the
nalysis on each of the groups separately, we observe that, according
o the technical domain experts, the Waterfall, Summary and ALE plots

are those with the highest degree of trust-satisfaction, with the ALE
lot proving to be the method with the highest levels of agreement
ithin the group. From the researchers’ perspective, the Waterfall plot
lso ranks in the top three methods with the greatest DoTS, but after
he Decision plot and the LIME plot, which turns out to be the one
ith the highest levels of intra-group agreement. Interestingly, from
ur contact with both groups, we found that researchers were more
nterested in understanding the outputs of the explanandum rather than
he explanandum as a whole. In sharp contrast, the technical domain
xperts sought an XAI technique that was able to provide them with an
verall understanding of the explanandum and not just its outcomes.
his provides a rationale for the fact that the best performing methods
or researchers, in terms of maximizing DoTS, offer local explanations,
hile two of the three top-performing methods for technical domain ex-
erts offer global explanations. This consistency between the obtained
esults and the stakeholders’ needs validates the practical interest of
oTS in selecting XAI methods with real utility for the stakeholders in

ight of their explainability needs.
A more detailed breakdown of the DoTS obtained for the different

values 𝑤𝐼 ,𝑟 (Fig. 7) shows that the selection of an XAI method 𝑔 gener-
ally depends on the stakeholders’ preferences regarding the measures
of trust (𝑇𝑔) and satisfaction (𝑆𝑔).

In particular, for the group of technical domain experts, we observe
in the left panel of Fig. 7 that the Waterfall is the only technique that
shows the highest values of DoTS regardless of the weight combination
considered. This dominance does not hold for most of the remaining
methods. For instance, we observe that the Summary method only
exhibits higher DoTS whenever greater importance is given to the
measure 𝑆 rather than to the measure 𝑇 . If the goal is to maximize
the levels of trust in the explanandum provided with explanations, the
ALE method is preferable to the Summary method. Another example is
13 
the case of VEC-based methods, where VEC surface only demonstrates
etter trust-satisfaction levels compared to those of VEC contour when
he goal is to maximize 𝑇 . If the goal is to maximize 𝑆, VEC contour

outperforms VEC surface. Examining the results from the perspective
of the researchers (right panel of Fig. 7), we observe that the Decision
plot is the one with the highest degree of trust-satisfaction, either in
the sense of maximizing 𝑇 or in the sense of maximizing 𝑆. Conversely,
VEC-based methods are those which, from the standpoint of the group,
exhibit the lowest DoTS.

Regardless of the combination of weights adopted, it is still im-
ortant to evaluate the extent of agreement among stakeholders in
electing the XAI method that is most adaptable to the problem and
usiness context. Fig. 8 illustrates the relationship between the average

levels of agreement of the stakeholders within each group and the
DoTS, assuming a scenario where the measures 𝑇 and 𝑆 are equally
elevant.

We found that maximizing the DoTS and maximizing the aver-
ge degree of agreement between stakeholders (𝜅) may prove to be

conflicting objectives. For instance, in the group of technical domain
experts (left panel of Fig. 8), we found that although the Waterfall
method had the highest degree of trust-satisfaction it is also one of the
methods showing the most disagreement between the stakeholders who
evaluated it. This inflation of DoTS is due to the positive feedback from
a more experienced stakeholder that contributed to valuing the Water-
fall method over the others. At this point, if the agreement between
stakeholders prevails, we favor the selection of the ALE method without
incurring in a sharp drop in the DoTS. In the group of researchers (right
panel of Fig. 8), we found no significant disagreements between the
methods evaluated, with the XAI methods presenting the highest DoTS
also revealing the highest levels of agreement between stakeholders.
These findings suggest the use of an agreement metric as a complement
to the DoTS metric whenever evaluating the utility of a given XAI

ethod.

6. Practical and managerial implications

We highlight several practical implications arising from our work
for the use and management of XAI-based systems. First, the pro-
posed DSS promotes the interaction of stakeholders not only in the
development of the explanandum but also in the assessment of trust
and satisfaction with the overall XAI system. Given the myriad of
existing XAI methods, and the fact that each AI problem may have
different business specifications, the proposed system makes it possible
to test any type of explanation with different stakeholders who directly
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Fig. 8. Illustration of the DoTS for the different methods according to the average agreement level of the stakeholders within each group (𝜅), assuming 𝑤𝐼 ,𝑟 = 1 −𝑤𝐼 ,𝑟 = 0.5.
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interact with it in their daily business. We believe that our system is
sufficiently understandable and flexible to be applied to any group of
stakeholders, with different AI literacy levels, in any organizational
context. This is a relevant aspect of our work, as current literature
tends to neglect how different explanations should be presented and
evaluated by less proficient AI users (Haque et al., 2023).

Second, the feedback provided by the stakeholders’ assessments is
used to formulate a flexible analytical metric – the DoTS – able to
stimate the degree of trust-satisfaction of each XAI method and to
uantify its utility to the business context. The proposed metric is
imple to manipulate and it is sensitive to the degree of experience
nd/or knowledge of the stakeholders. Moreover, the DoTS is designed
o be scalable. In fact, although the DoTS metric defined in Eq. (4) only
overs two measures, i.e., stakeholders’ trust and satisfaction in the

XAI system developed, other indicators can easily be included in the
formulation if they prove useful for the context and research problem
under analysis. The DoTS metric also enables stakeholders to define the
degree of importance that each measure should have when selecting
xplainability methods. This is particularly relevant as explainability
eeds can vary across stakeholders, depending, for instance, on how

often the XAI system is used in their decision-making processes or how
they perceive the risk associated with the task being explained.

Third, we tested the applicability of the proposed system in a
ocal company in the context of supply chain demand management.

Our empirical results show the relevance of the proposed system in
promoting the selection of XAI methods that meet the explainabil-
ity needs of different stakeholders with different degrees of expertise
and analytical maturity. For our data, our results demonstrated that
academic stakeholders (end-users) tend to prefer local explanations,
whereas technical domain experts tend to favor XAI methods that
provide global explanations.

6.1. Implications for understandability and justifiability in business opera-
ions

This work offers further implications for understandability and jus-
tifiability in real-world business environments, two features that an
XAI system needs to offer to effectively impact the decision-making
process (De Bock et al., 2024). Following De Bock et al. (2024),
understandability is the system’s ability to allow users to understand
how a given AI model operates and how the solutions generated from it

ere obtained. On the other hand, justifiability refers to the capacity of
he system to help the users judge whether the results of the AI model
atch their intuition, based on their business knowledge. In short, it
 i
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allows the user to trust in the model. Recalling that the DoTS metric
mbedded in the proposed DSS takes advantage of measures of trust
nd user satisfaction as a way of assisting the selection of XAI methods,
e provide some examples of real-world cases that could benefit from

he application of our approach.
Healthcare. The implementation of our DSS in healthcare can offer

aluable insights into reducing resistance to adopting AI systems for
ecision support in clinical contexts. For example, given an AI system
esigned to help detect a specific pathology, the DoTS metric can be
sed to select the XAI techniques that best suit the explanatory needs
f the interested clinicians and enable them to understand, trust and,
ost importantly, use that system as a decision-making tool during

heir medical practice. Even the patients themselves can benefit from
sing our system by being able to understand, for instance, what factors
ed the AI system to suggest such diagnosis.
Legal operations. AI models, especially those based on natural

language processing, have been used to automatically generate business
contracts so as to reduce the intensive human effort involved in these
tasks. Yet, recent studies (see, e.g., Giampieri, 2024) have identified nu-

erous vulnerabilities in these models, pointing to the need for human
upervision as a way of minimizing the introduction of misleading or
ven legally unfounded contractual clauses. The use of XAI techniques
as proved useful for legal stakeholders to understand the algorithmic
ationale behind the resulting output and to identify potential gaps in
I models (Stathis and van den Herik, 2024). The main contribution of

the proposed DSS in this context is to help legal stakeholders who want
o take advantage of AI tools in the contract drafting/revision process,
y suggesting XAI methods that provide such stakeholders with a clear
nderstanding of how the AI model generates contractual information.
Supply chain demand forecasting . In supply chain management,

it has been common practice to use machine learning models to cap-
ture non-linear demand patterns. The ‘‘black box’’ nature of this type
of models might result in users not trusting the models developed,
which in turn motivates them to combine statistical forecasts with
judgmental forecasts. However, it is well known that this strategy can
e biased (Fildes and Goodwin, 2007). The DoTS metric can be relevant

in this context, allowing decision-makers to select suitable XAI methods
that help them to understand the nature and results of forecasting
models, while avoiding excessive recourse to manual and subjective
adjustments of forecasts.

Overall, the proposed DSS can help decision-makers in various
organizational environments to find the XAI method that best suits
he needs of the context and the profile of the users operating in it,
hereby fostering the understanding and implementation of AI systems
n practice.
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6.2. Implications for decision-making using contextual factors

From a practical perspective, the proposed DoTS metric has a par-
icularly relevant feature, namely its sensitivity to contextual factors
hat may differ from one organization to another. Since it is defined in
 context-agnostic fashion, when applied in different business environ-
ents involving users with different profiles and different explanatory
eeds, the same XAI method may be classified as the most adequate
or one context but fail to be so in others. This provides important
lexibility to the DoTS metric, making it suitable for users seeking
ifferent types of explanations, depending on the business context

in which they operate. Examples of these explanations could be (1)
explanations by influence; (2) visual explanations; (3) explanations by
implification; (4) explanations based on examples or even (5) textual
xplanations (for details see Gerlach et al., 2022).

Given the fact that it is entirely driven by human feedback and char-
acteristics, the proposed DSS can be tailored to various types of business
and, given a set of XAI techniques, suggest those that best suit the users
of that particular context. For instance, in small-sized organizations,
which typically do not operate with highly qualified AI personnel, our
DSS may suggest XAI techniques that are easy to implement and that
offer global explanations for the AI models constructed. In contrast,
in large-sized organizations, we expect the users to exhibit greater
analytical maturity and, therefore, provide feedback in order to select
more granular explanation techniques that impact decision-making at
various organizational levels.

7. Conclusion and directions for future research

This work investigates how the business stakeholders’ desiderata
and feedback can be included in the process of choosing suitable XAI

ethods for a given AI-based problem and context. Frequently, XAI
ethods tend to be evaluated solely by means of objective metrics,
hich overlook the utility and potential impact that these methods
ight have on the decision-making processes of business stakehold-

rs. We propose a context-aware DSS to deal with the problem of
eciding which XAI methods, from a pre-defined set, are most adapted
o the problem and to the users of the underlying business context.
he proposed approach is driven by the preferences of the business
takeholders, so as to meet their explainability interests and business
esiderata. We introduce an analytical metric that estimates the degree
f trust-satisfaction of a given XAI method. This metric is fundamentally
ased on the stakeholders’ trust in the explanandum provided with
xplanations, as well as their satisfaction with the quality and utility
f those explanations. We tested the proposed system with real supply
hain data, in a real AI-based business task involving real users from a
ajor automotive electronics organization.

From a theoretical perspective, while most of the XAI literature fails
o employ application-grounded methodologies to evaluate the utility
f explainability methods with end-users (cf. Langer et al. (2021),

Jesus et al. (2021), Amarasinghe et al. (2023, 2024)), we follow a
uman-in-the-loop approach, focusing the evaluation of XAI methods
n business stakeholders who can take advantage of these methods to
upport their decision-making processes. Our work is consistent with
ecent recommendations to promote evaluations of XAI methods in
n application-grounded environment (Amarasinghe et al., 2023) and
o measure the degree of usefulness and quality of explanations for
sers (Saeed and Omlin, 2023). Other relevant works (e.g., Schmidt and
iessmann, 2019) take advantage of trust measures as a way of evalu-
ting the quality of XAI methods, but do not incorporate the subjective

feedback nor the degree of expertise of real users into the process. From
 practical perspective, published studies with application-grounded
valuations are typically focused on the context of finance (as in Jesus

et al., 2021; Amarasinghe et al., 2024) or healthcare (as in Lundberg
t al., 2018). However, to the best of our knowledge, this is the first
 t
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paper to evaluate the practical utility of different explainability meth-
ods in the context of supply chain management, a field with extensive
research and significance in the context of operations research and
operations management (De Bock et al., 2024).

Despite the theoretical and practical interest of our work, we stress
ome important limitations that could serve as a motivation for future
ork in this context. Firstly, we acknowledge that the number of
articipants involved in the experiment is relatively small and could
ave an impact on the correct interpretation of our results. We ex-
ect to test the proposed system with a wider range of users, ideally
orking in different business contexts, so as to facilitate the gener-
lization of our results and to improve statistical power. Yet, it is
ell-known (Amarasinghe et al., 2023, 2024) that the process of eval-

uating XAI systems with real users is logistically challenging and may
require several iterations between all the stakeholders involved, making
it difficult to engage their interest and acceptance. Secondly, our work
evaluates the explanations provided by each XAI method under analysis
in a static environment based on preconstructed explanations for the
xplanandum. A promising research avenue is the development of

interactive and explainable intelligent systems that dynamically explore
the inferences of predictive models with, for instance, counterfactual
xplanations. A further relevant step for future research includes adding
ther measures to the proposed DoTS metric, in addition to those
sed in this study. In this respect, if more dimensions of analysis are
ntroduced into the DoTS metric, the use of metaheuristics (Khanduja

and Bhushan, 2021) could be explored as a way of optimizing the
eights to be assigned to each dimension according to one or more

objective functions of interest to users in the business context.
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