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A hybrid bi-objective optimization approach for joint
determination of safety stock and safety time buffers in

multi-item single-stage industrial supply chains

Abstract

In material requirements planning (MRP) systems, safety stock and safety time are two well-

known inventory buffering strategies to protect against supply and demand uncertainties.

While the role of safety stocks in coping with uncertainty is well studied, safety time has

received only scarce attention in the supply chain management literature. Particularly, most

previous operations research models have typically considered the use of such inventory

buffers in a separate fashion, but not together. Here, we propose a decision support system

(DSS) to address the problem of integrating optimal safety stock and safety time decisions at

the component level, in multi-supplier multi-item single-stage industrial supply chains under

dynamic demands and stochastic lead times. The DSS is based on a hybrid bi-objective

optimization approach that simultaneously optimizes upstream inventory holding costs and

β-service levels, suggesting multiple non-dominated Pareto-optimal solutions to decision-

makers. We further explore a weighted closed-form analytical expression to select a single

Pareto-optimal point from a set of non-dominated solutions, thereby enhancing the practical

application of the proposed DSS. We describe the implementation of our approach in a major

automotive electronics company operating under a myriad of components with dynamic

demand, uncertain supply and requirements plans with different degrees of sparsity. We

show the potential of our approach to improve β-service levels while minimizing inventory-

related costs. The results suggest that, in certain cases, it appears to be more cost-effective

to combine safety stock with safety time compared to considering each inventory buffer

independently.
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1. Introduction

A Supply Chain (SC) is generally understood as a network system that interconnects

multiple players (e.g., suppliers, manufacturers, retailers) aiming to provide products, ser-

vices and information that bring added value to the customers while minimizing related

costs (Simchi-Levi et al., 2007; Lambert, 2008; Barbosa-Póvoa et al., 2018). In such a

setting, the success of all SC players naturally depends on how well they interact with

each other and account for business changes in volatile markets. The management of such

interactions is commonly referred to as supply chain management (SCM) (Lambert and

Cooper, 2000). Many of the efforts to increase customer satisfaction occur in the con-

text of demand and inventory management (Fisher, 1997; You and Grossmann, 2008). In

the latter context, manufacturing companies usually operate under Material Requirements

Planning/Enterprise Resource Planning (MRP/ERP) systems for inventory replenishment

(Whybark and Williams, 1976; Axsäter, 2006; Louly and Dolgui, 2013). To cope with de-

mand and supply uncertainties inherent to such systems, companies often take advantage

of safety stock and/or safety time inventory buffers. While the first translates into an ad-

ditional inventory beyond the regular stock, the second consists in planning order releases

earlier than established in the requirements plan and scheduling their receipt earlier than

required (Whybark and Williams, 1976; Alves et al., 2004). Determining the proper safety

buffering level for each product is held to be one of the most robust strategies to soften

uncertainty (Koh et al., 2002) and has been investigated extensively given its importance

to the operations research (OR)/management science community in general.

From an optimization perspective, it is well-known that optimal inventory buffers should

be suitably computed according to the trade-off between inventory-related costs and ser-

vice level requirements. In this context, previous research has shown important theoretical

guidelines for choosing between safety stock and safety time in MRP systems characterized

by demand and supply uncertainty (either in terms of quantity or timing) (Whybark and

Williams, 1976; Grasso and Taylor III, 1984; Lambrecht et al., 1984; Chang, 1985; Etienne,

1987; Buzacott and Shanthikumar, 1994; Van Kampen et al., 2010). However, while recent

years have seen the increasing development of OR modeling approaches for dimensioning

safety stocks in many inventory control contexts (Gonçalves et al., 2020), the literature is

scarce in respect to strategies for optimal parameterization of safety time – which, in indus-

trial practice, is often set based on experience (Louly et al., 2008; Dickersbach, 2009). More

importantly, by typically considering the use of safety stocks and safety times in a separate
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fashion, the literature has provided limited insight into how these two buffering strategies

might be used in combination for achieving target service levels at minimum cost. In sharp

contrast, we are interested in examining whether and in what circumstances the combina-

tion of both buffering strategies could be a more cost-effective approach than considering

either safety stocks or safety times in isolation. Our interest also lies in providing insights

into how this combination depends on the magnitude of demand variation and supply delay,

as well as the degree of sparsity of material requirements plans.

To address these shortcomings, we develop a hybrid bi-objective optimization model to

jointly optimize safety stock and safety time decisions in multi-supplier multi-component

single-stage automotive electronics supply chains with dynamic demands and uncertain sup-

ply. We turn our attention to the manufacturer stage of the SC (hereinafter referred to as

company), which is naturally subject to upstream and downstream variabilities. We take

inventory holding costs and β-service level as primary objectives to be optimized. The safety

time and safety stock solutions generated during the optimization process are successively

evaluated, in terms of the proposed objectives, via a MRP simulation model. Afterwards,

we explore a closed-form analytical expression that enables to select a single Pareto-optimal

point from a comprehensive set of non-dominated solutions, by weighting different key lo-

gistics performance indicators. Throughout this work, our formulations relax the common

assumptions that demand and supply lead time are Gaussian-distributed random variables,

which may not always be realistic and may represent an oversimplification of the real SC dy-

namics. Motivated by the lack of large-scale empirical studies in this context, we developed

and implemented a decision support system (DSS) comprising the proposed bi-objective

optimization approach for optimal safety buffer parameterization.

Our contributions to the area of inventory management are fourfold:

1. We propose a DSS, comprising a hybrid bi-objective optimization approach, to jointly

determine safety stock and safety time buffers in MRP systems.

2. We investigate how both the sparsity of delivery schedules and the supply/demand

variability impact on the choice of the optimal cost-effective inventory buffer.

3. We provide guidelines to decision-makers and practitioners interested in the optimal

parameterization of safety inventory buffering strategies – a fundamental problem

affecting the effectiveness of MRP (Den Boer, 1994; Louly and Dolgui, 2013).

4. We demonstrate the practical applicability and the financial/operational benefits of
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the proposed DSS by considering a real-world case study from a major multi-item

multi-supplier automotive electronics company.

In the rest of this paper, we start by motivating our work in this context by providing

some application examples from the literature (Section 2). Then, we introduce the math-

ematical optimization model to jointly optimize safety stock and safety time in Section 3.

Section 4 presents and describes the system architecture of the DSS that supports the pro-

posed mathematical model and facilitates its use in real-world operational contexts. The

proposed approach is tested with illustrative examples from the case study company and

the results derived therefrom are discussed in Section 5. Finally, we highlight the practical

and theoretical implications of our work and summarize its conclusions in Section 6.

2. Related work

In general MRP production systems, supply and demand processes are the two basic

sources of variability, commonly expressed in the form of timing and/or quantity (Whybark

and Williams, 1976). In such systems, safety stock and safety time buffering methods

are the primary means to cope with variability factors (Guide Jr and Srivastava, 2000).

In what follows, we provide a general yet non-exhaustive literature overview on existing

modeling approaches to estimate safety stocks and safety times. We focus on the problem

of dimensioning safety buffers for each component. Readers interested in other variants of

the problem, like safety stock placement or positioning, are pointed to the fundamental works

of Inderfurth and Minner (1998); Minner (2001, 2012); Caridi and Cigolini (2002); Graves

and Willems (2000, 2003); Graves and Schoenmeyr (2016) and references cited therein.

2.1. On the safety stock and safety time estimation problem

In real-world inventory control topologies, demand is not deterministic and it should be

forecasted (Prak et al., 2017). As such, for a given target service level, classical inventory

management theory typically establishes safety stocks based on the standard deviation of

past demand forecasting errors over a lead time. Recent published research (Saoud et al.,

2021; Babai et al., 2022) provides interesting guidance on the estimation of demand over

lead time, given its role for dimensioning safety stocks. In this context, theoretical and para-

metric/nonparametric empirical approaches are suitable strategies to estimate the variation

of demand forecast errors (see, Silver et al., 2016; Trapero et al., 2019a,b, for more details).
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Since the fundamental study of Eppen and Martin (1988), a number of studies have been

undertaken to address the safety stock dimensioning problem from different perspectives,

namely considering (Persona et al., 2007; Gonçalves et al., 2020): the standard deviation of

normally distributed demands (Inderfurth and Vogelgesang, 2013; Lu et al., 2016; Braglia

et al., 2016; Bahroun and Belgacem, 2019), the standard deviation of demand forecasting

errors (Trapero et al., 2019a,b; Kanet et al., 2010; Beutel and Minner, 2012; Boute et al.,

2014), the role of product structure and component standardization (Collier, 1982; Carlson

and Yano, 1986; Molinder, 1997; Grubbström, 1998) or even the introduction of additional

uncertainty issues beyond the classical ones related to demand and supply (Cheung and

Hausman, 1997; Chakraborty and Giri, 2012; Sarkar et al., 2010). A substantial body of

literature also assumes independent and identically distributed (iid) Gaussian forecast errors

when dimensioning safety stocks. However, in practice, if this assumption is violated, the

service levels may be subject to positive and negative fluctuations, leading to an increase

in inventory-related costs (Beutel and Minner, 2012; Trapero et al., 2019a,b). We refer the

interested reader to the recent studies of Trapero et al. (2019a,b) for more details on how

to bypass such classical assumptions.

Sharing the same goal as the safety stocks, safety time inventory buffers are characterized

by bringing forward orders and their respective receipts earlier than agreed upon in the MRP

requirements plan (Whybark and Williams, 1976). On the choice between safety stocks and

safety times, several studies have been providing guidelines to choose the most adequate

buffering method for improving customer service level while reducing inventory holding costs.

There is, however, no general agreement as to the method that should generally be used (see

Guide Jr and Srivastava, 2000, for a comprehensive review and discussion on this topic).

Whybark and Williams (1976) found that, regardless of the source of variability, safety stock

is suitable for quantity uncertainty whereas safety time is preferred for timing uncertainty.

Yet, while Sato and Tsai (2004) favor the use of safety time buffers as a more flexible

technique than safety stocks in most situations where timing uncertainty prevails, Grasso

and Taylor III (1984) suggest the use of safety stocks to tackle uncertain supply/timing. It is

noteworthy that, by focusing on supply and demand variability in isolation, the above works

do not evaluate the joint use of both sources of variability. In sharp contrast, Etienne (1987)

proposed a model for choosing the most cost-effective buffering method considering the

existence of uncertainty in both supply and demand sides. It is shown that safety time should

be disregarded for MRP production systems operating under quantity variability. Moreover,
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concerning timing variability, safety time proves to be useful in sparse schedules in detriment

of safety stock. The work of Etienne (1987) further underlines, yet not surprisingly, that

there is no such buffering method with superior performance in every situation. Molinder

(1997) also considers both supply and demand uncertainty factors to explore, via simulated

annealing, how the uncertainty level affects the optimal choice of the buffering strategy.

The main conclusion is that safety time works best whenever both supply and demand

are highly variable – a result further corroborated by Van Kampen et al. (2010) – while

safety stocks are recommended for cases with high demand variability and low lead time

variability. Interestingly, a previous work of Buzacott and Shanthikumar (1994) argued

that safety time buffers are preferred in detriment of safety stocks whenever demand is

properly forecasted, favoring the use of safety stocks when demand variability increases.

This disagreement may arise from different modeling assumptions considered. While the

model of Buzacott and Shanthikumar (1994) does not include supply variability in their

model formulations, Molinder (1997) considers both supply and demand variability factors.

More recently, Avci and Selim (2016, 2017, 2018) developed simulation-based models that

account for safety time to solve the inventory replenishment problem in different supply chain

topologies. Simulation-based procedures have also proven to be useful to effectively design

virtual safety stocks under given inventory control systems (Dickersbach, 2009; Nenni and

Schiraldi, 2013). Other interesting recent studies (Ben-Ammar et al., 2019, 2018) address the

problem of optimal parameterization of planned lead times which, together with forecasted

lead time, can be used to derive better safety time estimations.

Despite the lack of consensus, the previous literature has suggested relevant insights that

may help grasp how and in what situations buffering methods are used. Unfortunately, the

overwhelming majority of the literature does not rely on real-world data from industrial

case studies, an issue that had already been raised in the fundamental work of Guide Jr and

Srivastava (2000).

2.2. Highlights from the literature and motivation

We found that empirical evidence on the joint optimization of safety stock and safety time

is rather scarce, and the combined used of both buffers has proved to be effective in practice

(Glock and Kim, 2016; Kania et al., 2021). Motivated by the scarce industrial case-study

applications in this context, especially with multi-component multi-supplier considerations,

it is our belief that there is a significant potential in the joint exploration of safety time and

safety stock buffering mechanisms.
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At a first sight, the joint use of both buffering strategies may seem redundant. Yet,

note, for instance, that a theoretical increase in one-day of safety time for a component

with a once-per-week receiving frequency might force a company to push the delivery order

backwards by one week, so that to ensure that the planned order reception match a planning

calendar day contracted with the supplier (see Fig. 1). Consequently, this naturally implies

a huge increase in inventory holding costs, by forcing the company to bring forward the

scheduled order delivery well ahead of time. On the other hand, the effectiveness of safety

time is also dependent on the supplier delivery performance. In cases where the supply delay

is greater than the established safety time, this safety margin may be insufficient to cover the

supply variability. Here, instead of increasing safety time, it would be interesting to evaluate

the potential of maintaining (or decreasing) it and introduce suitable quantities of safety

stock. We hypothesize that this combination may prove to be suitable for balancing holding

costs while maintaining target service levels, especially for manufacturing components with

very sparse receiving frequencies. Alternatively, one could obviously relax the use of safety

time and take fully advantage of safety stock to cope with demand and supply variabilities.

Nevertheless, the holding costs derived from this strategy may be very high and, depending

on the degree of uncertainty at the upstream and downstream end of the SC, some part of

this safety stock may never be used. All of these arguments justify the interest of combining

both safety inventory buffers in a multi-objective optimization fashion.

In a nutshell, this research intends to better understand the (operational/financial) ben-

efits arising out of the joint optimization of safety stock and safety time buffers. For that,

we propose a hybrid bi-objective optimization model embedded in a DSS to propose opti-

mal buffering strategies for components with different supply, demand and MRP dynamics,

providing support to logistics managers and planners in their planning daily operations.

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu

Planning calendar: 
Recipts every week on Monday

Safety time = 1 day  

Anticipated by 1 day 
due to safety time

Initial scheduled receipt

Anticipated to Monday 
due to planning calendar

Scheduled receipt after 
application of safety time

Scheduled receipt after application 
of safety time and adjustment to 
planning calendar

Figure 1: The effect of increasing safety time margins in sparse material requirement plans.
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3. Problem description and modeling

3.1. Preliminary concepts

Before elaborating on the proposed mathematical optimization model, let us provide the

essential background on multi-objective optimization that is relevant throughout the paper.

The familiar reader with this topic is invited to skip to Section 3.2.

A general multi-objective optimization problem can be generally defined as (Deb, 2005):

min f(x) = (f1(x), . . . , fp(x))

s.t. x ∈ S
(1)

where S ⊆ Rn is the decision (or feasible) set, Rn is the decision space, and fi : S → R, for

each i = 1, . . . , p, are the objective functions to be minimized. One can extend the formu-

lation (1 to cases where some or all objective functions are to be maximized. The feasible

set can be characterized by nonlinear inequalities, equalities and bounded constraints, i.e.,

S = {x ∈ Rn : gr(x) ≥ 0,∀r = 1, . . . , R, ck(x) = 0,∀k = 1, . . . ,K, xl ≤ xl ≤ xl,∀l =

1, . . . , L}. Given S′ ⊆ S, we denote by f(S′) = {z ∈ Rp : ∃x ∈ S′ such that z = f(x)}

the image set of S′ in the objective (or solution) space Rp, with f(x) = (f1(x), . . . , fp(x)).

Likewise, Z = f(S) is the image set of S in the solution space Rp, which consists of all

feasible solutions (or points) derived from the multi-objective optimization problem (1).

The conflicting nature of the objectives implies that it is, in practice, impossible to

optimize them simultaneously. Given two feasible points z, z′ ∈ Z, we say that z dominates

z′ (z ≺ z′) iff

zi ≤ z′i, ∀i ∈ {1, . . . , p} ∧ ∃j ∈ {1, . . . , p} : zj < z′j . (2)

Similarly, we say that z weakly dominates z′ (z � z′) iff zi ≤ z′i, ∀i ∈ {1, . . . , p}. We denote

by N = {z ∈ Z : @ z′ ∈ Z with z′ ≺ z} the set of non-dominated solutions (also called

Pareto set (Deb, 2005)). In this context, one can also define the ideal (z∗) and nadir (znad)

points to represent the best and worst objective values, respectively:

z∗ = min
z∈Z
{zi}i∈{1,...,p} , znad = max

z∈Z
{zi}i∈{1,...,p} . (3)

3.2. General description and assumptions

The SC topology underlying the inventory problem of this study consists of a single com-

pany, operating with multiple suppliers and components, following a MRP methodology for
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inventory replenishment. We consider that the MRP system operates under a rolling frozen

period over the planning horizon, as shown in Fig. 2, in which changes in the production

schedule during the frozen period are generally not allowed. In such a setting, we are inter-

ested in jointly optimizing, at each iteration of the rolling scheme, safety stock and safety

time decisions for each component c in such a way that upstream inventory holding costs

are minimized and the β-service level to production is maximized. To be consistent with

the reasoning behind the MRP methodology, optimal decision scenarios are provided only

for the time horizon immediately starting from the end of the frozen period (denoted by tfc )

onwards. In short, safety optimal solutions for each component are proposed for all time

periods in the set T = {t : tfc ≤ t ≤ Tc}, where Tc is the maximum optimization-simulation

horizon.

Throughout the paper, we assume that each component c is supplied by a single supplier

following a specific supply policy. Components under vendormanaged inventory (VMI)

and consignment policies are out of scope. The company’s demand for each component c is

assumed to be dynamic over a finite planning horizon of discrete time periods, obtained from

bill-of-materials (BOM) explosions on finished product forecasts provided by downstream

SC players. Against this background, the company places orders to suppliers to fulfill end-

customer requirements.

Model
updates

Free periodFrozen period

Free period

Free period

Frozen period

Frozen period

Planning horizon

week 1
week 2

week n

Figure 2: Rolling MRP planning horizon strategy with frozen and free periods for a component c.

Table 1 summarizes the notation used throughout this paper to denote sets, parameters,

decision variables and functions.
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Table 1: Summary of notations used throughout the paper.

Sets

C = {1, . . . , |C|} Set of components

T0 = {1, . . . , |T0|} Set of periods preceding the end of the frozen period

T = {1, . . . , |T |} Set of periods following the end of the frozen period

P = {1, . . . , |P|} Set of periods matching order receiving dates

Parameters

tfc Period matching the end of the frozen period for component c ∈ C

Tc Maximum simulation horizon (Tc ∈ T ) for component c ∈ C (days)

Fc Length of frozen period for component c ∈ C (days)

Dc,t Company’s demand for component c ∈ C in period t (units)

Mc Minimum order quantity for component c ∈ C (units)

Oc,t Scheduled order quantity receipt for component c ∈ C in period t (units)

X Supplier delay risk; a discrete random variable (days)

Ic,t Inventory level for component c ∈ C in period t (units)

hc Inventory holding cost of a component c ∈ C (Euro per unit per period)

γ Relative change factor of demand for component c ∈ C

Decision variables

STc Safety time for component c ∈ C (days); an integer decision variable

SSc Safety stock for component c ∈ C (units); an integer decision variable

Functions

E [·] Expectation operator

1{A} Indicator function (equals 1 if A is true and 0 otherwise)

(·)+ Maximum function, (·)+ = max(·, 0)

3.3. Mathematical model formulation

We consider a bi-objective mathematical optimization model to jointly optimize safety

time and safety stock buffers for each component c ∈ C, in terms of the classical cost-service

trade-off in inventory management theory. This model is formulated as follows:
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min
STc,SSc

H(STc, SSc) =
hc

Tc − tfc + 1

Tc∑
t=tfc

Ic,t(STc, SSc) (4)

min
STc,SSc

U(STc, SSc) =

∑Tc

t=tfc
(Dc,t − Ic,t(STc, SSc))

+∑Tc

t=tfc
Dc,t

(5)

subject to:

ST c ≤ STc ≤ ST c, ∀c ∈ C (6)

SSc ≤ SSc ≤ SSc, ∀c ∈ C (7)

Ic,t, Dc,t ≥ 0, ∀c ∈ C,∀t ∈ T (8)

Objective (4) minimizes the total averaged inventory holding costs over the optimization-

simulation period, whereas objective (5) minimizes the total average fraction of unmet

company’s demand, which is logically equivalent to maximizing average company’s service

level. Backlog costs are not considered in the formulation due to the difficulty to measure

them in real-world contexts (Petropoulos et al., 2019). For this reason, we prefer the use

of a β-service level approach, implicitly considered in objective function (5), to estimate

the expected fraction of total company’s demand that can be fulfilled from the inventory

on-hand. Concretely, in objective (5), the fraction of fulfilled company’s demand for c is

maximal if Dc,t ≤ Ic,t∀t ∈ [tfc , Tc]. In contrast, a shortage of Dc,t − Ic,t inventory units

occurs whenever Dc,t > Ic,t. By measuring the magnitudes of the shortages during the

optimization-simulation window [tfc , Tc], one can thus derive the overall fraction of com-

pany’s demand that cannot be fulfilled during that period. Here, particular attention should

be given to the term Ic,t(·, ·), which is a function of the decision variables and thereby plays

a fundamental role in both objectives. This function aims to estimate the inventory levels

for component c over the optimization-simulation period if we vary the safety time and

safety stock values. One can interpret this function as a proxy for the expected inventory

dynamics derived from a MRP simulation in a given ERP system using the safety buffer-

ing parameterization (STc, SSc). Section 4.2.2 provides the details on how this function

is embedded in a simulation-based optimization procedure by taking into account dynamic

demand and uncertain supply. Constraints (6) and (7) define the upper and lower bounds

of the decision variables and (8) ensures the non-negativity of the state variables.

By solving the above-mentioned bi-objective optimization problem with suitable evolu-

tionary metaheuristics (see Section 4.2.2), we aim at generating the trade-off curve between
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the two conflicting objectives (4) and (5), allowing decision-makers to choose a Pareto-

optimal solution according to their preferences.

4. Proposed decision support system

We developed a DSS in order to facilitate the use of the previously proposed bi-objective

optimization model in a real-world supply chain context. Such a DSS was conceived in the

course of the project Data Intelligence and Analytics for Business Operations (DIABO),

resulting from a partnership between Bosch AE and University of Minho, Portugal. Next,

we follow the work of Deng et al. (2021) to structure and describe the system architecture

of the proposed DSS.

The DSS herein presented builds on a three-layer architecture comprised by a database,

a simulation-based optimization model and a graphical user interface (GUI) (Fig. 3). The

database layer aggregates all the MRP-related information and data concerning the differ-

ent types of components targeted for safety buffering optimization. Such information is

extracted from a central database that acts as a copy of the company’s ERP and serves

as the data foundation for all modeling actions. This layer also comprises a database for

storing the output derived from the simulation-based optimization process. The information

extracted from the databases is thereafter processed in the process layer, the core compo-

nent of the entire system architecture, which is responsible for jointly optimizing the safety

stock and safety time levels for each component according to the objective functions defined

in Section 3.3. Finally, the proposed DSS has a flexible GUI layer that allows the user to

interact with the system in different stages.

Each of these layers is thoroughly explained in the subsequent sections.
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4.1. Database layer

The database stores MRP-related data. Such data attributes fall into the standard

inputs required to run a classical MRP system (Ptak and Smith, 2016), namely the bill-of

material data (component’s structure), inventory data, components/suppliers-related master

data, as well as the master production schedule (MPS) information. The data attributes

collected were further subject to a more detailed exploratory data analysis, by checking for

missing values, outliers, consistency and completeness. The cleansed data resulting from

this procedure serve as input for building the MRP simulation system described in Section

4.2.2, which is tasked to simulate the impact, in terms of upstream inventory holding costs

and β-service levels, of changing safety stock and/or safety time as MRP parameters for

each manufacturing component.

4.2. Process layer

The process layer comprises the simulation-based optimization procedure adopted to

generate the set of non-dominated optimal safety solutions for the different components.

This section starts by describing the extraction and ingestion processes of the data collected

from the database layer previously presented (Section 4.2.1), which serve as data feeding

mechanisms for running the bi-objective optimization model presented in Section 3. The

optimization and simulation phases comprising such model are thereafter described in Sec-

tion 4.2.2. We further introduce a weighted closed-form analytical expression to select a

single Pareto-optimal solution from a set of Pareto-optimal points, according to different

key performance indicators (Sections 4.2.3–4.2.4). Finally, we provide details on the GUI

embedded in our DSS (Section 4.3).

4.2.1. Data extraction and ingestion

Although the architecture portrayed in Fig. 3 presents a single database, thereby sim-

plifying the acquisition and subsequent integration of the information, a massive amount of

MRP-related data associated with thousands of components can systematically be updated

into the system. To cope with the need for faster processing of data with heterogeneous

formats, we take advantage of a Hadoop cluster for Big Data processing1. In such a set-

ting, the data are firstly extracted via Apache Sqoop (Ting and Cecho, 2013) and ingested

1The interested reader on the use of Big Data Analytics in the context of SCM is referred to the works

of Wang et al. (2016); Zhong et al. (2016).
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in a Hadoop Distributed File System (HDFS) (Shvachko et al., 2010). The Apache Spark

(Zaharia et al., 2016) engine is then used for data processing, including for the distributed

implementation of the hybrid bi-objective evolutionary-based optimization model described

in Section 4.2.2. The enriched data obtained from the processing stage are further loaded

and stored in Hive (Thusoo et al., 2009) tables, each corresponding to a HDFS directory. At

this point, one can leverage this data repository to rapidly query, via Impala (Russell, 2014),

the solutions of the optimization model and design data visualization tools to enhance the

user experience and support decision-making.

4.2.2. Hybrid stage

In the context of inventory management, it is known that pure analytical/optimization

models are, in general, difficult to implement in real-world SCs (Avci and Selim, 2018). As

such, our DSS comprises a simulation-based optimization (hybrid) approach in order to bet-

ter mimic the effect of re-parameterizing safety time and safety stock parameters in a MRP

inventory replenishment system and further evaluate such parameterization in terms of the

proposed conflicting optimization objectives. Our approach follows a two-stage modeling

process where the generation of the set of non-dominated Pareto-optimal solutions is ob-

tained through an iterative process between a selected algorithm providing feasible solution

pairs (STc, SSc) (optimization stage) and a deterministic simulation module that evaluates

each solution in terms of the proposed objectives (simulation stage). Similar optimization-

simulation setups are adopted in other multi-objective optimization applications (see Avci

and Selim, 2017, 2018; Altazin et al., 2020). Following a classical evolutionary approach,

the proposed hybrid approach appears summarized in Fig. 4, and the optimization and

simulation stages comprising it are detailed below.

Step 1: Optimization stage

In order to compute the non-dominated solutions for bi-objective optimization problem,

we consider three popular (Nebro et al., 2009a; Durillo et al., 2010) Pareto dominance based

evolutionary computation metaheuristics, namely the Non-dominated Sorting Genetic Al-

gorithm II (NSGA-II) (Deb et al., 2002), the Muti-Objective Cellular (MOCell) genetic

algorithm (Nebro et al., 2009b) and the improved version of the Strength Pareto Evolu-

tionary Algorithm (SPEA), called SPEA2 (Zitzler et al., 2001). A brief overview on each

technique is provided as follows.

The NSGA-II is considered to be the one of the most popular population-based meta-
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heuristics for multi-objective optimization (Li and Zhang, 2008), and takes advantage of

a fast non-dominated sorting approach to rank the different solutions according to Pareto

dominance and optimality concepts (Deb et al., 2002) introduced previously in Section 3.1.

If two solutions share the same ranking (i.e., are non-dominated to each other), the one with

the highest crowding distance is preferred in such a way that widespread and diversity of

solutions are preserved.

The MOCell is a cellular genetic algorithm that operates under the reasoning that each

individual only interacts with individuals from its neighborhood. In particular, it stores a set

of non-dominated solutions in an external archive during the search procedure (Nebro et al.,

2009b) using the same crowding distance of NSGA-II. By selecting two neighbor parent

solutions, crossover and mutation operators are used to generate and a new individual.

MOCell employs a feedback strategy from the archive to the population so that a new

individual is replaced by an archived solution if the former is worse (in the Pareto sense) than

the latter. Analogously to MOCell, the SPEA2 algorithm also includes an external archive

to store non-dominated solutions that result from the application of genetic operators. Yet,

the SPEA2 employs an improved truncation method whenever the number of non-dominated

solutions is greater than the population size so that solutions with minimum distance to any

other solution are preferred to those with higher distances (Nebro et al., 2009a; Zitzler et al.,

2001).

Following the optimization stage depicted in Fig. 4, the initialization process includes the

definition of several classical features in any evolutionary-based optimization metaheuristic,

ranging from the solution encoding scheme and the fitness function to the algorithm input

control parameters, including the (i) the population size (n) and the bounds of the decision

variables, (ii) the maximum number of iterations, (iii) the selection mechanism, and (iv) the

genetic operators (mutation and crossover) with respective probabilities (Turan et al., 2020).

For all genetic algorithms described previously, we adopt the standard binary tournament

(Deb et al., 1995) for the selection procedure, and the simulated binary crossover (SBX)

and polynomial mutation (Deb, 2005) for the crossover and mutation genetic operators,

respectively, with distribution indexes denoted by ηc and ηm. These indexes govern the

spread of offspring solutions around parent solutions (Deb, 2000). The selection of suitable

probability values for the genetic operators (pm and pc for the probability of mutation and

crossover) is typically performed by following a tuning procedure (e.g., Taguchi approach

(Roy, 2001)) or manual experimentation.
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After the initialization process, all the steps presented in Fig. 4 form the generic work-

flow of a classical genetic algorithm, including: the generation of an initial set of feasible

random solutions (forming the initial population), the solutions evaluation and subsequent

application of genetic operators (selection, crossover and mutation). In this whole process,

note that the simulation module is invoked at each iteration of the optimization process

to evaluate and provide the objective values for each solution vector generated during the

optimization stage. The above process operates in a cyclic fashion to successively generate

Pareto frontiers until some stopping criteria is met (in Fig. 4, a predefined maximum number

of iterations, itermax).

Step 2: Simulation stage

As articulated in the previous step, each feasible solution pair (STc, SSc) generated

during the optimization stage is evaluated through a simulation procedure to estimate both

the expected inventory holding cost and the fraction of unmet company’s demand derived

therefrom. In short, this simulation procedure intends to mimic the MRP logic embedded

in any ERP system, in terms of inventory and replenishment dynamics, for a given safety

time and safety stock parameterization.

Given the relevance of the simulation stage in the evaluation of feasible solutions gener-

ated during the optimization stage, we consider convenient to describe the steps outlined in

the right-hand part of Fig. 4 by narrative, for an arbitrary component c.

We start by setting the fundamental setup parameters for the simulation procedure,

including the inventory at the beginning of the planning horizon (Ic,1), the day matching

the end of the frozen period (tfc ) and the maximum simulation horizon (Tc). Next, the

forecasted company’s demand derived via BOM-explosions (Dc,t) is loaded to the simulator

for all time periods up until Tc and brought forward in time by ST days, meaning that

Dc,t = Dc,t+ST ,∀t ≤ Tc. This latter step forces the MRP model to plan order receipts

earlier, thereby matching the definition and overall purpose of the safety time buffer. By

loading the scheduled receipts in the frozen period, together with Dc,t and initial inventory

Ic,1, it is possible to update the inventory levels from t = 1 up to t = tfc , inclusively. This

step enables the computation of the initial inventory at the beginning of the free period,

whereupon our optimal solutions are proposed according to our bi-objective optimization

problem.

The second phase of the simulation is started immediately after the end of the frozen

period. From this point onwards, supply and demand uncertainty are considered within
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the simulation scheme. Demand-side risk is firstly included by adding a (positive/negative)

correction factor γ to the company’s demand forecast after the frozen period. For that

purpose, we compare the demand volume planned for the upcoming week after the end of

the frozen period at two different moments: at the beginning of the frozen period (t = tfc−Fc)

and at the end of the frozen period (t = tfc ). This allows to compute the relative change in

demand for a specific period. The final correction factor γ is thus obtained by aggregating

past demand relative changes without outliers. Although not a guarantee against future

demand uncertainty, this correction factor allows, at a certain level, to adjust upcoming

recent demand forecasts. Next, for each valid order receiving date in the supplier planning

calendar, we determine whether a supplier order receipt Oc,t should be scheduled in that

period. A supplier order is scheduled at time t if the available inventory-on-hand Ic,t−1 does

not cover the sum of company’s demand until the day immediately before the next valid

delivery date t∗ in the planning calendar plus the safety stock. If an order is scheduled, the

respective quantity should be a multiple of the minimum order quantity (Oc,t = kMc, k ∈ N)

while covering the total expected net demand the safety buffer SSc.

To account for supply timing uncertainty related to a component c, we model the his-

torical supplier delay risk by a random variable Xc described by a discrete probability

distribution with a finite support consisting of different magnitudes of past order’s delay,

ranging from X−c to X+
c , and respective probabilities. At this point, we assume that past

recent supply dynamics hold into the future. Then, we consider that each scheduled re-

ceipt may be delayed by approximately E [Xc] days, meaning that an order scheduled to be

delivered at period t may be actually received at period t + E [Xc], potentially leading to

shortages depending on the magnitude of the delay and the inventory-on-hand. As a con-

servative approach, we consider that the greatest delay in the random variable Xc is applied

to the order for which the inventory-on-hand is minimal, whereas the remaining scheduled

order receipts suffer a positive time deviation with magnitude E [Xc]. After incorporating

the supplier delay risk in each scheduled receipt, the inventory records for the current period

t are updated accordingly and serve as basis for developing the requirements plan in the

following period t+ 1.

The above processes are repeated iteratively over t ∈ [tfc , Tc], and the objective val-

ues for each solution vector (STc, SSc) under testing are then successively returned to the

optimization stage.
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4.2.3. Generation of Pareto-optimal solutions

For each component c ∈ C, the simulation-based optimization procedure derives a set

of non-dominated Pareto-optimal solutions. Each solution in the Pareto front corresponds

to a particular Pareto-optimal safety time/stock solution, with a certain holding cost and

β-service level associated. From this, the decision-maker disposes of a panoply of solutions

to choose from, each one associated to distinct inventory trade-offs on the two evaluation

criteria defined. For each Pareto front generated, we compute the hypervolume indicator (or

size of space covered, in Zitzler and Thiele (1998, 1999)) to evaluate the performance of the

genetic algorithms when generating the final population set across the experimental studies.

We recall that in a bi-objective minimization problem, given a set N = {za, zb, . . . , zy} of

non-dominated solutions, the hypervolume consists of the measure of the objective space

which is concomitantly dominated by N and bounded above by a reference point r ∈ R2 such

that r ≥ znad = maxz∈N{zi}i∈{1,2}, with the relation ≥ being applied in a componentwise

fashion (Fonseca et al., 2006).

4.2.4. Selection of single of Pareto-optimal solutions

Complex SCs typically operate with multiple components of different nature from multi-

ple suppliers worldwide, which makes it unfeasible for logistics planners to devote particular

attention to each individual item. In such a scenario, choosing the optimal safety param-

eterization for each component from a set of Pareto-optimal solutions may prove to be a

time-consuming task for the management.

For a component c, let N ⊆ R2 be the set of non-dominated Pareto-optimal safety

time/safety stock pairs in the form s = (STc, SSc). Inspired by the holistic measure of

inventory performance proposed by Petropoulos et al. (2019), we have constructed a flexible

weighted closed-from analytical expression aiming to simplify the choice of an optimal safety

buffer MRP parameterization s∗ ∈ N from a set of Pareto-optimal solutions. It should be

emphasized that the process of choosing such an optimal parameterization s ∈ N for each

component takes place only after the generation of the corresponding Pareto-optimal front.

Hence, the choice of such an optimal parameterization has no impact on the optimization-

simulation process. The proposed expression encompasses the linear combination of four

performance indicators to be minimized and it is formulated as follows:

s∗ = arg min
s∈N

√
W1

(
H(s)

H

)2

+W2

(
U(s)

U

)2

+W3

(
F (s)

F

)2

+W4

(
C(s)

C

)2

, (9)
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where Wi, i = 1, . . . , 4 are weight factors for the different indicators. The first two terms

of Eq. (9) are related to the evaluation criteria considered in the bi-objective optimization

problem formulated in Section 3.3. Hence, we seek a Pareto-optimal solution s for which

the corresponding holding costs and unfulfillment rates are minimized. We further explore

two additional performance indicators apart from H(·) and U(·). The first is the expected

average premium freight cost generated by the adoption of a certain Pareto-optimal pair

(F (s)). Recalling the formulation of the objective function (5), the adoption of unsuitable

safety buffer levels may lead to specific rates of unmet company’s demand, which may compel

the company to resort to premium transportation freights in order to request the amount of

stock in shortage and satisfy the demand production requirements Dc,t, ∀t ∈ [tfc , Tc]. At this

point, note that special freight costs may not evolve linearly with the inventory in shortage,

as they depend on other factors related to size, weight and geographical location of potential

suppliers. For this reason, we consider interesting to include this indicator as a complement

to the indicator U(·), in the sense that a high magnitude of inventory in shortage may not

necessarily lead to high special freight costs. Similarly to the indicators H(·) and U(·), we

are interested in a Pareto-optimal solution s such that F (s) is also minimized. The second

additional indicator targeted for minimization is the inventory coverage (in time) provided by

a certain Pareto-optimal pair (C(s)), here formulated as the difference between the inventory

coverage (in days) provided by the safety solution s and the expected value of supplier delay

E [Xc]. Following such formulation, we seek a solution s that provides enough inventory

time coverage to cope with the average delay without however incurring in excessive holding

costs. Here, only Pareto-optimal points satisfying C(s) ≥ E [Xc] are potential candidates

to be considered as s∗. Note that, depending on the context of application, other business

rules can be applied in order to reduce the set of potential candidate solutions to be selected

as s∗. Overall, while the indicator F (·) complements U(·), the indicator C(·) may help to

balance the minimization process of holding costs (H(·)) to a reasonable level enough to

cover supply timing uncertainty.

As the different criteria in formulation (9) are measured in different units (costs, percent-

ages and time), each criterion (term) is normalized by considering its value divided by the

mean value of that criterion over all Pareto-optimal solutions s ∈ N . Our formulation con-

siders the L2-norm in order to cope with diseconomies of scale in operations management

(see Petropoulos et al., 2019, and the references cited therein for details). The choice of

the weight parameters in Eq. (9) can be configured by the user according to their business
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preferences through a graphical user interface layer (see Section 4.3.1). Particularly, the

user can opt to allocate more weight to one specific indicator than another in accordance

with the optimization objective that has greater relevance at a given moment in time. If

the user intends to favor the minimization of inventory holding costs in detriment of the

minimization of the fraction of unmet demand (or, equivalently, the maximization of the

service level), then the magnitudes of W1 and W4 should be higher than those assigned to

the factors W2 and W3. Such configuration of weights will promotes the selection of lower

safety buffers. Conversely, if the purpose is to focus on minimizing the fraction of unmet

demand regardless of the inventory holding costs derived therefrom, then the magnitudes

of W2 and W3 should be higher than those assigned to W1 and W4, thereby promoting the

selection of solutions with higher safety coverage.

4.3. Graphical user interface layer

The GUI layer allows the user to interact with the DSS. Following the functional require-

ments of the DIABO project, we distinguish three functionalities embedded in our DSS that

allow the user to: (i) define the experimental setup for the simulation-based optimization

model, (ii) configure an automatic job scheduler and (iii) visualize the Pareto-optimal safety

stock/time solutions for each component, as well as some related performance indicators.

4.3.1. Definition of the experimental setup

The DSS presents a main interface comprising different functionalities of the system

(Fig. 5). To match the purpose of this study, we focus our attention only to the safety

time/stock optimization and configuration functionalities, indicated by the circle markers 1

and 2 in Fig. 5, respectively. The latter functionality is now introduced, whereas the former

is detailed later in Section 4.3.3.

Figure 5: Main interface of the DSS.
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The “Plants Configuration” button, indicated by the circle marker 2 in Fig. 5 enables

to configure a number of settings that are relevant for running the hybrid bi-objective

optimization model. By clicking on it, the DSS displays a list of different plants that can be

targeted for such configurations. Figure 6 provides an illustrative example of a truncated

list of plants. The user can then select the edit button marked by 3 in Fig. 6 in order to

dive into the configuration page for a specified plant. Several configurations are available,

for instance: (i) define a small subset of components of that plant to be optimized as

well as the corresponding optimization-simulation horizon, (ii) configure automatic alert

mechanisms to logistics planners in case of abnormal supply/demand deviations, (iii), set

specific safety time/stock conservative lower bounds per component (typically motivated by

business constraints), or even (iv) define the hyperparameters of the metaheuristic and the

weights for the closed-form analytical expression (9). Such configurations can be conducted

by accessing the sub-panel represented by the circle marker 4 in Fig. 6.

Figure 6: Configuration page of the DSS.

4.3.2. Configuration of the automatic job scheduler

The GUI allows the automatic scheduling of several jobs required for running the execu-

tion of routines associated with the bi-objective optimization model for different plants and

components. Such scheduling process can be accessed directly through the side-bar menu

button indicated by marker 5 in Fig. 7, which displays several examples of jobs scheduled

for different time periods. The user is also able to schedule a new job by clicking the button

indicated by the marker 6 in Fig. 7, as well as to monitor the status progress of each sched-
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uled job and have a direct visual assessment of the processes whose execution may have

failed. In practice, this feature is important as it enables to quickly detect possible errors

in order to further conduct corrective actions.

Prior to launch a given job in a productive environment (marker 8 in Fig. 7) the user is

able to run it in a test environment (marker 7 in Fig. 7) in order to evaluate its performance

and validate the results derived therefrom.

Figure 7: Interface of the automatic job scheduler.

4.3.3. Visualization of the results

The results of the bi-objective hybrid optimization model are presented to the user

through the button indicated by marker 1 in Fig. 5. The output is illustrated in Fig. 8.

In addition to the visualization of the Pareto-optimal front for a selected component (see

marker 9), the user can select a particular Pareto solution and analyze the inventory dynam-

ics obtained by adopting the corresponding buffering strategy over the simulation period

(see marker 10). In practice, this enables logistics planners to visually inspect the inventory

management impact of a given safety buffer choice, thus making it possible to anticipate po-

tential inventory shortfalls and consequent service level losses. The Pareto-optimal solution

selected via the closed-form expression (9) is represented by the green point in the Pareto

front, as indicated in the panel corresponding to marker 9. Since the component presented

in Fig. 8 accounts for a significant share of the company’s sales volumes, it was suggested

by the company managers to give greater importance to the expected service level than

to the related holding costs. Thus, following the reasoning articulated in Section 4.2.4, the

weights in Eq. 9 were set, for this particular component, as W1 = W4 = 0.1,W2 = W3 = 0.4.
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This leads to the selection of a Pareto-optimal point associated with higher safety coverage

and, consequently, higher service level (as shown in Fig. 8). In the panel corresponding to

marker 9, one can also visualize the current safety time/stock solution adopted by the com-

pany (yellow point in the sub-panel 9), for the sake of comparison with the Pareto-optimal

solutions. Several master data related to the component under observation are likewise

presented to the user, including the variations in supply and demand variations associated

with that specific component, as indicated by marker 11.

Figure 8: Output of the safety stock/time optimization functionality.

5. Empirical evaluation

To evaluate the merits of our approach, the DSS was implemented in the logistics de-

partment of Bosch AE, Portugal – one of the largest business units belonging to the Bosch

group, operating with several suppliers and end-customers worldwide. Presently, the com-

pany dimensions safety buffers according to business-oriented rules closely related to the

ABC inventory classification of the different components and to the geographical location

of potential suppliers. Yet, the company managers are interested in understanding how

the dimensioning of the safety buffers is influenced by uncertainty factors as well as by the

characteristics of component’s supply from suppliers to the manufacturing plant. Based

on this background, we have designed two test cases. The first to perceive how the joint

optimal parameterization of safety buffers is affected not only by the magnitude of demand

and supply variations, but also by the degree of sparsity of the corresponding MRP plans.
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Regarding the second test case, we aimed to compare, at a more generic level, the financial

and operational benefits resulting from the combined used of safety stock and safety time

with those obtained by the current approach adopted by the company. In both test cases,

to cope with the current company’s strategy, we guide the discussion by relating the results

derived from the proposed simulation-based optimization approach with the ABC classifi-

cation of the different manufacturing components under consideration. At this point, we

consider a sample of 3024 components of a single manufacturing plant.

5.1. Calibration of models and parameters

All the metaheuristics for solving the proposed bi-objective optimization problem (NSGA-

II, MOCell, and SPEA2) have been implemented in Python by taking advantage of the flex-

ible jMetalPy package (Benitez-Hidalgo et al., 2019). The computation experiments were

performed on a Hadoop cluster with 9 nodes, 152 cores (144 cores with hyper-threading),

224 TB of disk capacity and 1603 GB of memory capacity.

We adopted an internal population size of 150 individuals, for all the evolutionary meta-

heuristic employed. We set the distribution indexes for the crossover and mutation genetic

operators to ηc = ηm = 10, and the size of the archive of solutions to 100, in the case of

MOCell and SPEA2. Throughout the numerical experiments, the crossover probability is

assumed to be pc = 0.8 and the mutation probability is pm = 1/I, where I = 2 is the

number of decision variables at stake. For all metaheuristics, we set the maximum number

of iterations to itermax = 1500, as we found through background analyses that the average

hypervolume is quasi-invariant from 1500 iterations onwards. However, in order to save

some computational time, we adopt a dynamic stopping criterion rather than forcing the

model to iterate until the maximum number of iterations is exhausted. Specifically, every

five generations of the model, the number of solutions in the current Pareto front is evalu-

ated and compared with the number of solutions in the front obtained five generations ago.

Thus, the iterative process stops whenever the percentage change in the number of solutions

from one Pareto front to another is less or equal than a threshold value (in our case 2%).

The iterative process continues until this criterion is satisfied or the maximum number of

iterations set (itermax) is reached.

Given the fairly large dimension of our component’s sample, grid search procedures for

the hyperparameters of the genetic algorithms were not conducted to enable a better compu-

tational efficiency. Yet, we found through preliminary experiments that small perturbations

in the hyperparameters produced quite identical simulation results. Regarding the lower
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and upper bounds of the decision variables, we consider that STc is a discrete variable tak-

ing values between ST c = 0 and ST c = dmax(m,Xc) + µDc/σDce with a unit step size,

where m is the maximum safety time defined at the company and µDc/σDc is the coefficient

of variation of the past annual company’s demand. On the other hand, SSc ranges from

a lower bound SSc = 0 up to an upper bound SSc = max {Oc,t}t
f
c

t=1, with a step size of

Mc. The setup for these bounds was established based on expert business judgment for

this particular case-study context. As such, there may be naturally the need to redefine

such bounds depending on the context under analysis. The maximum simulation horizon

for each component c is set to Tc = 10 (weeks). We considered one-year historical data to

model the demand-side variations and the supply delay risk, defined as in the simulation

stage (see Section 4.2.2). For the computation of the hypervolume metric, the objective

space was normalized so that the nadir and ideal points are (1, 1) and (0, 0), respectively,

taking the former as reference point.

5.2. Results and discussion

5.2.1. Preliminary experiments

A set of controlled experimental studies were performed to select the top performing

evolutionary algorithm for our data, thereby reducing the computational effort required to

optimize all the manufacturing components contained in our sample using the three different

metaheuristics. For that, we took advantage of a set of 30 components with high turnover

rate for the company. We have considered both the hypervolume and runtime (in seconds) as

model performance metrics. The three metaheuristics (NSGA-II, MOCell and SPEA2) were

applied to each component over 5 runs, with 1500 function evaluations in each one of them.

The results were then aggregated by averaging the results across runs. A final estimated

median for the hypervolume and runtime for the whole set of components was obtained

via non-parametric Wilcoxon signed-rank test (Hollander et al., 2013), as summarized in

Table 2.

Table 2: Wilcoxon medians for the hypervolume and runtime for the different evolutionary algorithms.

Metaheuristic Hypervolume Runtime (s)

NSGA-II 0.665 13.483

MOCell 0.664 191.367

SPEA2 0.666 262.748
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Although no statistical significant differences (p > 0.05) were found for the hypervolume

values among the different algorithms used, we found that the computational time is con-

siderably smaller for NSGA-II when compared to the MOCell and SPEA2. For this reason,

the NSGA-II was selected as the fastest metaheuristic for the data under study. Subsequent

analyses consider the application of NSGA-II with the hyperparameters defined in Section

5.1.

5.2.2. Influence of schedule density on the Pareto-optimal decision space

We start by studying the influence of schedule density on the dynamics of the Pareto-

optimal pairs (ST, SS) obtained from the application of NSGA-II. Henceforth, we define

schedule density as the relative frequency of scheduled receipts for a given component over

the optimization-simulation period. In other words, a manufacturing component with a

dense planning calendar can be characterized by frequent scheduled deliveries over the sim-

ulation horizon, while another with a sparse calendar has scheduled deliveries in wider

timeframes. In what follows, we consider only Pareto-optimal solutions providing service

levels ≥ 90%. This threshold of 90% for the service level was established in accordance

with the minimum service level which the case-study company is willing to comply with,

and agrees with previous literature (Fildes and Kingsman, 2011). We distinguished the

component types according to their ABC inventory class. Following this strategy, we expect

that our analyses are not overly influenced by components with very different inventory

management dynamics. The three inventory groups (A, B and C) were obtained based on

the annual consumption value criterion.

In Fig. 9, we illustrate the dynamics of the Pareto-optimal solutions over the decision

space as a function of schedule density and ABC class. Due to scaling reasons, safety stock

is expressed in days of inventory coverage rather than units. Each point in the decision

space represents a given Pareto-optimal solution for a particular component in the original

sample. For components within the classes A and B (left and middle panels of Fig. 9),

we observe the overwhelming majority of the solutions combining safety stock and safety

time decisions are mainly concentrated in decision space coordinates corresponding to lower

degrees of schedule density. This suggests that, in terms of the proposed optimization trade-

off, the combination of safety time and safety stock decisions may be suitable for components

for which supplier’s deliveries are more widely separated in time, i.e., with sparse planning

schedules. Note that the adoption of a pure safety time strategy for components with sparse

planning schedules would force the company to anticipate supplier orders well-ahead in time,
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inducing highly holding cost levels. Instead, this opens space to reduce the levels of safety

time and compensate them with suitable safety stocks.

As we move from sparse schedules to dense schedules (i.e., high degree of density), we

found that the need to combine both buffering strategies seems to lose steam. Indeed, one

can argue that, in the absence of unusual demand/supply variability, it is reasonable to

soften safety levels whenever a given component is supplied more frequently. For very dense

schedules (density ≥ 0.9), we found that the need for safety buffering strategies is residual,

regardless the ABC class which the components belong to. A closer comparison between the

dynamics of the Pareto-optimal solutions within class C with those of the remaining classes

shows that this typology of components tends to require less safety time. Such behavior

can be motivated by the close distance between the supplier of those components and the

manufacturing plant under study. In this regard, attending to the low inventory holding

cost of C-components, logistics planners can thus dimension suitable safety stock buffers,

thereby reducing the risk of experiencing inventory shortages for commodities and bulky

materials resulting from ordering well beforehand.
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Figure 9: Decision space dynamics as a function of the degree of density.

5.2.3. Influence of uncertainty sources on the Pareto-optimal decision space

Let us focus now on the potential link between the proposed optimal solutions and the

different levels of uncertainty, either in the demand or in the supply side. Likewise, we

narrow our analyses to service levels greater or equal to 90%.

The influence of demand variation on the dynamics of the decision space, under different

ABC classifications, is depicted in Fig. 10. On one hand, by examining the general interplay

of the solutions obtained for the different ABC classes, it is clear that the percentage demand

variation tends to be negative for the overwhelming majority of the components tested.

This means that, for our data, demand signals tend to be more often overestimated than
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underestimated. We found that such behavior was motivated by the conservative behavior

adopted by the logistics planners of Bosch AE in a bid to cope with the major supply

chain disruptions induced by SARS-CoV-2 virus at the time of this study. On the other

hand, we observed that components with highly negative demand variations levels tend to

present Pareto-optimal solutions with low magnitudes of safety stock, and only a few of

those solutions is complemented with safety time. In sharp contrast, whenever the demand

variation positively increases, components tend to require the combined usage of safety stock

and safety time to reduce the potential risk of stock-out events. This behavior is particularly

evident for components of class A (left panel of Fig. 10).

As to the decision space dynamics as a function of supply uncertainty (Fig. 11), here

expressed in the form of timing uncertainty, we found no strong patterns that would allow

us to extract meaningful conclusions. Yet, one can observe that components associated with

high supply delays which fall into classes A and B tend to be associated with Pareto-optimal

solutions that combine safety stock with safety time decisions. This pattern is not so evident

for C-components.
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Figure 10: Decision space dynamics as a function of demand quantity uncertainty.
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Figure 11: Decision space dynamics as a function of supply timing uncertainty.
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5.2.4. On the benefits of the joint optimization of safety inventory buffers

Currently, safety stock and safety time inventory-buffering strategies are adopted by

the company. However, company managers consider the dimensioning of both buffers in

isolation and neglect the potential benefits arising out of their joint optimization. On the

other hand, such dimensioning process is purely empirical, stemming from the experience

of logistical planners, and based on ABC criteria and the location of suppliers. Hence, we

are now interested in quantifying the benefits resulting from the joint optimization of safety

inventory buffers in comparison to that obtained from the current strategy adopted by the

case-study company.

We started by analyzing the distributions of the solutions obtained through the pro-

posed optimization-simulation approach with those obtained by using the company’s strat-

egy (Fig. 12). In general, we observe that the average inventory coverage provided by the

combination of safety time and safety stock buffers is lower when compared to that obtained

by using the current company’s strategy, regardless the ABC class. We further observe that

a significant part of the inventory coverage levels are obtained by using safety time compen-

sated with safety stock. In this context, it additionally important to evaluate the financial

and operational performance of the proposed approach. For that, we compared, for all

sampled components, the current safety solution adopted by the company with the Pareto-

optimal point obtained via the application of the formulation (9), assuming equal weights

Wi = 0.5,∀i = 1, . . . , 4. The results appear summarized in Table 3. The key finding is

that whenever safety buffers are jointly optimized the resulting holding costs are always

lower and the average service levels are always higher, when compared to those obtained by

considering safety buffers dimensioned in a independent fashion. At first glance, this result

may seem a contradiction because an increase in the service level for a given component is

typically associated with an increase in inventory levels. However, by considering the joint

optimization of both buffers, we observed that, for multiple components, it was possible

to drastically reduce inventory costs while maintaining the same service level derived from

the strategy adopted by the case company. This leads to another interesting finding: al-

though there are several Pareto-optimal decisions associated with increases in safety levels

in relation to the current ones adopted by the company, we found that the benefits aris-

ing from such cost reduction outweigh the additional holding costs induced by increasing

safety stock/time. Particularly, the greatest improvement in service levels was found for

components in class A, whereas in terms of holding costs the largest reduction was found
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for components in class C. This last finding is mainly due to the fact that the company tends

to naively increase safety stock/time levels for components within class C, as they present

considerably lower holding costs when compared to those of classes A and B. While this

strategy adopted by the case-study company may be pertinent from an operational point of

view, it may not be cost-effective if the increase in safety inventory levels is too excessive.
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Figure 12: Inventory coverage distribution of all Pareto-optimal safety time (ST) and/or safety stock (SS) so-

lutions derived from the simulation-optimization procedure via NSGA-II (dark gray) and the case company’s

safety strategy (light gray) for the different ABC classes. The blue dots represent average values.

Table 3: Comparison of average holding costs and service levels derived from the joint buffer optimization

with those obtained under the case company’s strategy for different ABC classes.

Performance indicator Class A Class B Class C

NSGA-II Average β-SL 0.85 0.95 0.99

Average holding cost [e] 10 200 795 86

Company’s strategy Average β-SL 0.75 0.94 0.97

Average holding cost [e] 11 300 954 114

Overall β-SL improvement [%] 13.33 1.06 2.06

Overall holding cost savings [%] 9.73 16.67 24.56

6. Conclusions and further developments

The literature has emphasized that no supply chain can operate without safety inventory

buffers (Syntetos et al., 2016), as they are required at different levels of the product structure

in order to guarantee timely production and delivery of finished products and components
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(Louly and Dolgui, 2009; Ruiz-Torres and Mahmoodi, 2010), as well as to prevent massive

supply chain disruptions (Bogataj et al., 2016). Yet, several previous studies have typically

looked at the problem of dimensioning safety stocks or safety times in isolation and not in

combination, thus ignoring any potential inherent to the combination of these two safety

approaches.

From a theoretical perspective, we introduce a hybrid bi-objective optimization model

in order to address the problem of joint optimization of safety stock and safety time in-

ventory buffers in multi-item single stage industrial supply chains. Classical evolutionary

metaheuristics are employed to generate multiple Pareto-optimal safety stock/time solu-

tions to decision-makers. Here, instead of giving the decision-maker the onus of choosing

the Pareto-optimal solution that works best for the business needs, we explored a holis-

tic metric that, by weighting different performance indicators, allows to suggest a single

Pareto-optimal point rather than multiple ones. Real-world numerical data from a major

automotive electronics company – Bosch Automotive Electronics Portugal – provided con-

text for our modeling explorations. While much of the existing literature discusses how

and in which situations safety stock or safety time strategies should be applied, our results

suggest that the combined use of both inventory buffers may prove to be a fruitful strategy

towards minimizing holding costs while maintaining suitable service levels. Indeed, we ob-

served that the sparsity of the material requirements plan as well as the levels of demand

and supply variability prove to be important indicators when dimensioning safety inventory

buffers. Particularly, the results derived from applying our model to a comprehensive set of

components seem to favor the combination of safety stock and safety time for high levels of

sparsity of material requirements plan (i.e., lower delivery frequencies). On the other hand,

as the sparsity level decreases (i.e., higher delivery frequencies), we find that the need to use

safety stock/time buffers is reduced. Additionally, our results also indicate that variations

in demand can influence the decision of which buffer method is the most appropriate. In

this case, our findings suggest that a combination of both strategies is recommended when-

ever demand variation increases. In contrast, in the case of overestimation of demand, the

adoption of buffer stock seems to prevail over the use of buffer time, especially for A-type

components. With regards to variations in supply, we also found a modest trend to combine

safety stock with safety time whenever the magnitude of the supplier delays increases.

From a managerial perspective, our results provided evidence that the joint optimization

of safety inventory buffers should not be overlooked when optimizing inventory management.
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For added confidence and validation, we developed a flexible decision support system that,

by embedding the proposed simulation-based optimization approach, facilitates its imple-

mentation and use in real-world supply chain contexts. The architecture of such a system

was designed to operate with large-scale data with minimal human-intervention, thereby

enhancing its use in real-world environments. By comparing the current safety buffer pa-

rameterization adopted by the company with the Pareto-optimal decision suggested by our

decision support system, we found that, under certain circumstances, it appears to be more

cost-effective to combine safety stock with safety time compared to considering these two

inventory buffers independently. In particular, we found that, depending on the ABC class

of the components, the joint optimization of safety buffers allowed reductions in holding

costs ranging on average from 9.7% to 24.6% and improvements to the company’s service

level from 1.06% to 13.33%.

However, it is of utmost importance to note that this study is an exploratory research,

and our results are based on a particular automotive industry context. As such, more

research is needed to demonstrate deeper into the benefits of combining both safety buffers in

generalized yet related supply chain contexts. Future research could focus on understanding

how slight variations in internal production processes impact the correct dimensioning of

safety buffers, as well as to develop modeling approaches to dynamically assign weights to

the different criteria involved in choosing a single optimal solution from the Pareto front over

different MRP planning horizons. Finally, we emphasize the relevance of correctly modeling

supply and demand dynamics without considering common Gaussian approaches just for

the sake of statistical simplicity.

Overall, although our modeling approaches have natural limitations and we argue in

favor of testing the proposed bi-objective optimization model in other types of industrial

contexts, we believe that this paper can be an interesting starting point to trigger further

research studies with empirical evidence in this field, which so far has been little explored.
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