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Abstract

In the last years, organizations and companies in
general have found the true potential value of collect-
ing and using data for supporting decision-making. As
a consequence, data are being collected at an un-
precedented rate. This poses several challenges, in-
cluding, for example, regarding the storage and
processing of these data. Machine Learning (ML) is
also not an exception, in the sense that algorithms
must now deal with novel challenges, such as learn
from streaming data or deal with concept drift. ML
engineers also have a harder task when it comes to
selecting the most appropriate model, given the wealth
of algorithms and possible configurations that exist

nowadays. At the same time, training time is a stronger

1 |

Over the past years, the field of Machine Learning (ML) has been pushing for new approaches
and methodologies to deal with the significant challenges that have been emerging. The main

INTRODUCTION

source of these challenges is the new properties of data.

First, data are now pervasive to virtually every company or organization. Organizations
have understood the value of collecting, transforming, and using internal and external data for
decision-support, as a way to gain a competitive edge over their peers. This was made possible,
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in part, through the %eneral availability of the necessary resources (e.g., hardware and software)
which were, up until recently, prohibitively expensive or simply nonexistent.
This shift led data to be more diverse than it traditionally used to be, and also to exist in a

much higher volume than before." This volume and diversity of data mean that it is nowadays
common for a data set to be too large to be stored in the memory or even in the hard drive of a
single computer. Thus, data sets are nowadays often distributed across large clusters, made up
of dozens to thousands of computers, which act as storage and processing nodes.

Data are also increasingly dynamic. This derives from the velocity at which both companies
and society move nowadays, with increasingly faster transactions and interactions. Organiza-
tions thus feel the need to adapt increasingly faster to these changes so that they are not left
behind. When doing so and adapting their own response to external change, companies are,
themselves, contributing to this change. The practical implication is that the statistical prop-
erties of data change in significant ways and faster than ever before.”

This new panorama, which results from a quick shift, poses significant challenges to many
data-related fields, notably to ML. ML algorithms now need to learn from data that are not all in
one same physical location, and are distributed across many machines.” There is also an increased
pressure for organizations to take decisions faster. Thus, algorithms need not only to be able to
learn from larger data sources, but also to do it in more efficient ways. Finally, models risk being
outdated soon after they are trained, as the data change. Thus, models need to adapt dynamically to
the data on an almost real-time basis, to ensure that decision-making performance is optimum.*

In this paper we look at meta-learning and how it can be used to address the challenges
pointed out. Meta-learning is seen, in the context of this paper, as the ability of learning to
learn. This rather broad definition includes, from our point of view, methods that rely on data
about the data sets, about the models (e.g., configuration and performance metrics), among

nthare Thaca tvmoc nf Aata ara aftan callad mata_data Tha cn_rallad mata_Adata cate ara alen

6242 MONTEIRO ET AL.
2> | WILEY

This paper provides an analysis of the current state of meta-learning, with a focus on
approaches that allow one to address the current challenges in the field of ML. Then, we
describe the implementation of two novel meta-learning applications, one for algorithm se-
lection and the other for streaming learning, as well as their validation and results.

The rest of the paper is organized as follows. Section 2 provides an overview of meta-
learning applications, with the goal to cover the diverse and broad potential of these techni-
ques. Section 3 establishes some relevant theoretic considerations, in regard to the approach
proposed in this paper. Section 4 defines the problem being tackled: to use meta-learning to
solve some of the current challenges in ML. Specifically, this section characterizes the two main
problems being addressed: algorithm selection and continuous learning from streaming data.
Section 5 provides the relevant details into the system that was developed to implement the
envisaged solution. This system is then validated in Section 6, through its use with real publicly
available data sets. Finally, the paper closes with Section 7, which presents the concluding
remarks.

2 | RELATED WORK

Meta-learning is concerned with discovering patterns in the data and understanding their effect

on the behavior of algorithms. Nonetheless, it can be approached in several different ways and,
8,9
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algorithms, knowledge discovery, comglmr}g base-level ML systems, controlling the learning
process and bias management, or transferring meta-knowledge across domains.

In this section, we describe several representative contributions that are related to meta-
learning in general, attempting to cover the main different application scenarios.

One of the challenges, in any ML project, is that of algorithm selection. On the one hand,
there is an increasing wealth of algorithms, each with its particular characteristics, which
although providing more alternatives and potentially better models, also makes it more difficult
to select the best algorithm. Furthermore, newer algorithms can be configured and tweaked in
many different ways, which further expands the problem of algorithm selection to algorithm
selection and configuration. On the other hand, data sets are becoming increasingly complex,
which makes it more difficult for a human expert to understand the properties of the data and
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and the targets are the performance (meta-labels) of a set of algorithms when they are applied
to the data set. Features may describe statistical information, information-theoretic char-
acteristics, or “landmarkers,”'® in which some properties (e.g., predictive performance) of a
model learned by an algorithm are used as meta-features. One caveat is that, to be efficient, the
landmarker-based features need to be computed relatively quickly otherwise one could simply
run the candidate algorithms on the data set.

Given one such meta-data set, another algorithm, usually called a meta-learner, learns a
model using the given meta-features. When given a new data set, first the meta-features are
calculated, and the expected or relative predictive performances of different algorithms can
then be predicted.

Another domain in which meta-learning is widely used nowadays is ensemble learning.
Ensemble methods are an ML technique that combines several base models to produce one
optimal predictive model. The way the base models are combined into a single larger model is
what places ensembles under the meta-learning umbrella. The combination of these models
can follow different approaches.

For instance, in the stacking generalization method '’ several base-level learning algorithms
are combined using a meta-level learner to learn a linear function of the models produced by
the base-level algorithms. Given a new data set, the predictions of the base-level algorithms are
combined to provide the final prediction. Boosting'® is another popular ensemble learning
strategy in which the same base-level algorithm is used multiple times to train multiple models.
In each iteration, a reweighted training set is used in which instances that were previously
misclassified have a larger weight. The final boosting prediction is also a combination of base-
level models. Bootstrap aggregation, also called bagging,'” is another example of ensemble
learning where multiple weak models are used. At prediction time, the predictions of the
several weak models are aggregated to get the final prediction. Whenever the dependent
variable is numeric, the prediction is usually the average value of the prediction of each weak
model. When it is an enumeration, the prediction is taken from the most frequent class pre-
dicted among all the weak models. Extensive theoretical and empirical studies have been
carried out in recent years in ensemble learning. Comprehensive reviews on ensemble tech-
niques can be found in Reference [20].

Meta-learning has also been used as a variant of inductive transfer.” Inductive transfer
refers to the ability of a learning mechanism to improve performance on the current or target
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TABLE 1 Sample train/test setting for binary functions over three Boolean variables (adaption
from Reference [24])

Inputs fo f 12 f3 14 fa 14 fa fa fa

Training set

000 0 0 0 0 0 0 0 0 0 0
001 0 0 0 0 0 0 0 0 0 0
010 0 0 0 0 0 0 0 0 0 0
011 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 1 1
101 0 0 0 0 1 1 1 1 0 0
Test set

110 0 0 1 1 0 0 1 1 0 1
111 0 1 0 1 0 1 0 1 0 0

The NFL theorem in this table shows that the behavior on 7, of any learner
(fO, f1, ..., f255) trained on 7, is that of a random guesser (can be seen, e.g., while considering
functions fO-f3 in Table 1). The NFL theorem in essence simply restates Hume's conclusion
about induction having no rational basis ** “There can be no demonstrative argument to prove,
that those instances, of which we have had no experience, resemble those, of which we have
experience....”. The crucial contribution of the NFL theorem is pointing out that whenever a
learning algorithm performs well on some functions it must perform poorly on some others.

Taking that into consideration NFL theorem and Hume's conclusion, let us discuss the
application of an Ultimate Learning Algorithm (ULA), therefore for a given learning algorithm,
amodel M is induced, which defines a class probability distribution p over the instances space.
A ULA is a learning algorithm that induces a model M*, such that

VM’ # M*, E@(@*,p*)) <EG®P,p™) (1)

where the expectation is computed for a given training/test set sample of the instance space,
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characterized by challenges, such as concept drift, streaming data, or complex data sets. To this
end we propose an architecture to support the implementation of meta-learning services. So far,
this architecture has been used to address two key real-world problems: algorithm selection and
continuous learning in streaming scenarios. This section describes the key aspects of each of
these problems. Section 5, on the other hand, provides details regarding how a meta-learning
system was implemented that allows the development of services that deal with these problems.

41 | Algorithm selection
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In real ML problems, the task of algorithm selection is an inherent complex problem, with many
variables and restrictions. The main goal of this task is to select the best algorithm and its con-

figuration, that is, the one that minimizes the error function of its predictions when used on real

test data. There is, nowadays, a plethora of algorithms to choose from, each of which with many

parameters that can be tuned and will change the predictive performance of the resulting model.
Important aspects to be considered when selecting an algorithm include:

« the shape of the data set, that is, the number of rows, number of columns, and the ratio
between them;

« the statistical properties of the variables;

« the type of data described by the data set (e.g., historical information, time-series, signals,
and image);

« business restrictions or requirements, such as training time, degree of interpretability, target
infrastructure (e.g., cloud vs. on premises), among others;

« business goals.

It is important to point out that there is no single best algorithm to be used in all problems,
as results from the NFL theorem®” described in Section 3. The brute-force approach is to try all
the algorithms with different parameter settings (e.g., using Grid Search) for a given data set
at hand.

In practice this is usually not feasible due to the computation time it takes to assess a large
number of alternative algorithms available and their possible configuration. Thus, when in the
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is to use a trial-and-error strategy. Taking algorithm selection as an example, the expert could
get the performance estimations of the algorithms based on cross-validation, and then use
performance measures to determine the best algorithm to use. Although feasible, this strategy
may still require a reasonable amount of computing and human time, especially when there are
many algorithms available.

From a meta-learning perspective, the main advantages of automated algorithm selection
are twofold: to allow the human expert to save time by not having to configure and train
different models manually, and to allow for a potentially better model than would be otherwise
achieved by estimating which models are better suited for a data set, given their properties.

Moreover, the problem should be addressed as a ranking task instead of a classification task.
This allows the system to provide the user with several alternatives and their respective
performance scores. Thus, the user can select among several alternatives the one that is best
suited to the problem's characteristics and constraints.

Meta-learning for algorithm ranking uses a general ML approach to generate meta-knowledge,
mapping the characteristics of a data set, encoded in meta-features, to the expected performance of
the available algorithms. This approach is particularly important for business domains that require
the fast deployment of analytical techniques (e.g., stock market prediction and customer response
prediction). Additional insights into the topic of meta-learning research and its applications,
particularly for algorithm selection, can be found in References [8,9,27,28].

4.2 | Learning in streaming scenarios
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The goal of ML algorithms is to find patterns in data that describe real-world phenomena.
These patterns are, however, often not static. That is, they change over time. This change is

known as concept drift. In streaming scenarios, more than in traditional ML, learning is as
much about forgetting irrelevant and outdated details, while remembering relevant and new
ones.” Not doing so would result in models that are too complex and also outdated.

A classic example in which concept drift happens is in the market basket analysis pro-
blem,” in which users' buying preferences change over time. Whenever these changes are
periodic or seasonal, they can be incorporated into the model through new date-related vari-
ables (e.g., month of the year and season). However, some of these changes are more perennial
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time. Concept drift should not be confused with noise.” Noise represents more random var-
iations in the distribution of the data, often difficult to predict. Concept drift, on the other hand,
represents consistent and long-term changes, that can be predicted accurately if the model is
updated. Excessive sensitivity to noise or even to outliers may lead the model into adapting to
nonexisting changes, or to overfit.

There are two main ways for ML to deal with concept drift. In a batch learning approach,
models are completely retrained to include the new data and, possibly, excluding some or all
the old data. Given that the training of a model is potentially a computationally intensive and
time-consuming task, this is often not feasible in practice, especially when concepts change too
fast or too often.”’ An alternative is to use an incremental approach to learning, in which the
model or part of it is updated, without the need to retrain the whole model. This is usually a
less computationally intensive task.’”

This section proposes an approach to deal with concept drift based on meta-learning that
can be categorized as incremental. Specifically, we propose a bagging ensemble in which new
base models are added over time, trained with more recent data. Once the pool model is full,
older, and/or outdated, models are removed. The meta-learning task consists of finding the best
weights to use in the bagging mechanism, and to decide what is the constitution and config-
uration of the ensemble at each moment. This meta-learning task is implemented through a
genetic algorithm. The meta-model is thus able to continuously adapt with minimum effort.

5 | ARCHITECTURE

Section 4 described the two main ML problems addressed in this study: algorithm selection and
continuous learning in streaming scenarios. To address these problems, a group of software
components was devised and implemented, whose integration makes up a multifunctional
meta-learning system. This section details this system in terms of its main components. First,
an overview of the architecture of the system is provided. Then, a more in-depth description is
provided, organized in terms of functionality rather than individual components.

The architecture of this system, illustrated in Figure 1, has two interfaces with external
systems and eight main components. The first interface, represented on the left end of the
figure, allows one to connect to data sources. There are two main types of data sources: batch

and ctraamina Ratrh Aata cnnirroc ara 11omially otatin Aata cate in tha farm af filac that ara

6248 MONTEIRO ET AL.
— Wi Fv

aprurad jou AJoLs ST uonnqLysIp pue asn-3y ‘[ 1202/60/LZ] UO -OYUIA O] SPePISIdATU[) K¢ "wod Ka[im’AreIqraur[uo//:sd)y woiy papeo[umag[9Es s5e25V UIde0Ps 1dooxs ‘pepruurad jou A[3oLys st uonnqrysip pue asn-oy *[1202/60/LZ)

https://onlinelibrary.wiley.com/reader/content/17¢13a16397/10.1002/int.22549/format/pdf/OEBPS/pages/1.page.xhtml Pagina 6 de 25



Meta-learning and the new challenges of machine learning 27/09/21, 19:05

TV A A B A

- Stream Learning «==-==-=mmeme e e e e |

v \

Model Ensemble
Management Madel Pool Optimization | g o s AP| ------ \
' z

| Data Sources - Shared COMPONENES ===========f=msmmmmmmmmmmmmmmmmmd sl
Metadata v @B
. P - :
bE — W Machine ] RN
' E)' 4: ! " Learnng N U N Predict A; "; Client Requests
; R T e B | nede
i : : @Swagger
g P i Meta-feature EEOE N iy
3 % B ETL Dataset * (R f

FIGURE 1 Main components of the proposed meta-learning system. API, application programming
interface; ETL, extract, transform, and load [Color figure can be viewed at wileyonlinelibrary.com]

« Algorithm selection
- Extract, transform, and load (ETL) data set—transformation of data sets into standard
formats and representations;
- Meta-feature Extractor—extraction of meta-features from data sets that describe the shape/
structure of the data set, the statistical properties of the data, among others.
« Stream learning
- Model management—services for managing models, such as loading/unloading models to/
from memory;
- Model pool—space in memory in which active models are kept. These models can be used
to make predictions;
- Ensemble optimization—implements a Genetic Algorithm to optimize the voting scheme of
the base models in an ensemble.
« Common
- ML—implements model training and assessment functionalities that are used by other

ramMmnnnontos

MONTEIRO ET AL. 6249
WILEY-—2

The ETL data set module is responsible for handling the data from the original data sets.
This module first extracts the data from the sources of the different data sets (e.g., MySQL,
Excel, and csv files) then transforms the data into a specific format and loads the data sets into a
database. The most relevant task of this module is the transformation of the input data sets into
an appropriate standard format, so that they can be used by the Meta-feature Extractor and ML
modules. For instance, the name of the target variable is changed to y_target, creating a
standard separation between the target and the features.

The Meta-feature Extractor module uses Python's library pymfe™ (version 0.1.0) to extract the
relevant meta-features from the input data sets. A total of 108 meta-features are extracted, which
can be organized into six large groups: General, Statistical, Information-theoretic, Model-based,
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The ML module is responsible for training ML models with the data set(s) provided by the
ETL data set module, and to store the corresponding performance metrics in the database (e.g.,

AUC-ROC Score, Precision, Recall, F1 Score, Accuracy, and Root-Mean-Square Error [RMSE]).
Models are trained using the algorithms provided by the Scikit-Learn package’* (version
0.18.1). Seventeen algorithms of different categories are used, including Ensembles, Naive
Bayes, Tree-based, or Support Vector Machines (SVM).

ML models are trained and evaluated using 10-fold cross-validation and, for some algorithms,
hyperparameter tuning was implemented using Grid Search. The time required for model fitting is
also stored as a meta-feature (e.g., for future comparisons between algorithms, namely, to use as an
algorithm selection criteria).

Finally, the information received from the Meta-feature Extractor is combined with the
results from the ML module and stored in the meta-data database. The final result is a matrix
with 108 meta-features, with one instance for each combination of data set/algorithm used.
After the concatenation, the final meta-data set is stored in an SQLite database. The process
through which the meta-data set is generated is detailed next.

5.1.1 | Generation of meta-data sets

This section describes the process through which the meta-data set is built. Arbitrary data sets
are received as input and their corresponding meta-features are extracted as described pre-
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TABLE 2 Example of a meta-data set with the sample of two data sets (Iris and Heart Disease), three
meta-features (mf1, mf2, and mf3), the algorithm used (e.g., BernoulliNB), and the results of three different
evaluation metrics (eml1, em2, and em3)

Data set mf1 mf2 mf3 Algorithms eml em?2 em3
Iris 100 20 0.78 Random Forest 0.88 0.79 0.82
Iris 100 20 0.78 BernoulliNB 0.75 0.73 0.67
Iris 100 20 0.78 Ada Boost Classifier 0.90 0.80 0.85
Heart Disease 300 55 0.08 Random Forest 0.90 0.81 0.82
Heart Disease 300 55 0.08 BernoulliNB 0.87 0.83 0.83
Heart Disease 300 55 0.08 Ada Boost Classifier 0.92 0.84 0.83

According to their type, meta-features can also be organized into four categories®**>:

1. Simple: Number of instances, number of attributes, number of classes or targets, and so forth. 7

2. Statistical: Mean kurtosis of attributes, mean skewness of attributes, and so forth.**

3. Information-theoretic: Class entropy, mean entropy of attributes, noise signal ratio, and so
forth.>

4. Landmarking: Exploiting data set properties from the performance of a set of simple and fast
learners with significantly different learning mechanisms.'® Various landmarking methods
are described in Reference [39].
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An Instance ot this system was implemented and tested on 34 data sets, publicly available 1n
well-known sources, such as kaggle or UCI (Table 3). These data sets were selected while
bearing in mind key issues that might affect the performance of the meta-model for algorithm

selection, including a number of data sets, diversity of the meta-features of the data sets, and
diversity of the ML problems represented. That is, we looked for a relatively large number of
data sets, from very different problems and domains. The degree of diversity of the resulting
wealth of data can be assessed through visualizations, such as those depicted in Figure 2.

To have a common and unique framework for all data sets, independently of their type of
ML problem, all data sets were transformed into binary classification problems. In multiclass
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TABLE 3 Type and source of the 34 data sets used in this study

Data set

Adult income
Balance scale
Balloons
Bank

Bank marketing

Breast cancer
Cars evaluation

Cereals

Chess king rook
Congressional voting
Credit card fraud
Cryotherapy

Gender voice
German credit data

Glass identification

“2 | WILEY

Source

https://www.kaggle.com/uciml/adult-census-
income

https://archive.ics.uci.edu/ml/datasets/balance
+scale

https://archive.ics.uci.edu/ml/datasets/
balloons

https://www.kaggle.com/lovelesh/bank-
dataset

https://www.kaggle.com/c/marketing-data

https://archive.ics.uci.edu/ml/machine-
learning-databases/breast-cancer-wisconsin

https://archive.ics.uci.edu/ml/datasets/car
+evaluation

https://www.kaggle.com/crawford/80-cereals

https://archive.ics.uci.edu/ml/machine-
learning-databases/chess/king-rook-vs-king

https://archive.ics.uci.edu/ml/datasets/
congressional+voting+records

https://www.kaggle.com/mlg-ulb/
creditcardfraud

https://archive.ics.uci.edu/ml/datasets/
Immunotherapy+Dataset

https://www.kaggle.com/primaryobjects/
voicegender

https://archive.ics.uci.edu/ml/datasets/statlog
+(german+credit+data)

https://archive.ics.uci.edu/ml/datasets/Glass

4 Tdentificatinon

Type

Binary classification

Multiclass
classification

Binary classification

Binary classification

Binary classification

Binary classification
Multiclass
classification

Regression

Multiclass
classification
Binary classification
Binary classification
Binary classification
Binary classification

Binary classification

Multiclass

claccificatinn
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TABLE 3 (Continued)

Data set

Mushroom

NBA logreg

Pima native American diabetes

School grades

Soccer international

Student alcohol consumption—
math grades

Student alcohol consumption—
Portuguese grades

Tic tac toe

Titanic

Vehicle silhouette

Wine quality (red)

Wine quality (white)

Z00 animal
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Source

https://archive.ics.uci.edu/ml/datasets/
Mushroom

https://data.world/exercises/logistic-
regression-exercise-1

https://datahub.io/machine-learning/diabetes

https://archive.ics.uci.edu/ml/datasets/
Student+Performance

https://www.kaggle.com/martj42/
international-football-results-from-1872-
t0-2017

https://www.kaggle.com/uciml/student-
alcohol-consumption

https://www.kaggle.com/uciml/student-
alcohol-consumption

https://archive.ics.uci.edu/ml/datasets/Tic-
Tac-Toe+Endgame

https://www.kaggle.com/c/titanic

https://archive.ics.uci.edu/ml/datasets/statlog
+(vehicle+silhouettes)

https://archive.ics.uci.edu/ml/machine-
learning-databases/wine-quality

https://archive.ics.uci.edu/ml/machine-
learning-databases/wine-quality

https://archive.ics.uci.edu/ml/datasets/Zoo

Type
Multiclass
classification

Binary classification

Binary classification

Regression

Multiclass
classification

Regression

Regression

Binary classification

Binary classification

Multiclass
classification

Regression

Regression

Multiclass
classification
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4

50 100000 50

§

nr_ins

nr_bin

nr_outlie

FIGURE 2 Some aggregated meta-features of the 34 data sets showing the diversity of the meta-data set.
Number of attributes (nr_attr), number of attributes pairs with high correlation (nr_cor_attr), number of
numeric attributes (nr_num), number of attributes with outliers values (nr_outliers), number of instances
(nr_inst), number of binary attributes (nr_bin) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Average improvement of the algorithm performance (AUC) using Gridsearch. AUC, area under
the receiver operating characteristic curve [Color figure can be viewed at wileyonlinelibrary.com]

The data sets that result from this process have a total of 118 columns: 108 meta-features,
the algorithm name, five performance metrics, training time, a Boolean denoting whether a
configuration resulting from hyperparameter optimization was used or not, the computation
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time) in the present ML problem. For instance, in a streaming scenario in which time is a very
important restriction and models are required to adapt frequently and quickly even if their
accuracy is not the best possible, time could have a higher weight than accuracy. In the case of

this study, the weights of 0.7 and 0.3 for accuracy and time, respectively, were used.

8 thus provides an overall performance metric for each algorithm, which combines prediction
accuracy with training time, and reflects the relevance of both metrics. In this metric, O represents
the best possible algorithm (an algorithm that ranked first in both AUC and time), while 1
represents the worst possible algorithm (an algorithm that ranked last in both AUC and time).

Table 4 shows the ranking of the 17 algorithms for the Heart Disease data set. The best
algorithm for this data set, given the used weights, is the BernoulliNB, which ranks first in AUC
and sixth in training time (although all the seven fastest algorithms have the same training
time). The second best algorithm is LinearDistriminantAnalysis, which ranks third in AUC and
fourth in time, and so on.

To address the challenge of predicting which algorithms are more suited to a given data set,
the dependent variable y_target was created as follows: y_target = f — Ranking when, § < 3,
otherwise y_target = others. We thus address this problem as a multinomial classification
problem with four classes.

The main disadvantage of this approach is that it produces highly unbalanced data sets as
for every 17 lines of the data set, 14 of them have the value others. To deal with this issue the
Synthetic Minority Oversampling Technique (SMOTE) technique was used.”’ SMOTE is a
combination of undersampling the majority class and oversampling the minority class by
creating “synthetic samples.” To perform SMOTE, the library SMOTE from the imbalanced-
learn package was used on the training data sets.

The resulting meta-data set is also relatively large in terms of the number of columns. At the
same time, some of these features may not be relevant at all, or some may be correlated and,
thus, redundant. In such large data sets, feature engineering and dimensionality reduction
techniques can prove interesting to find the best combination of features, that is, the smallest
set of the most expressive features.*” In this study, the recursive feature elimination with cross-
validation (RFECV) was used to select important attributes that contribute the most for the
performance of the prediction. As Figure 5 shows, the best results are obtained with a selection
of 34 features.

TA accace tha infliinanra Af thaca trancfarmatinne fanr Aiffarant mata_Adata cate wrara rraantad
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Cross

0 20 40 60 80 100 120
Number of features selected

FIGURE 5 Output of the RFECV for the meta-data set with the y_target variable. RFECV, recursive feature
elimination with cross-validation [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Overview of the four meta-data sets used

Data set name Feature Selection SMOTE
meta-dataset_1 No No
meta-dataset_2 No Yes
meta-dataset_3 Yes Yes
meta-dataset_4 Yes No

Abbreviation: SMOTE, Synthetic Minority Oversampling Technique.
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FIGURE 6 Methodology followed for implementing the Algorithm Selection mechanism. ETL, extract,
transform, and load; RFECV, recursive feature elimination with cross-validation; SMOTE, Synthetic Minority
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Oversampling Technique

set is selected, and the meta-model is deployed to predict the future performance of new
models.

MONTEIRO ET AL. 6259
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topics from the streaming platform and characterizing them as dependent or independent
variables. The user must also set the frequency f at which the meta-model will be potentially
updated, that is, the frequency at which a new base model will be trained to be potentially
included in the ensemble. This frequency can be defined in terms of time or in terms of a
number of new instances of data (e.g., update the model at each new 1000 instances).

The window of data that is used for training each new base model may, however, not be
restricted to the new data that arrived in the meantime. The user can configure this through
three variables:

« f—frequency at which new models are trained (in a number of instances or seconds);

« Ws—the standard size of the window of data to consider (in a number of instances);

« Wy—the random positive variation allowed for the window (%). A larger value will allow a
higher overlap of data with previously trained models.

Figure 7 depicts this notion visually for f = 1000 instances, ws = 1000, and wv = 100%. In
this realistic scenario new base models are trained at each new 1000 instances of data, and
considering 1000-2000 more recent instances.

The main goal of allowing this superposition between different windows of data is to reduce
the sensibility of base models to noise. There is, however, a trade-off between the velocity of
adaptation to new data and the robustness to noise. Smaller values of f, ws, and wv lead to a
faster adaptation of concept drift but also to lower robustness to noise, and may lead the
ensemble to overadapt to irrelevant, nonexisting, or transient patterns.

Whenever a new base model must be trained and a new window of data is selected, the data
are obtained from the stream and split into training and test sets. A 70/30 train/test split with
shuffle configuration is used, although these values can be easily changed in the configuration
to suit other scenarios, according to the size of the data set. All this is done by the ML
component.

The training set is used to train the new base model. Each new base model is validated
using 10-fold cross-validation to obtain training performance metrics. The user can also choose
to train the new base model with just a subset of the feature vector, namely, to avoid overfitting
in the meta-model. The main hyperparameters that allow the user to control the complexity of
each base model are thus the sample rate s (which comes as a result from the size of the

wrindaur) and tha ~aliimn camnla rato ror
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the configuration used in the training of the model, the performance metrics (e.g., RMSE,
Accuracy, and Precision), the date of training, or an index with the identifiers of the instances

93Py 1dooxa ‘peprurad jou A[3oLys St uORNQLYSIP pue 3sn-oy *[170Z/60/LZ] UO -OYUIIAl O(] SPBPISISATU() Ag] "Wwod Ao[1m ATeIqriaur[uo//:sdiy woiy popro[umol9Ee K8eeTY [U9de0P) 1deoxa ‘papruirad jou AJOLs ST UOHNQLISIP pue s

https://onlinelibrary.wiley.com/reader/content/17¢13a16397/10.1002/int.22549/format/pdf/OEBPS/pages/1.page.xhtml Pagina 15 de 25



Meta-learning and the new challenges of machine learning 27/09/21, 19:05

of data used in the training of the base model.
The test set is also added to a global test data pool. These data are used to assess the
performance of the meta-model, so that it is evaluated using data that none of its base models

knew during training.

During the initialization phase, the meta-model can answer prediction requests, even though
the model pool is still not full. To do it, a bagging method is used in which each of the available
base-models in the pool votes with the same weight towards the prediction of the meta-model.
Predictions are done by the Predict component and can start as soon as the first base model is
trained. To make a prediction, the Prediction module requests information from the meta-data
database concerning which models are being used at the moment in the ensemble and the weight
of each one. It then asks the corresponding models in the pool for their individualized prediction
and combines them according to their weights, to provide the client with the final prediction.

The whole initialization process is visually depicted in Figure 8.

The initialization phase takes place between the moments in which the process is boot-
strapped until the number of base models in the pool reaches the minimum size of the pool
(represented by mm). Whenever this condition is reached, the system advances to the evolu-
tionary phase, which is described in Section 5.2.2.

5.2.2 | Evolutionary phase

The Evolutionary phase is the second phase of the proposed system. It starts after the number
of base models reaches mm and the system remains in this phase indefinitely. The main
difference for the initialization phase is that now the number of models in the pool is constant.
That is, if a new base model is added to the pool, another one must be removed. These
operations are implemented by the Model Management component, which is able to load/
unload models to/from memory. This only happens if this replacement is expected to result in a
better meta-model. A similarity with the previous phase is that base model training continues
at the same rate and following the same methodology.

In this phase the meta-model thus evolves in two different ways. On the one hand, it does so

thrnaiiah tha ranlaramant af nnitdatad haca madale ac Aacrrihad Mn tha Aathar hand thara ic alen

MONTEIRO ET AL. 6261
WIL EYJ—

in a more accurate meta-model. This process is implemented through a Genetic Algorithm, that
runs indefinitely, and whose main goal is to find the optimum weights vector. This whole
process is implemented by the Ensemble Optimization component of the architecture.

The implementation of this component follows the standard process of a Genetic Algo-
rithm.** That is, an initial population of solutions, or chromosomes, is initialized. Their fitness
is measured, and then a new population of solutions is generated through crossover and
mutation operators that favor those solutions that have higher fitness.

The evolutionary process starts with the random creation of n solutions for the problem. In
this context, a solution is a numeric vector of size mm in which each position represents the
weight of a base-model in the voting scheme of the meta-model. Each solution is thus re-
presented as a weights vector W. The initial population of the Genetic Algorithm is thus
constituted by n vectors, with n representing the size of the population.

Each group of solutions is deemed a generation. The first generation is identified as g and it
is one of a set of G generations that will be created throughout the process. Each weight

Wy i 8 € [1..G], s € [1..n], i € [1.t] represents the weight of the base learner i in the solution s
VA a1
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of generation 8\ uwesi=1,Vs €[l.n],V g e[l.G)). .
For each new generation, the fitness of each solution is then calculated. To assess the fitness
of each solution, all the base-models are used to predict the test data pool. Their predictions are

then combined according to the solution being evaluated (i.e., a specific weight vector) and the
resulting predictions (that represent the prediction of the meta-model) for the test data
are compared with the actual values in the data. This step depends on the type of ML task.
In regression tasks, the RMSE is calculated, while in classification tasks the accuracy is used.
This process of evaluation results in a fitness vector f of size t, in which each fitness value
fes 8 € [1..G], s €[1..n] represents the fitness of a given solution s in generation g.

Once the fitness calculation ends, the reproduction stage begins. The main goal of this stage
is to generate new solutions that are potentially better by combining the characteristics of the
best solutions. The reproduction process starts by selecting the b solutions with the highest
fitness value. These solutions pass on to the next generation. Asides from these, a group of
m new solutions created through mutation are added to the new generation. The mutation
operator is implemented as a unary operator that takes as input one solution selected randomly
from among the b best solutions. The selected solution is then mutated by changing two of its
weights (i and j), selected at random, by an also random amount r, r € [0..mr].

Thaoa mr allaure ana tn rantral tha miaitatinn rata that ic haur miicrh vra allauar a enliitinn tn
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This evolutionary process takes place every time a new base-model is trained, and its main
consequence is to determine which base-models shall be part of the ensemble and what their
weight should be.

The following list summarizes the hyperparameters that can be tuned when using this algorithm:

« sr—sample rate,

» csr—column sample rate,

« n—number of solutions in each generation,

« [—number of trees in the ensemble,

« b—number of best solutions to consider in each generation,

« mr—mutation rate, defining how much each solution should mutate,

« Mm—number of new solutions to generate through mutation, in each generation,
« rn—number of new random solutions to generate, in each generation,

« |—maximum number of iterations (stopping criterion),

« 6 and x—define the reaching of convergence (stopping criterion).

Predictions made during the Evolutionary phase of the system follow the same logic of
predictions done during initialization. However, each model may now have a different weight,
according to its performance metrics. These weights are calculated by the Ensemble Optimi-
zation module and stored in the meta-data database. The Predict module thus obtains the
names of the models of the ensemble and their weights from the meta-data database, asks the
models for their individual predictions, and combines them according to their weights to
provide a client with a prediction.

This process, through which the model pool and the weights of each model are gradually
updated as new models are trained, is depicted in Figure 9.
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6 | VALIDATIUON AND RESULTDS

This section is dedicated to evaluating the performance of both meta-learning approaches
proposed in this paper. Section 6.1 is dedicated to the analysis of the results concerning al-
gorithm selection, while Section 6.2 is dedicated to the use of meta-learning in data streaming

cranarine writh ~rancant Arift
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6.1 | Algorithm selection

To evaluate the performance of the approach proposed in Section 5.1, the following metho-
dology was followed. Each of the 17 algorithms considered was used with each of the four
meta-data sets described previously in Table 5, to train the respective models. All models were
trained using 10-fold cross-validation and the relevant performance metrics were recorded:
accuracy, precision, recall, F-measure, and AUC-ROC.

Accuracy is not a good metric if class labels are not uniformly distributed, as is the case. The
F1 Score (the harmonic mean between precision and recall), on the other hand, combines a
measure of how precise the classifier is (how many instances it classifies correctly), as well as
how robust it is (it does not miss a significant number of instances). It is generally assumed to
be a better measure when dealing with imbalanced data sets. For that reason, this is the main
metric that was considered to evaluate the trained models.

As Figure 10 shows, the generally best results are obtained when the SMOTE technique was
applied. On the other hand, RFECV has not resulted in any benefit to the performance of the
algorithms.

Table 6 shows the best five models (from among all the 68 models trained), and it is
interesting to note that all of them are from meta-data sets in which the SMOTE technique was
applied. In terms of performance metrics, ensemble methods show the best results, with the
Bagging Classifier achieving 0.83 on the F1 Score.

From this study it results that the best decision is to use meta-dataset_2 and a Bagging
Classifier for predicting the best algorithm for a given data set.

6.2 | Learning in streaming scenarios

To validate the proposed methodology for learning from streaming data, we tested it in two
different data sets with concept drift. The first is a synthetic data set with concept drift created
by the research team for the specific purpose of testing the system. The second is a well-known
and publicly available weather data set with concept drift.**

Since the former is not publicly available, we provide a brief characterization. The data set is
composed of 100,000 instances of three variables: two independent variables @ and b and one
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FIGURE 10 Distribution of the results for the different meta-data sets. Each boxplot combines the F1 scores
of the 17 models trained with the corresponding meta-data set. RFECV, recursive feature elimination with
cross-validation; SMOTE, Synthetic Minority Oversampling Technique [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 6 Top five best performing meta-data sets/algorithms concerning F1 Score

Precision Recall
SMOTE RFECV Data set name Algorithm name score score F1 score
Yes No meta-dataset_2 Bagging Classifier 0.8344 0.8555 0.8309
Yes No meta-dataset 2  Extra Tree Classifier 0.7894 0.8555 0.8207
Yes No meta-dataset_2 Random Forest 0.7849 0.8555 0.8182
Classifier
Yes No meta-dataset 2  Voting Classifier 0.7849 0.8555 0.8182
Yes No meta-dataset_2 K Neighbors Classifier 0.7857 0.8555 0.8161
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FIGURE 11 Plot of the two independent variables, and b, and of the target variable, over time
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This has as consequence a change of the weights of the models in the ensemble over time, as
well as some base models entering the ensemble while others leave. Figure 8 shows these dynamics
over time. For simplicity only some of the 25 models of the ensemble were plotted. The figure
shows how stronger base models, with higher weights, tend to remain in the ensemble longer until
they are removed as they become increasingly outdated. The figure also shows when new models
were trained and added to the ensemble (when their line starts) and when they are removed (when
their line ends). In this figure, the x-axis represents the number of base-models trained since the
beginning of the evolutionary process as no evolution takes place before the ensemble is complete
and, during that initialization phase, all models weigh the same, as described previously.

Figure 13 also shows how models with smaller weights, which are related to worse
performance, tend to be removed sooner (e.g., M2 and M3) while models with higher weights
tend to last longer (e.g., M1 and M6).

Figure 14 shows how the measure of error (RMSE) of the ensemble evolves over time. An
increase in error is visible, although it is insignificant (=0.003). This confirms that the proposed
approach can effectively maintain the predictor performance over time even when the statis-
tical properties of the data change.

Figure 15, on the other hand, shows the evolution of a traditional ensemble over time, for
the same data set. In this case, all base models have the same weight (0.04) and neither these
weights nor the base models are changed once trained. The figure shows how the RMSE of the
ensemble starts at a similar level to that of the proposed approach, but it quickly increases to
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FIGURE 15 Evolution of the RMSE in a traditional ensemble, when concept drift is present. RMSE, Root-
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FIGURE 16 Evolution of the RMSE over time with and without the proposed method (solid lines). Dashed
lines represent the trend of RMSE through a linear regression. RMSE, Root-Mean-Square Error [Color figure can

be viewed at wileyonlinelibrary.com]
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Results show, once again, that both ensembles start out with a similar measure of error.
However, the RMSE tends to increase over time when there is no evolution of the ensemble, as
the fit of a linear model to the data shows (green dashed line in Figure 11, slope = 0.0026). On
the other hand, the error measure tends to remain constant over time when the proposed
approach is used (blue dashed line in Figure 11, slope = 0.0002). Once again, this shows how
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the proposed al}:proach is able to adapt the ensemble over time, maintaining the error measure.
Figure 17 shows how the relative importance of three of the variables changes over time in
the ensemble. That is, there are variables that become more or less important over time for

predicting temperature, as concepts change.

These experiments thus show how the proposed approach can effectively be used in data
streaming scenarios with concept drift, allowing a model to adjust in a relatively efficient
manner, by incorporating new base models while removing outdated ones.

7 | DISCUSSION AND CONCLUSIONS

In the last years, the field of ML has been facing new challenges. Most of them derive from the
newly found value of data, which is nowadays collected and used in large volumes by virtually
all competitive organizations and companies. However, volume is not the only challenge. Data
are also more dynamic than in the past, in the sense that their statistical properties change over
time, reflecting the faster changing phenomena that they represent. ML can thus no longer be a
batch, one-shot operation. It is rather a continuous task, in which the search for the best model
for the data at hand is constant.

The training of a model has, however, costs that are not negligible. These costs can be measured
in terms of computational resources and time, and increase as the amount of data increases. Given
the velocity at which decision-making happens in nowadays’ world, time is actually often one of the
main constraints when training a model. As a consequence, researchers are often unable to ade-
quately explore the vast search space of algorithms and their configurations.
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This paper addressed this issue by considering the potential of meta-learning. Specifically, we
considered two main problems, which are also very frequent in current ML: algorithm selection and
updating models in face of concept drift in the data. These two problems, which are interrelated,
were addressed using a meta-learning ML framework developed by the team. While this framework
current targets these two problems, it can be expanded in the future to answer more needs.

The ability of the proposed system to deal with these challenges was validated using pub-
licly available data sets. Results point out that techniques inspired in meta-learning can be
effectively used for: (1) ranking algorithms and predicting the most suitable ones for a specific
ML task, speeding up the ML process by minimizing the number of models that are trained; (2)
allowing trained models to evolve over time with minor modifications instead of retraining the
whole model, making the adaptation to concept drift more efficient in terms of time and
resources.

The work detailed in this paper has some key distinguishing characteristics, when com-
pared with the existing literature. While the idea of using meta-learning for algorithm selection
is not new (see, e.g.,Reference [45] in which a few statistical and information-theoretic features
are used), we consider a much broader set of meta-features for describing data sets, of different
categories. Specifically, we consider a total of 108 meta-features which, to the extent of our
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algorithms assessed: most of the existing literature focuses on a relatively small number of
algorithms (e.g., References [46,47]) while this study assesses a total of 17 algorithms, of very

different types. This results in an approach that is potentially more comprehensive in capturing
the features of the data that really matter for predicting algorithm performance.

The approach is also more comprehensive when it comes to training/selecting the meta-
model that will carry out the algorithm selection task. In the proposed approach, 17 algorithms
were tested on four variants of the meta-data set, resulting in 68 candidate meta-models.
Related works tend to follow a different approach: they analyze the performance of the trained
models and use some heuristic to select the best algorithm. For instance, Shawkat and Smith
[45] use the C4.5 (tree-based) algorithm to generate rules for algorithm selection. The proposed
approach is different in the sense that it has a well-defined process that requires minimum user
interaction, thanks to the incorporation of a meta-model for algorithm selection.

This is also useful in streaming scenarios. Indeed, Kerschke Pascal et al.”’ note that most of
the existing work covers static offline algorithm selection. That is, scenarios in which the data
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inefficient and slow to converge. In future work we will assess the performance and suitability
of other optimization techniques, to select the most appropriate one.

In conclusion, this study shows that techniques inspired in meta-learning can be used to
deal with some of the current challenges of ML, especially those related with the selection of
the best models for a certain problem, or the continuous update of these models once trained.
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