
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Chapter 34
A Feature-Driven Method for Adaptive
and Perfective Maintenance

Karam Ignaim and João M. Fernandes

Abstract This manuscript discusses whether the refinement of feature models (FMs)1

can be applied to fulfill the completion of change requests and satisfy requirement2

modifications through the Software Maintenance Life Cycle (SMLC). It presents a3

method that uses FMs as an evolvable artifact to handle software changes as part of4

adaptive and perfective maintenance. When maintaining a product, we should focus5

on preserving its features and enhancing them. Our method uses FM composition6

that guarantees structure-preserving refinements to the underlying FM until the base7

model is fully updated with the necessary change requests. The empirical research8

reveals that, on average, around 91% of requested product changes are effectively9

implemented using our method. It also indicates that the feature-based method sig-10

nificantly improves the efficiency and success rate of implementing change requests.11

34.1 Introduction12

Software maintenance involves the process of modifying a software system after13

delivery to improve its performance, to fix any new defects, or to adapt the product14

to the changed environment [7]. The changes to the software may address coding15

errors or to correct design faults, or substantial additions to correct specification16

problems or accommodate new requirements [9].17

Software maintenance tasks fall into four categories: corrective, preventive, adap-18

tive, and perfective [4]. This work focuses on the last two categories. Adaptive19

maintenance refers to modifications to a software product undertaken after deliv-20

ery to make it usable in an altered or changing environment, whereas perfective21

maintenance is a modification to a software product made after delivery to improve22

performance or maintainability. In most situations, changes occur often; therefore,23

K. Ignaim (B)
Department Software Engineering, Al-Balqa Applied University (BAU), Salt, Jordan
e-mail: karam.ignaim@bau.edu.jo

J. M. Fernandes
Centro ALGORITMI/Department Informatics, Universidade do Minho, Braga, Portugal
e-mail: jmf@di.uminho.pt

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
C. S. In et al. (eds.), Information Systems for Intelligent Systems, Smart Innovation,
Systems and Technologies 431, https://doi.org/10.1007/978-981-96-1210-9_34

1

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-1210-9_34&domain=pdf
http://orcid.org/0000-0001-8650-8021
http://orcid.org/0000-0003-1174-1966
mailto:karam.ignaim@bau.edu.jo
mailto:jmf@di.uminho.pt
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34
https://doi.org/10.1007/978-981-96-1210-9_34


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

2 K. Ignaim and M. Fernandes

identi-

fication
analysis design

implemen-

tation

system

testing

acceptance

testing
delivery

identify
change
requests

refine
require-
ments

validate
changes

Fig. 34.1 Steps of the proposed method involved in the SMLC

software that does not receive regular adaptive and preventive maintenance quickly24

becomes outdated. Existing applications updated with new technology may exhibit25

small performance enhancements in areas such as scalability and speed, but their26

overall functionality is typically unaffected. Perfective maintenance improves the27

software. It encompasses the enhancement of existing features, in addition to the28

incorporation of new ones. Feature models (FMs) are widely used for software prod-29

uct lines (SPLs). An FM identifies the features of an SPL and the possible constraints30

among them. FMs can express the features that describe a potential product in a31

compact and comprehensible format. An FM can be updated by adding, changing,32

or removing features [6] in a consistent manner using FM composition [1].33

The goal of this manuscript is to describe a method that uses FMs as a central34

artifact to manage these changes effectively. The method aims to ensure that soft-35

ware features are preserved and enhanced while accommodating change requests.36

This research seeks to determine whether the refinement of FMs can be utilized to37

facilitate the completion of change requests in an efficient manner. The method has38

been evaluated in a real-world setting by conducting a case study that handles change39

requests for adaptive and perfective maintenance. The findings suggest that incor-40

porating feature modeling into the software maintenance process can lead to more41

successful outcomes and ultimately contribute to the overall success of software42

projects.43

The SMLC method consists of seven phases that can all be used in an iterative44

manner and can be gradually expanded so that customized items and processes can45

be incorporated (see Fig. 34.1). The cycle is a framework that specifies the phases46

performed during the maintenance process [8].47

34.2 The Method48

This section outlines the method proposed in this paper, leveraging FMs for software49

adaptive and perfective maintenance. Upon receiving a change request, the method50

endeavors to build the FM that accurately represents the intended change. Our method51

adopts and adapts one of the compositional mechanisms proposed by Acher [1]. The52

method uses the insertion operator, to capture the change requests, which are part of53

the SMLC. The method consists of three steps. The first two steps intertwined with54

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

34 A Feature-Driven Method for Adaptive and Perfective Maintenance 3

the problem identification phase of SMLC, while the third step intertwined with the55

acceptance test phase of SMLC (see Fig. 34.1).56

Figure 34.1 presents an overview of the steps of our method. The upper side of57

the figure indicates the phases of the SMLC. The lower side of the figure indicates58

the steps of our methods and specifies the related phase in which the steps take place.59

The remaining phases of the SMLC work as usually defined. We next outline our60

method. In step 1 (inserted into the problem identification phase), we identify the61

change request by collecting data from the change request form. Change request62

forms play a crucial role in the change control process by providing a standardized63

way to document, review, and manage alterations to a product. They help ensure64

that changes are carefully considered, properly evaluated, and implemented in a65

controlled manner [3]. The collected data is saved as a list of modifications and66

features. Based on the list, we refine the requirements by evolving the FM using the67

composition operator in step 2 (inserted into the problem identification phase).68

At the end of the process, the specified modifications undergo a final validation in69

step 3 (inserted into the acceptance test phase). To generate acceptance test report,70

the base FM is checked to ensure that all software features conform to the specified71

requirements on the change request form. We assume that the maintainers who want72

to update the base FM (designed during the development of the software product)73

know the insertion point in the base FM, can design the sub-FM that contains the74

desired updates in terms of features, and can create an FM that supports all of these75

updates.76

In the following, we give details on each of the three steps.77

Step 1. Identify the change request. The requests for a change of the software78

product are identified by collecting data from the change request form as a feature79

list. The goal is to construct an initial list of features that represent a change request.80

The maintainers read specific items from the change request form (column 1 of81

Table 34.1) and then map them into a sub-FM as depicted in Fig. 34.2. Each row82

represents a mapping between an item of the form and a feature of the sub-FM. For83

example, in Table 34.1, Change Request Name is mapped to the Root feature, and84

ID is mapped to the Parent feature. This figure represents a change request with a85

sub-FM.86

Table 34.1 Items of the change request form mapped to the FM

Change request name Root feature

ID Child feature

Priority Child feature

Submitter name Child feature

Change request type Child feature

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

4 K. Ignaim and M. Fernandes

Change request name

ID Priority Submitter name Change request type

Fig. 34.2 An abstract view of a sub-FM that is designed for a single change request

Product

Feature 1 Feature 2

base FM

New features

Feature 3 Feature 4

sub-FM

Product

Feature 1 Feature 2 New features

Feature 3 Feature 4

composed FM

Fig. 34.3 Example of the insert operator

Step 2. Refine the requirements by evolving the FM. The aim is to refine the base87

FM with the information of a change request designed as a sub-FM in step 1. The88

maintainers can use the insert operator to refine the base FM. The purpose of the89

insert operator is to introduce the sub-FM into the base model. In the example shown90

in Fig. 34.3, a maintainer can extend the base FM associated a software product91

with the features represented in a sub-FM, upon receiving a change request from a92

customer. The sub-FM is inserted with mandatory status as a child feature of the base93

FM. The result is the composed FM, which is a combination of the base FM and the94

sub-FM.95

The Insert Operator. The insertion operator adopted by our method is inspired by96

the work of Acher et al.[1]. The operator supports a way to insert a sub-FM (i.e., a97

change request) into the base FM (i.e., a given software product). Syntactically, the98

insert operator is defined as follows:99

Insert (root of the sub-FM: Feature, insertion feature point: Feature,100

operator: Operator)101

The insert operator takes three arguments. The first one is the feature to be inserted,102

which is a root feature in the sub-FM. The second one is the targeted feature, which103

is a feature in the base model where the insertion must occur. Finally, the operator is104

provided by the maintainers (e.g., and- operator). An empty intersection between the105

set of features in the base FM and the set of features in the sub-FM is a prerequisite for106

the insert operator. This condition maintains the well-formed quality of the combined107

FM, which specifies that each feature has a unique name. To compose models, the108

insert operator permits the specification of any appropriate FM (i.e., and-, xor-, or109

or-groups).110

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

34 A Feature-Driven Method for Adaptive and Perfective Maintenance 5

Step 3. Validate the specified modifications. The composed FM is used to perform111

the acceptance testing on the fully integrated software product. The change reviewer112

can use the composed FM to validate that all features of the software product conform113

to the specifications of the change request form. For example, the change reviewer114

can use the composed Math Kids Game FM (Fig. 34.3b) to check that different115

items in a change request meet the defined requirements and have been successfully116

implemented in the software product.117

Once the FM has been updated, our approach ensures that previous configuration118

of software product is still valid once the FM has been updated. This is due to the119

fact that our approach adopts two main operators to compose FMs [1]. Each operator120

is described by stating where it is applied, what features are composed, and how the121

composition is made. Each composition is defined by rules that formally describe122

the structure of the resulting FM and preserve the set of configurations determined123

by the input FMs.124

34.3 Evaluation: The Case Study125

To conduct the case study, the Goal-Question-Metric approach was used [2].126

The main goal of this case study was to evaluate the effectiveness, efficiency, and127

stakeholder satisfaction of the proposed method to handle software product change128

in adaptive and perfective maintenance applied to the Sales Distribution Application129

(SDA), including FM refinement.130

The case study was conducted to address three Research Questions:131

Q1: How effective is the method for addressing software product change requests in132

adaptive and perfective maintenance?133

Q2: How efficient is the method for software product change requests in adaptive134

and perfective maintenance?135

Q3: How satisfied are the stakeholders with the changes implemented using the136

method?137

These questions provide an understanding of the effectiveness, efficiency, and138

stakeholder satisfaction of the method for addressing software product change139

requests in adaptive and perfective maintenance. The efficiency of the method sheds140

light on the time and resources required for implementing software product changes,141

allowing for better resource allocation and planning. Stakeholder satisfaction indi-142

cates the level of acceptance and approval of the changes made using the proposed143

method, determining its overall success and impact on the organization.144

The subjects (i.e., participants) of the study are stakeholders of the SDA, including145

software maintainers and customers. The participants of the case study were six146

software maintainers and six customers of SDA.147

To evaluate the method, we used the following criteria: (1) Effectiveness, to148

assess the ability of the feature-based method to successfully address software prod-149

uct change requests in adaptive and perfective maintenance. It can be measured using150

metrics such as the percentage of successfully addressed change requests and stake-151

holder satisfaction scores. (2) Efficiency to evaluate the efficiency of the method in152

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

6 K. Ignaim and M. Fernandes

terms of time and effort required for software product change in adaptive and per-153

fective maintenance. Metrics such as the average time taken to implement changes154

and a comparison of the effort required can be used to assess efficiency. (3) Stake-155

holder Satisfaction to measure the satisfaction of stakeholders, including customers156

and software maintainers, with the changes implemented using the feature-based157

method. It can be measured through usability satisfaction questionnaire, like the158

IBM Usability Questionnaire for computer systems [5]. To adapt this questionnaire159

to our method, we rephrased the questions by replacing the word ‘system’ with160

‘method’:161

1. Overall, I am satisfied with how easy it is to use this method.162

2. It was simple to use this method.163

3. I could effectively complete the tasks and scenarios using the method.164

4. I was able to complete the tasks and scenarios quickly using the method.165

The perceptions of the respondents were given on a 7-point Likert scale, from 1166

(strongly agree) to 7 (strongly disagree).167

Based on the selected criteria, the following hypotheses can be formulated:168

• Null hypothesis (Hp.0): The feature-based method does not provide a significant169

improvement in the performance (i.e., effectiveness and efficiency) of software170

maintainers in addressing change requests.171

• Alternative hypothesis (Hp.1): The feature-based method provides a significant172

improvement in the performance (i.e., effectiveness and efficiency) of software173

maintainers in addressing change requests.174

• Null hypothesis (Hs.0): There is no significant improvement in stakeholder satis-175

faction with the feature-based method.176

• Alternative hypothesis (Hs.1): There is a significant improvement in stakeholder177

satisfaction with the feature-based method.178

We wish to refute the null hypotheses with the greatest possible significance and179

prove the alternative hypotheses.180

Additionally, the following dependent variables were considered:181

• Effectiveness represents the percentage of change requests that were effectively182

implemented using the proposed method.183

• Efficiency represents the percentage of change requests that were efficiently imple-184

mented using the proposed method.185

• Stakeholder Satisfaction measures the level of satisfaction expressed by stake-186

holders with the changes implemented using the method.187

These dependent variables capture the key aspects in the effectiveness, efficiency188

and stakeholder satisfaction of the proposed method for software product change in189

adaptive and perfective maintenance. By analyzing and measuring these variables,190

the case study helps in evaluating the impact and performance of the method in191

achieving successful change implementation and stakeholders satisfaction.192

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

34 A Feature-Driven Method for Adaptive and Perfective Maintenance 7

Table 34.2 Change requests for the sales distribution application during the adaptive and perfective
maintenance

CR1 Incorporate mechanisms for gathering consumer feedback, ratings, and reviews into the
application (customer feedback and reviews)

CR2 Develop a mobile application or optimize the existing one for mobile devices, allowing
sales representatives to use the application on smartphones and tablets while traveling
(mobile accessibility)

CR3 Expand the reporting and analytics capabilities to gain a deeper understanding of sales
performance, product performance, customer behavior, and market trends (improved
reporting and analytics)

CR4 Integrate sales forecasting and demand planning capabilities into the application to assist
businesses in making accurate sales projections, optimizing inventory levels, and
planning production or procurement accordingly (sales forecasting and demand
planning)

CR5 Provide a self-service portal for customers, allowing them to view product catalogs,
place orders, track order status, and access their purchase history independently
(customer self-service)

CR6 Enable businesses to tailor the application’s user interface, colors, logos, and branding
elements to their company’s identity (customization and branding)

Experimental Environment. The study was conducted as part of adaptive and per-193

fective maintenance for the SDA, which was already developed by the developers194

in the company. Table 34.2 shows the change request for the SDA issued by stake-195

holders. The change requests were chosen based on their impact on stakeholder196

satisfaction and the overall success of the change implementation. Due to limited197

time and resources, we chose only six change requests. However, we wanted to198

focus on the most critical areas that would have the biggest impact on stakeholder199

satisfaction and overall success.200

The participants in the study were software maintainers and customers of the201

SDA application. The participants of the study were selected based on their expertise202

in software maintenance and their familiarity with the SDA. They included both203

software maintainers who were responsible for handling change requests for the SDA,204

as well as customers of the application who regularly interacted with the software.205

This diverse group of participants provided valuable insights into the effectiveness of206

the proposed method and its impact on both the maintenance team and the customers.207

Following the steps of the proposed method, the following are the primary activ-208

ities that resulting in producing the generated artifacts during the execution of209

the case study: First, the software maintainers (1) identified the change request and210

prepared an initial list of features. The list was used to design the sub-FM that repre-211

sents the change request. In the second step, the software maintainers (2) refined the212

requirements by evolving the base FM with the sub-FM, resulting in the composed213

FM. Finally, they (3) validated the specified modifications, resulting in a check list214

that can be used by reviewers to validate that the modified features of the software215

product conform to the specifications of the change request form (i.e., to validate216

that the modifications have been successfully implemented).217

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

8 K. Ignaim and M. Fernandes

SDA

MI PO MC ASP MP MCF

CR#1 high priority Ali perfective

Fig. 34.4 Composed FM of the sales distribution application (SDA) of the case study. MI: manage
inventory, PO: place order, MC: manage customer, ASP: automated sales process, MP: manage
pricing, MCF: manage customer feedback

In detail, the scenario of responding to each change request in the case study218

was as follows: the request for a change of the SDA (e.g.,Change Request 1 in219

Table 34.2) is identified by collecting data from the change request form as a feature220

list. By the end of this step, a sub-FM that represents a single change request has221

been designed (Fig. 34.4b). After structuring the sub-FM, it is time to refine the base222

FM (Fig. 34.4a) with the information of Change Request 1 designed previously223

as a sub-FM (Fig. 34.4b) to produce the composed FM (Fig. 34.4a, b). In the last224

step, change reviewers can use the composed FM (Fig. 34.4a) to check that all the225

features of the SDA were updated consistently to conform to the specifications of226

Change Request 1. The steps of the case study were repeated for each change227

request presented in Table 34.2. This allows us to thoroughly assess the performance228

of software maintainers and customer satisfaction with each request and evaluate229

its feasibility within the given context. Considering the limitations of space and to230

ensure optimal readability, we have only selected and presented the composed FM231

that includes the sub-FM of Change Request 1.232

34.4 The Analysis and Interpretation233

Based on the performance of software maintainers in fulfilling the change requests234

using both the feature-based method and the SMLC method, as well as the customers’235

questionnaire, we acquire metrics. Then, the null hypotheses presented early in this236

manuscript can be rejected, and the alternative hypotheses can be accepted. It is worth237

mentioning that the performance (effectiveness and efficiency) metrics of software238

maintainers for the SMLC method (see third column of Tables 34.3 and 34.4) were239

derived from existing records meticulously maintained by the company’s quality240

team.241

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

34 A Feature-Driven Method for Adaptive and Perfective Maintenance 9

Table 34.3 Effectiveness for our method and the SMLC

CR1 CR2 CR3 CR4 CR5 CR6 Mean

Our
method

88 89 95 94 89 89 90.7

SMLC 79 83 90 89 88 85 85.7

Table 34.4 Efficiency for our method and the SMLC

CR1 CR2 CR3 CR4 CR5 CR6 Mean

Our
method

25 17 22 27 28 3 20.3

SMLC 2 1 17 18 28 25 15.2

Table 34.3 shows a summary of the Effectiveness values, obtained from the execu-242

tion of the change requests presented in Table 34.2. The dependent variable Effective-243

ness of each software maintainer was measured as the quotient of the right number of244

change requests that the software maintainer identified by the total number of change245

requests. As presented in last column of Table 34.3, the mean value of Effectiveness246

for our feature-based method (90.7) is greater than the mean value for SMLC (85.7).247

This indicates that the proposed method aids in improving the implementation of248

change requests while preserving the feature structure of the application.249

Similarly, Table 34.4 summarizes the values of the Efficiency. These values were250

calculated as the ratio between the number of right change requests that the software251

maintainer identified and the total time spent on the identification (number of right252

identified change requests/time). The results show that the mean value for the feature-253

based method (20.3) is greater than the mean value for SMLC (15.2).254

The results of Tables 34.3 and 34.4 enable researchers to reject the null hypothe-255

ses (Hp.0 and Hs.0) and accept the alternative ones (Hp.1 and Hs.1). The rejection of256

the hypotheses indicates that the proposed method can handle the implementation of257

change requests effectively and efficiently while minimizing the risk of introducing258

inconsistencies or breaking existing features. It also proves that there is a signifi-259

cant improvement in the performance of software maintainers in addressing change260

requests using the feature-based method compared to the SMLC.261

Table 34.5 summarizes the average of rating scale answers related to the repre-262

sentative sample of customers and software maintainers, who were asked to fill the263

IBM questionnaire (available on https://github.com/karamignaim/change-request)264

to determine the overall perception of the usability of the proposed method and265

SMLC. The mean value of stakeholder responses showed a significant positive266

impact on change requests, indicating that the feature-based method efficiently imple-267

ments change requests and meets modification requirements. The results shown in268

Table 34.5, in which the mean of the proposed method (1.92) is less than the mean of269

SMLC (2.83), allows the software maintainers to reject the null hypotheses (Hp.0 and270

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard

https://github.com/karamignaim/change-request
https://github.com/karamignaim/change-request
https://github.com/karamignaim/change-request
https://github.com/karamignaim/change-request
https://github.com/karamignaim/change-request
https://github.com/karamignaim/change-request


U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

10 K. Ignaim and M. Fernandes

Table 34.5 Stakeholder satisfaction for customers (C) and software maintainers (M), according to
their answers to the IBM questionnaire

C1 C2 C3 C4 C5 C6 M1 M2 M3 M4 M5 M6 Mean

Our method 2 3 2 2 2 1 2 3 2 1 2 1 1.92

SMLC 4 3 2 3 3 2 3 3 3 2 4 2 2.83

A value is better if it is closer to 1

Hs.0) and prove the alternative ones (Hp.1 and Hs.1). Generally, the values give a pos-271

itive indicator that the method can help companies gain high customer satisfaction272

in responding to change requests.273

The proposed method enhances company maintenance, addressing change274

requests efficiently and effectively, thereby increasing customer satisfaction, adapt-275

ability, and preserving positive relationships.276

34.5 Discussion277

The study proposes a feature-driven method for SMLC to fulfill change requests and278

satisfy requirement modifications. This method is effective in adaptive and perfective279

maintenance, improving efficiency and effectiveness. The refinement of the feature280

method enhances the use of refactoring patterns in software maintenance.281

The study demonstrates the effectiveness of feature-based methods in complet-282

ing change requests and improving software quality. It emphasizes the practicality283

of these methods in real-world scenarios and suggests the need for automation to284

streamline processes. This shift aligns with industry trends and best practices, reduc-285

ing errors, increasing productivity, and delivering higher-quality software products.286

The SDA case study underscores the benefits of feature-driven methods and automa-287

tion in software development.288

34.6 Conclusions289

Maintenance is essential for software development since it facilitates the evolution290

of software. This paper introduces a feature-based method to handle adaptive and291

perfective maintenance. The adaptive and perfective maintenance of a product is292

performed in a systematic way through a set of steps that are incorporated into the293

phases of SMLC. We have successfully used FMs and applied the FM composition294

operator to help maintainers handle change requests in a way that preserves the295

underlying FM structure. This goes on until the base FM is fully updated with all296

of the needed change requests. We have demonstrated our method on real-world297

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

34 A Feature-Driven Method for Adaptive and Perfective Maintenance 11

product change requests. The results show that the feature-based method can assist298

companies in responding effectively and efficiently to change requests in adaptive299

and perfective maintenance with high customer satisfaction.300

References301

1. Acher, M., Collet, P., Lahire, P., France, R.: Composing feature models. In: 2nd International302

Conference on Software Language Engineering (SLE), pp. 62–81. (2009). 10.1007/978-3-642-303

12107-4_6304

2. Caldiera, G., Basili. V., Rombach, H.D.: Encyclopedia of software engineering. In: The Goal305

Question Metric Approach. pp. 528–532. Wiley and Sons (1994)306

3. Chemuturi, M.: In: Requirements Engineering and Management for Software Development307

Projects. Springer (2013). https://doi.org/10.1007/978-1-4614-5377-2308

4. Fernandes, J.M., Machado, R.J.: Requirements in Engineering Projects. Springer (2016).309

https://doi.org/10.1007/978-3-319-18597-2310

5. Kim, G.J.: Human-Computer Interaction: Fundamentals and Practice. CRC Press (2015)311

6. Oliveira, R.P., Almeida, E.S.: Requirements evolution in software product lines: an empiri-312

cal study. In: 9th Brazilian Symposium on Components, Architectures and Reuse Software313

(SBCARS), pp. 1–10. (2015). 10.1109/SBCARS.2015.11314

7. Sommerville, I.: In: Software Engineering. 9th edn. Pearson (2011)315

8. Taskesenlioglu, S., Ozkan, N., Erdogan, T.G.: Identifying possible improvements of software316

development life sycle (SDLC) process of a bank by using process mining. Int. J. Software317

Eng. Knowledge Eng. 32(4), 525–552 (2022). https://doi.org/10.1142/S0218194022400010318

9. Tripathy, P., Naik, K.: In: Software Evolution and Maintenance: A Practitioner’s Approach.319

Wiley and Sons (2014)320

629635_1_En_34_Chapter � TYPESET DISK LE � CP Disp.:7/1/2025 Pages: 11 Layout: T1-Standard

https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-1-4614-5377-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1007/978-3-319-18597-2
https://doi.org/10.1142/S0218194022400010
https://doi.org/10.1142/S0218194022400010
https://doi.org/10.1142/S0218194022400010
https://doi.org/10.1142/S0218194022400010
https://doi.org/10.1142/S0218194022400010
https://doi.org/10.1142/S0218194022400010

	34 A Feature-Driven Method for Adaptive and Perfective Maintenance
	34.1 Introduction
	34.2 The Method
	34.3 Evaluation: The Case Study
	34.4 The Analysis and Interpretation
	34.5 Discussion
	34.6 Conclusions
	References


