
An Industrial Case Study for Adopting 
Software Product Lines in Automotive Industry 
An Evolution-based Approach for Software Product Lines (EVOA-SPL) 

 
Karam Ignaim      João M. Fernandes  

Department of Informatics / ALGORITMI Centre 
Universidade do Minho  

Braga, Portugal 
 

ABSTRACT 
Software Product Lines (SPLs) seek to achieve gains in 
productivity and time to market. Many companies in several 
domains are constantly adopting SPLs. Dealing with SPLs begin 
after companies find themselves with successful variants of a 
product in a particular domain. The adoption of an SPL-based 
approach in the automotive industry may provide a significant 
return on investment. To switch to an SPL-based approach, 
practitioners lack a reengineering approach that supports SPL 
migration and evolution in a systematic fashion.  
This paper presents a practical evolution-based approach to 
migrate and evolve a set of variants of a given product into an 
SPL and describes a case study from the automotive domain.  The 
case study considers the need to handle the classical sensor 
variants family (CSVF) at Bosch Company.  
Using this study, we performed a contributed step toward future 
switch of the CSVF into the SPL. We investigated the 
applicability of the proposed evolution-based approach with a real 
variants family (using the textual requirements of the CSVF) and 
we evaluated our approach using several data collection methods. 
The results reveal that our approach can be suitable for the 
automotive domain in the case study. 

CCS CONCEPTS 
• Software and its engineering à Software development 
techniques à Reusability 

KEYWORDS 
Software Product Line, Feature Model, case study, variability. 

ACM Reference format: 
Karam Ignaim and João M. Fernandes. 2019. An Industrial Case Study for 
Adopting Software Product Line in Automotive Industry: An Evolution-
based Approach for Software Product Lines (EVOA-SPL). In Proceedings 
of ACM 23rd International Systems and Software Product Line Conference 

(SPLC 2019). Paris, France, 8 pages. 
https://doi.org/10.1145/3307630.3342409 

1 Introduction 
Some companies in the market need to handle multiple variants 
that have some characteristics in common [1]. One of the key 
factors to improve productivity and consequently to reduce the 
cost to handle multiple variants is software reuse. In fact, many 
variants in a specific industrial domain have been implemented by 
reusing pieces of existing variants rather than building them from 
scratch [2]. An SPL can be seen as a family of variants that have 
been developed with explicit concern about commonality and 
variability during development process [3]. 
SPLs have been used successfully by industry to promote reuse. 
For example, several reports from large companies such as Bosch, 
Nokia, and Philips observe benefits with their use, especially with 
respect to the reduction in time to market [4]. Because of long 
term dealing with variants family, companies need to handle them 
in a systematic way. Therefore, SPLs can be a suitable option in 
this case. To switch to SPLs, companies need to adopt an 
approach that supports migration of variants family into an SPL 
and evolution of SPLs [5]. Regarding SPLs, a prerequisite for 
systematic reuse is to explicitly specify evolutionary change of 
variants family in a variability model [6]. Feature models (FMs) 
constitute a suitable to model address migration and evolution of 
SPLs [3]. Depending on the abstraction level, features may refer 
to a prominent or distinctive user-visible characteristic or 
functionality of variants family [7, 8].  
Actually, SPLs have been commercially applied in many industry 
domains [9]. Related to the challenge of adopting SPLs taking 
care of their evolution in the automotive industry, initially 
migration of automotive variants family into an SPL often starts 
with an analysis of variability [5]. The automotive industry faces 
challenges to manage variability among variants family, due to its 
product domain. Numerous research papers point out the necessity 
of requirements and system modelling to manage variability in the 
automotive industry [10]. Most proposals in this context do not 
consider textual requirements, even though they enable to manage 
variability from the beginning [11][12].  
This work proposes an approach to address the use of SPLs at the 
requirements level. The purpose of this paper is to recommend a 
practical evolution-based approach that supports a reengineering 
process to migrate automotive variants family into an SPL and to 
evolve an SPL after it has been established.  This research work 
applies the proposed approach to the CSVF at Bosch Company 
and analyses the approach through a case study involving the 
CSVF and the classical sensor development team (CSDT). The 
approach includes different activities for both the reverse and 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice and 
the full citation on the first page. Copyrights for third-party components of this 
work must be honored. For all other uses, contact the owner/author(s). 
SPLC '19, September 9–13, 2019, Paris, France. 
© 2019 Association for Computing Machinery. ACM ISBN 978-1-4503-6668-
7/19/09…$15.00. https://doi.org/10.1145/3307630.3342409 



SPLC 2019, September, 2019, Paris, France K. Ignaim et al. 
 

 
 

forward engineering chaining phases and it provides guidelines 
for the CSDT in an SPL context for the automotive industry. The 
focus of this work remains at the requirements-level. 

2 Related work 
Despite the research works that address adoption of SPLs [2, 13], 
there is still a lack of the approaches that propose guidelines or 
methods for performing SPLs migration and evolution in a 
systematic way. However, most of the presented approaches were 
evaluated using toy examples or open-source applications (e.g., 
ArgoUML) [14, 15]. Few approaches were evaluated using 
industrial case studies [16, 17]. 
In addition, other works propose refactoring patterns and 
notations that fit the SPLs context. Moreover, they are applicable 
to FMs [18, 19]. As a common practice, the authors in [18, 19] 
evaluate their work in mobile applications and health information 
domains respectively. Another work [20] proposes a generic 
framework for managing collections of related cloned products 
into an SPL, where the products are refactored into a single-copy 
SPL. Empirically, this work analyses three industrial case studies 
of different organizations. 
A systematic study provides an overview of current research on 
reengineering of existing systems into SPLs [21]. This study 
concludes that reengineering of existing systems into SPLs is an 
active research topic with real benefits in practice. Moreover, it 
motivates new research in the adoption of systematic reuse in 
software companies. In this context, it reports the lack of 
sophisticated refactoring, the need for new metrics and measures, 
and more robust evaluation. 
A model-driven approach to support software engineers in 
handling source code variability of software variants in the 
automotive domain is proposed in [22]. This work contrasts with 
ours, since it does not consider the requirements of the automotive 
domain, when modelling and managing variability [22]. 
Close to our work, the authors in [23] introduce a systematic reuse 
method called Variation Point Method (VPM), which models 
variability in a process that starts with common requirements. 
Important research works related to managing variability are [4, 8, 
24-28].  
However, not only is our approach designed to consider the 
variants that are related to the same family in the automotive 
domain but also it is used to address commonality and variability 
of variants family at a higher level of abstraction using variability 
model (i.e., an FM). Moreover, it is planned to use SPLs 
refactoring. In addition, our approach is analysed and evaluated in 
an industrial case study. 

3 Our approach  
Based on the general process of evolution of SPLs and the 
analysis of our industrial case study from the automotive domain, 
we propose EVOA-SPL, an evolution-based approach for SPLs. 
EVOA-SPL supports the evolution of an SPL focusing on 
migration of the variants into an SPL. To tackle this challenge, the 
approach considers variability at the requirements-level. EVOA-
SPL supports a reengineering process towards systematic reuse 
and consistent evolution of an SPL. 

As shown in Figure 1, EVOA-SPL adopts a reengineering process, 
which consists of two distinct phases: the reverse engineering 
phase and the forward engineering phase. Each of them is 
summarily described in the following subsections. The FM works 
as a common model that is shared between two phases. Phase 1 
derives an FM and phase 2 upgrades and refines it. The adoption 
of a reengineering process is amenable for EVOA-SPL, since it 
considers existing variants and it is incremental (support a new 
change to the requirements in a systematic way). 
 

 
Figure 1: The EVOA-SPL approach phases. 

3.1 The reverse engineering phase  
The reverse engineering phase consists of three main activities: 
(1) the difference analysis, (2) the variability analysis, and (3) the 
feature model synthesis. The main input for this phase are the 
textual requirements of each two variants. Thus, this phase 
identifies commonality and variability among automotive variants 
family at the requirements-level. It uses the textual requirements 
of only two variants and derives an FM. The project manager and 
domain expert may be consulted to clarify any information about 
the variants; to select proper textual requirements from the 
document, and to revise and confirm the derived FM. 

3.2 The forward engineering phase  
The forward engineering phase consists of three main activities: 
(1) the bootstrapping, (2) the evolution, and (3) the FM 
refactoring. The reverse engineering phase delivers an FM that is 
used as an input for this phase. The activities of this phase use the 
current version of the FM and the textual requirements of another 
/ new variant to evolve the SPL.  
The bootstrapping activity imports variants family (one by one) 
according to the decisions of the domain experts and the project 
manager. Once an SPL has been bootstrapped, the evolution 
process can start. It evolves an SPL with a new variant upon 
receiving a new customer request. Both activities derive and store 
features of a (new) variant into a features list (FL) and refactor 
(i.e., refine) the current FM with the requirements (features) of a 
(new) variant that is not supported yet by the SPL. 

3.3 EVOA-SPL activities  
In order to migrate the variants into an SPL and then support an 
SPL evolution, EVOA-SPL goes through a reengineering process. 
EVOA-SPL uses the textual requirements of automotive variants, 
which were initially created with ad-hoc approaches. Before 
performing the EVOA-SPL activities, one is required to study the 
domain-specific issues related to automotive variants family, like 
notations, technique, or process steps [29]. The EVOA-SPL 
activities that the software engineers can follow to migrate 
automotive variants family into an SPL and to support its 
evolution are the following (see Figure 2). 



SPLC 2019, September, 2019, Paris, France K. Ignaim and J.M. Fernandes 
 

 

 
3.3.1 Activity 1. The difference analysis activity captures and 
identifies similarities and differences between two variants. This 
activity (i) writes textual requirements of each variant into atomic 
requirements (ARs), (ii) gives each AR a unique id, and (iii) 
stores ARs in the so-called requirements document (RD). 
Furthermore, (iv) it uses a proper text-based comparison tool to 
specify common and optional ARs among several RDs. The 
comparison concerns changes between RDs in terms of matched, 
added, deleted, and modified ARs. Figure 3 depicts the RD 
structure at the end of this activity. 
 

 
Figure 2: EVOA-SPL activities. 
 
3.3.2 Activity 2. The variability analysis activity performs further 
processing and identifies commonality and variability among 
variants. The main inputs of this activity are RDs of two variants. 
The variability analysis activity (i) specifies common and optional 
ARs from RDs of two variants and (ii) stores those classified ARs 
in a single master document (SMD). It represents an initial 
adequate view of commonality and variability among automotive 
variants family, since variant members are related to the same 
family and shared the same domain architecture. 
 

 
Figure 3: The structure of RD. 

Additionally, this activity (iii) uses the “common”, “optional”, 
“OR-Group”, and “XOR-Group” keywords to classify the 
variability-pattern of each AR in an SMD (please see Table 1). 
The variability analysis activity (iv) uses text-parsing to extract 
the set of keywords of each AR in an SMD that have important 
meaning to identify features and their dependencies. It parses 
actions (verbs), objects including instruments, technologies, 
services, parameters (attributes) and signal names.  These 
keywords set helps to identify feature names and their 
dependencies. This activity (v) suggests a proper name for the 
feature using the keywords set and based on the suggestions from 
the domain experts. Next, this activity identifies features and their 
variability-pattern (please see Table 1) using the feature 
identification method (see Section 3.4). Finally, this activity (vi) 
transfers and organizes variability information into an FL, which 
contains a set of features, each one with a predefined variability-
pattern and a feature-relationship. A feature-relationship can have 
two types; parent-child relationship and dependency relationship. 

Moreover, in this list, a feature is related to a set of ARs that are 
responsible for its specification in an SMD. 

Table 1: The feature variability-pattern. 
Common The feature must be included in every variant. 
Optional The feature may be included (or not) in every variant, but it 

is not necessary or required 
OR-
Group 

The feature is part of a group of features and if their parent 
is included, at least one of those features is included in the 
variant. 

XOR-
Group 

The feature is part of a group of features, and if their parent 
is included exactly one of those features is included in the 
variant. 

 
3.3.3 Activity 3. The feature model synthesis activity synthesizes 
an FM. This activity maps variability information from an FL to 
an FM and delivers a model that contains: feature name, 
variability-pattern, and feature-relationship. One of the 
relationships that needs to be captured is a parent-child 
relationship to show that one feature is a child of another one. The 
other type of relationship is dependency relationship; requires 
dependency means “feature A requires feature B” to be selected 
and excludes means “feature C requires feature D” to not be 
selected. In other words, both features C and D should never be 
simultaneously used in the same variant. 
To build an FM, this activity (i) reads features from an FL 
sequentially. Then it (ii) uses mapping table to transform from an 
FL into an FM  (please see Table 2). The mapping table relates 
variability notations between an FL and an FM. Finally, this 
activity (iii) builds the FM with a given modelling tool (e.g., 
“FeatureIDE”) [12]. 
To build the FM, the software engineers (i) draws features inside 
the respective symbol (rectangle), (ii) defines variability-pattern 
for each feature, and (iii) draws child-feature under their parent-
feature and defines feature-relationship among them. 
 

Table 2: The mapping notations between an FL and an FM. 
feature list feature model 
title  root feature 
feature  Feature 
common feature  mandatory feature  
optional feature  optional feature 
OR-Group  Or 
XOR-Group  alternatives 
parent-child relationship  parent-child relationship 

 
3.3.4 Activity 4. The bootstrapping activity adds remaining 
members of variants family (one by one) to contribute to an SPL. 
This activity (i) uses textual requirements of a given variant, (ii) 
derives features of that variant, and (iii) stores them in an FL. 
Finally, this activity (iv) evolves current FM to encompass 
features of the variant using an FM refactoring scenario (see 
feature model refactoring activity).  
3.3.5 Activity 5. The feature model refactoring activity refactors 
and refines the current FM with features of a (new) variant that is 
not supported yet by the SPL. This activity uses a catalogue of 
sound FM refactorings to perform transformations that improve 
and increase the current FM.  



SPLC 2019, September, 2019, Paris, France K. Ignaim et al. 
 

 
 

These refactorings appear in [18]. Fortunately, these refactorings 
are reasoned and proved in [18]. The feature model refactoring 
activity uses an FM refactoring scenario that works as follow. It 
(i) reads a feature from an FL (top to down) and (ii) matches 
feature (and its variability-pattern) with nodes (and their 
variability-pattern) of current FM. Based on the match-status, the 
scenario (iii) performs the proper an FM refactorings. An FM 
refactoring scenario considers the following match-status: 

1. Status 1: a feature requires changes in current FM (please see 
Table 3). This leads to apply to the current FM the proper 
refactoring that appear in [18]. 

2. Status 2: a feature appears in the current FM with the same 
variability information. This leads to keep the current FM 
unchanged.  Thus, the refactoring are only applied in case of 
differences between an FL and an FM.  

3. Status 3: a feature appears as a common feature in the current 
FM and does not appear in an FL of a (new) variant. This 
leads to apply the proper refactoring that appear in [18] to the 
current FM, in order to transform the common feature into an 
optional feature. 

An FM refactoring scenario repeats until reaching the final 
feature in an FL. It is worth to mention that if evolution is a 
feature deletion, an FM refactoring scenario of the EVOA-SPL 
approach does not support this case. Since it needs the 
requirement engineer to check and approve this evolution. In 
addition, it requires not only to delete feature from current FM but 
also to remove the associated components and feature-software-
unit. 

 
Table 3: The feature changes in the current FM. 

1. Add a new common feature. 
2. Add a new optional feature. 
3. Add a new Or (OR-Group) feature. 
4. Add a new alternative (XOR-Group) feature. 
5. Transform an optional feature into a common feature. 

 
3.3.6 Activity 6. The evolution activity propagates requirements 
(features) of a new variant to the current FM. Actually; this 
activity evolves an SPL to encompass a new variant once it has 
been bootstrapped. This activity (i) uses textual requirements of a 
new variant, (ii) derives features for this variant, and (iii) stores 
them in an FL. Finally, this activity (iv) evolves the current FM to 
encompass features of a new variant using an FM refactoring 
scenario (see feature model refactoring activity).  

3.4 The feature identification method 
We proposed the Feature Identification Method (FIM), which 
consists of three main interconnected parts. FIM identifies 
features and their variability–pattern and feature-relationship in an 
FL. The main parts of FIM, which is inspired by forward chaining 
in expert system [30], are documented below. 
Part1. FIM variability knowledge (VK) is a collection of facts 
(see below) that are applied to each ARs sequentially. 

1. A set of ARs represents a feature. 
2. A set of common ARs represents a common feature. 
3. A set of variable ARs represents an optional feature. 
4. Grouped ARs belongs to the same main feature. 

5. A main AR forms a parent-feature. 
6. Grouped ARs form child-feature.   
7. AR forms a child-feature when it has one value and does not 

carry options or alternatives. 
8. AR forms OR-Group or XOR-Group when it is within a 

group of options. The former is used when at least one or 
more ARs (options) can be included in a variant and the 
latter is used when just one AR (option) can be included in a 
variant. This can be observed using an SMD. 

9. AR that required another AR to be included forms a 
dependent relationship. 

10. AR that required another AR not to be included forms an 
independent relationship. 

Part 2. FIM variability rules (VRs) are a collection of rules (see 
below) that have an if-then statement format. The if-then 
statement consists of two sides, on the left-hand (LHS) is if-side 
and on the right-hand (RHS) is then-side. We can apply the rule 
on AR whenever a given AR matches the LHS of VR. 

1. R1: If AR is a child-feature then it has a parent-child 
relationship with parent feature. 

2. R2: If AR forms OR-Group then it has OR-Group with 
parent-feature. 

3. R3: If AR forms XOR-Group then it has XOR-Group with 
parent-feature. 

4. R4: If AR forms a dependent relationship with other AR then 
it has requires relationship. 

5. R5: If AR forms an independent relationship with other AR 
then it has excludes relationship. 

Part 3. The FIM process works on ARs of an SMD and updates 
them sequentially. The FIM starts the first iteration with the VK 
and applies them sequentially on each AR until the last AR in the 
SMD is reached. In case that one of the VK is not satisfied, (does 
not match an AR) it will be skipped. After ARs are updated by the 
VK, the FIM starts the second iteration with VRs. The method 
searches ARs until one of them matches LHS of the VRs and then 
applies the RHS of this VR on that AR. The FIM stops when 
reaches last AR in an SMD. Now an SMD is updated with 
variability information that makes it rich enough to feed feature 
model synthesis activity. 

4 The case study 
In order to evaluate the EVOA-SPL approach, we conducted a 
case study following the guidelines, which are presented in [31]. 
According to [31], the case study is composed of four major 
process steps to be walked through: planning, design, data 
collection and, analysis and reporting. 

4.1 Planning 
Good planning is necessary for the success of the case study. 
Therefore, we planned several issues. 
Objective. The objective of the case study is to evaluate the 
EVOA-SPL approach in the automotive domain using the CSVF. 
The case study will be conducted with the CSDT who has 
previous experience in the automotive domain development. 



SPLC 2019, September, 2019, Paris, France K. Ignaim and J.M. Fernandes 
 

 

Treatment. Our case study has one treatment, which is the 
EVOA-SPL approach.  
Objects. The object of our case study is the CSVF, which are 
implemented based on AUTOSAR architecture. We used four 
variants that are related to the CSVF, specifically, the textual 
requirement of each variant.  
Subjects. The subjects of the study are the CSDT and the project 
manager. 
Methods. We planned to perform our case study in two stages.  In 
the first stage, we took the role of a software engineer and we 
applied the EVOA-SPL approach on the CSVF. During the 
execution of the EVOA-SPL approach process, initially, we 
derived the SMD and the FM. After that, we started to bootstrap 
the CSVF in the SPL and then we evolved the SPL with the new 
variant using an FM refactoring scenario.   
In the second stage, we planned to evaluate the EVOA-SPL 
approach and the generated artefacts using several data collection 
methods, where we have found the empirical study including 
survey, interview, and observation are applicable to the 
environment of our case study 

4.2 The variants family used in the study 
The CSVF has been developed and customized by the team for 
more than 3 years, to satisfy the needs of different customers in 
the automotive domain. Moreover, they have around 20 major 
releases. The CSVF has source code written in C and includes 50 
packages. A number of features have been added and modified, 
while the variants have been evolved over time. To conduct this 
case study, we used the CSVF, which has a fixed architecture 
(AUTOSAR).  
The CSVF consists of three variants, which were developed 
according to the needs of customers in the automotive domain, 
and a new variant, which was an upcoming variant scheduled for 
being developed in the near future upon receiving a new customer 
request. All the variants were cloned from the original variant 
(platform variant, which is often evolved from the platform 
developed and successfully used by the first customer) and then 
modified according to customer needs. To simplify the following 
discussion, we designate for every variant in the CSVF a number 
and we called the upcoming variant a new variant. 
The subjects involved in the study had full access to the variants 
family documentation and the code. Even though we took the role 
of software engineers, we applied the EVOA-SPL approach on 
CSVF artefacts; we had limited access to the documentation and 
code. For confidentiality, no all details of the CSVF are provided. 

4.3 Data Collection 
Case Study Environment. The study was conducted in the 
software development department, during October 2017- June 
2018 at Bosch Company. 
Procedure.  The study was conducted in two stages. 
Stage 1. We took the role of a software engineer and we applied 
the EVOA-SPL approach on the CSVF using the textual 
requirement (i.e., requirement specification document) of each 
variant.  

Stage 2. We evaluated the effectiveness and the efficiency of the 
EVOA-SPL approach from the point view of CSDT and we 
evaluate the correctness of the EVOA-SPL approach concerning 
project manager perspective. 
Summary of Generated Artefacts. Following the EVOA-SPL 
approach, the main activities during the execution of the case 
study in stage 1 were difference analysis, variability analysis, 
feature model synthesis, bootstrapping, feature model refactoring, 
and evolution. 
Firstly, the SMD of variants family was defined, capturing 
commonality and variability between variant 1 and variant 2. 
Secondly, the FM was derived, representing the SPL at a high 
level of abstraction. The model presents common features of the 
SPL, which are the Message including the Transmit and the 
Receive messages, the Diagnosis, the Monitoring and the optional 
features, which are the Calculations and the Interface support. On 
the other hand, the Transmit feature has two features involving the 
Layout and the Signals, where the Layout feature has two 
alternatives, which are Layout 1 and Layout 2. This means that the 
variants have two different message layouts, one for each variant: 
the first layout is Layout 1, which has five bits; the second one is 
Layout 2, which has seven bits. 
Concerning the Signals feature, it can be contained different 
signals for the variants (variant 1 and variant 2). Some of these 
features are common (which are Signal 1, Signal 2, and Signal 3), 
some of them are optional (which are Signal 4 and Signal 5), and 
some of them are within alternative group (which are Flag 1, Flag 
2, Algorithm 1, and Algorithm 2). 
After structuring the FM, it is the time to bootstrap the CSVF into 
the SPL and then evolve the SPL. The former evolves the current 
FM with the requirements (the features) of the remaining variant 
of variants family (variant 3). The later evolves the current FM 
with the requirements (the features) of a new variant. 
Firstly, the CSVF must be bootstrapped into the SPL. For that, the 
features of variant 3 are identified and stored in the FL. At this 
point, the FM is refined with the features of variant 3 using an FM 
refactoring scenario. Now the SPL is bootstrapped completely 
and the commonality and the variability of the CSVF are both 
presented by the current FM.  
The Signal 6 feature, which exists in the FL of variant 3 and does 
not exist in the current FM, presents new features. Signal 6 feature 
appears as a new feature in the list, since it does not exist in the 
current FM. At the same time, this feature represents a change at 
the SPL level (adding a new feature). As shown in Figure 4, this 
change is propagated to the SPL and the new feature (Signal 6) is 
moved from the FL of variant 3 to the FM using an FM 
refactoring scenario (the scenario uses Refactoring 12 “add 
optional node” [18]). 
Once the bootstrapping is completed, the SPL can be evolved with 
features of the new variant, using an FM refactoring scenario. 
Prior to this step, the features of the new variant are derived and 
stored in the FL of the new variant. The FL presents the features 
of the new variant, the Identification feature appears as a new type 
of the Message feature and Flag 3 feature appears as another 
alternative of the Flag feature, since they do not exist in the 
current FM. These new features represent changes in the SPL 
level (adding new features).  



SPLC 2019, September, 2019, Paris, France K. Ignaim et al. 
 

 
 

As shown in Figure 4, these changes are propagated to the SPL 
and the new features (Identification and Flag 3) are moved from 
the FL of new variant to the FM using an FM refactoring 
scenario. Regarding the Identification feature, the scenario uses 
Refactoring 12 “add optional node” and regarding Flag 3 feature, 
the scenario uses Refactoring 5 “add new alternative” [18]. 
The last step is to perform a typical documentation and readable 
artefacts preparation. In the end, the approach activities have been 
applied to the CSVF and the FM has been derived, synthesised 
and evolved, as shown in Figure 4, where the refactoring locations 
are highlighted. At this point, stage 2 of the case study can be 
started to assess the EVOA-SPL approach by CSDT and the 
project manager. 
 
 

 
Figure 4: The current FM of the CSVF. 

The objective of stage 2 of the case study is to assess the 
effectiveness and the efficiency of EVOA-SPL according to the 
CSDT and its correctness according to the project manager 
perspective. Hence, we formulated the following hypotheses to 
measure the effectiveness, efficiency, and correctness of the 
EVOA-SPL approach. 

 H1: EVOA-SPL is effective. 
 H2: EVOA-SPL is efficient. 
 H3: EVOA-SPL is correct. 

4.4 Execution of Data Collection 
We prepared many documents that suited to the collecting data 
methods. We designed a presentation that introduces the EVOA-
SPL activities and the generated artefacts to the members of 
CSDT. In addition, we prepared a survey that is a part of an 
empirical study. The survey includes a questionnaire with 22 
questions. These questions were formulated by using a 
combination of descriptive, behaviour, and attitudinal questions. 
The answers were given using ordinal and nominal scale response 
formats. One of the most important members of the team is 
undoubtedly the project manager. Thus, it is of special importance 
to dedicate her a survey, which contains measurement items 
related directly to the hypotheses.  
For the empirical study, we defined a set of items to be evaluated 
by asking the CSDT members to perform specific tasks and then 
answer questions while using directly with the EVOA-SPL 

approach. Ideally, to compare the developer’s solutions with a 
possibly-correct solution, in order to investigate our hypotheses, 
we have defined “correct” solutions for the tasks. The aim was to 
evaluate the effectiveness and the efficiency of the CSDT while 
applying EVOA- approach. For that, we defined five dependent 
variables. 
Regarding effectiveness, we defined: Effectiveness-SMD, which 
is calculated as the ratio between the number of correct variability 
retrieval scenarios from the SMD that the CSDT identified and the 
total number of correct retrievals. Effectiveness-FM is calculated 
as the ratio between the number of correct feature retrieval 
scenarios from the current FM that the CSDT member identified 
and the total number of correct retrievals. Effectiveness-EVO is 
calculated as the ratio between the number of correct evolution 
scenarios to the current FM that the CSDT member performed and 
the total number of correct evolutions. 
Regarding efficiency, we defined Efficiency-SMD as the ratio 
between the number of correct variability retrieval scenarios from 
the SMD that the CSDT member identified and the total time he 
spent. Efficiency-FM is computed as the ratio between the 
number of correct feature retrievals scenario from the current FM 
that the CSDT member identified and the total time she spent. 
Efficiency-EVO is calculated as the ratio between the number of 
correct evolutions to the current FM that the CSDT member 
performed and the total time he spent. 
Regarding correctness, Correctness-EVOA-SPL is defined as the 
ratio between the number of positive feedback from the project 
manager about the validity of the variability information provided 
by EVOA-SPL and the number of survey questioners that is 
written and dedicated to get the feedback of project manager.  
For the direct methods to collect data, we prepared an interview 
with the CSDT members to get direct feedback related to EVOA-
SPL by establishing open questions. Moreover, in order to get a 
deeper understanding, we used the observation. We informed the 
project manager that we are going to investigate the use of 
EVOA-SPL by the CSDT members in their normal daily work. 
We agreed with them to use EVOA-SPL during two weeks (daily 
for one hour). To perform a data collection, the following steps 
were conducted:  

1. We met the software developers of the CSDT (the project 
manager and seven developers). We started the first session 
by training including the presentation about EVOA-SPL and 
training exercises on using its capabilities. 

2. We established the second session; we took four days with 
eight sessions, each session of one hour. We met the software 
developers individually (it is not recommended to 
simultaneously pause the work of many developers in an 
industrial company for a long period). 

3. We performed the empirical case study. In the first 10 
minutes, we took the developer background information 
using a form, and then we gave them 3 tasks1 to perform 

                                                                    
1 According to the policy of the company, we hide the tasks. 



SPLC 2019, September, 2019, Paris, France K. Ignaim and J.M. Fernandes 
 

 

using EVOA-SPL. Each task consists of 3 tags2. Finally, we 
asked the developer to answer the survey about EVOA-SPL. 

Data collection through semi-structured interviews was performed 
using questions about a set of subjects related with EVOA-SPL. 
The interview dialog was guided by a set of questions. 
Simultaneously, we observed the CSDT members while using 
EVOA-SPL and we took notes about those observations.. 

4.5 Analysis and reporting 
We performed a qualitative analysis related to the dependent 
variables to prove our three hypotheses H1-H3. The qualitative 
analysis was undertaken based on the collected data that was 
performed earlier. Related to the tasks that were performed by the 
developers within the empirical study. Table 4 summarises the 
results of the qualitative analysis.  
Firstly, we investigate the effectiveness of task 1 (Effectiveness-
SMD), which is related to the task of retrieving the variability 
information from the SMD. We compared the developer’s 
solutions with the correct solutions. The result reveals that the 
developers were able to achieve a high percentage; they solved 
around 93% of the total tags related to this task. In what concerns 
the effectiveness in task 2 (Effectiveness-FM) of using the 
current FM to retrieve variability information, the CSDT members 
were able to retrieve correctly around 89% of the total variability 
information. The effectiveness in task 3 (Effectiveness-EVO) to 
perform evolution scenarios to the current FM, the CSDT 
members were able to perform correctly around 85% of the total 
evolutions.  
We repeated the analysis for the same tasks, but we measured the 
time used and we estimated the efficiency. The results show that 
the CSDT members took around 10 minutes to complete task 1, 
which originates an Efficiency-SMD value of 0.26. The CSDT 
members took around 12 minutes to complete task 2, so 
Efficiency-FM is equal to 0.21. Finally, the CSDT members took 
around 15 minutes to complete task 3, with an Efficiency-EVO 
value of 0.18.  
 
Table 4: Mean and max for the data analysis of dependent 
variables. 

subjective dependent variable mean max 
Effectiveness-SMD 0.93  

1.00 Effectiveness-FM 0.89 
Effectiveness-EVO 0.85 
Efficiency-SMD 0.26 0.30 
Efficiency-FM 0.21 0.25 
Efficiency-EVO 0.18 0.20 
Correctness-EVOA-SPL 0.86 1.00 

 
We repeated the analysis for the same tasks to estimate the 
efficiency but this time we asked the CSDT to perform the tasks 
using the normal approach3 (and its related artefacts), which is 
adopted by the company for a long time to develop the CSVF to 
satisfy customer’s needs. The results show that the CSDT 
members took around 20 minutes to complete task 1, with an 
                                                                    
2 Tag is a request for the developer to retrieve information or to make change using 
the EVoSPL approach. 
3 For confidentiality, many details of the normal approach are not provided 

Efficiency -SMD value of 0.14. The CSDT members took around 
30 minutes to complete task 2, with an Efficiency-FM value of 
0.08. Finally, the CSDT members took around 28 minutes to 
complete task 3, with an Efficiency-EVO value of 0.09. Figure 5 
shows a chart that compares the EVOA-SPL approach with the 
normal approach regarding efficiency while the CSDT performing 
the tasks related to the empirical study. In total, the comparison 
reveals that the CSDT performed the tasks related to the empirical 
case study more efficiently than using the normal approach.  
Regarding the correctness, we depend on the feedback of the 
project manager. The project manager highly agreed that the 
results of the EVOA-SPL approach are valid (the Correctness-
EVOA-SPL is equal to 86%). Due to the manual observation 
while the CSDT members were performing exercises related to 
EVOA-SPL, the members were able to understand and interact 
with the approach smoothly. They believe that the activities and 
the artefacts of the EVOA-SPL approach can be used to achieve 
the intended objectives. Moreover, the survey results reflect high 
satisfaction, which helped us to find a new hypothesis related to 
our approach (it is useful).  
During the interviews, the project manager and (most of) the 
CSDT members confirmed that EVOA-SPL supports the move 
towards an SPL. Moreover, they confirmed that the approach 
helped to retrieve features that took many hours to search for them 
in the artefacts of the CSVF. Concretely, we analysed the 
developer’s feedback that was provided using the survey 
questionnaire. The developers not only agreed that EVOA-SPL 
can be used to manage variability over the CSVF, but they also 
agreed that it can help to reduce the effort. 

4.6 Threats to Validity 
The main threat to the validity of the empirical study is the 
missing in the quantitative analysis. For that, we plan to perform 
this analysis in our future work. Moreover, the design of the 
survey questionnaire, the number of developers who shared in the 
empirical study, and the exchange of information between the 
developers are other main reasons that may threaten internal 
validity.  
 

 
Figure 5: The comparison of the efficiency between the 
EVOA-SPL approach and the normal approach.  

5 Conclusions 
In this paper, we introduce the EVOA-SPL approach to support 
migration of automotive variants into an SPL and then support the 



SPLC 2019, September, 2019, Paris, France K. Ignaim et al. 
 

 
 

evolution of the SPL, focusing on the textual requirements of the 
variants. We present a case study in the automotive domain 
conducted for the classical sensor variants family at Bosch 
Company, using the guidelines described in [31]. The results of 
the case study have shown that EVOA-SPL can be suitable for the 
automotive industry. 
As future work, we need to perform additional empirical 
evaluation with larger and more complex SPLs. We want also to 
improve/enrich the approach by reducing the number of activities 
and the number of steps within each activity. Moreover, we plan 
to build a tool to automate the manual steps of EVOA-SPL. 

ACKNOWLEDGMENTS 
The University of Minho and Bosch Company supported this 
research. We thank our colleagues from the classical sensor 
development team at Bosch Company. Especially André L. 
Ferreira and Jana Seidel for their active collaboration and support.  
Special acknowledgment to the spirit of Helder Boas, who passed 
away after he offered the help and support to this research work.  

REFERENCES 
[1] Vander Alves, Nan Niu, Carina Alves, and George Valença (2010). 

Requirements engineering for software product lines: A systematic 
literature review. Information and Software Technology, 52(8), 
806-820. 

[2] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, 
and Yves Le Traon (2015). Bottom-up adoption of software product 
lines: a generic and extensible approach. In Proceedings of the 19th Int. 
Conf. on Software Product Line, 101-110. 

[3] Ra'Fat Al-Msie'Deen, Abdelhak Seriai, Marianne Huchard, Christelle 
Urtado, Sylvain Vauttier, and Hamzeh Eyal Salman (2013). Feature 
location in a collection of software product variants using formal 
concept analysis. In Int. Conf. on Software Reuse, 302-307.  

[4] Fernando Wanderley, Denis Silva da Silveira, João Araujo, and Maria 
Lencastre (2012). Generating feature model from creative requirements 
using model driven design. In Proceedings of the 16th International 
Software Product Line Conference-Volume 2, 18-25. 

[5] Andreas Metzger and Klaus Pohl (2014). Software product line 
engineering and variability management: achievements and challenges. 
In Proceedings of the Future of Software Engineering, 70-84. 

[6] Klaus Pohl and Andreas Metzger (2006). Variability management in 
software product line engineering. In Proceedings of the 28th Int. Conf. 
on Software Engineering, 1049-1050.  

[7] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake (2016). 
Feature-oriented software product lines. Springer-Verlag. 

[8] Jean-Marc Davril, Edouard Delfosse, Negar Hariri, Mathieu Acher, 
Jane Cleland-Huang, and Patrick Heymans (2013). Feature model 
extraction from large collections of informal product descriptions. In 
Proceedings of the 9th Joint Meeting on Foundations of Software 
Engineering, 290-300 

[9] Mikael Svahnberg and Jan Bosch (1999). Evolution in software product 
lines: Two cases. Journal of Software Maintenance: Research and 
Practice, 11(6), 391-422. 

[10] Olivier Renault (2014). Reuse/Variability Management and System 
Engineering. In Poster Workshop of the Complex Systems Design & 
Management Conference CSD&M 2014, 173.  

[11] Yang Li, Sandro Schulze, and Gunter Saake (2017). Reverse 
engineering variability from natural language documents: A systematic 
literature review. In Proceedings of the 21st International Systems and 
Software Product Line Conference-Volume A, 133-142.  

[12] Daniela Rabiser, Paul Grünbacher, Herbert Prähofer, and Florian 
Angerer (2016). A prototype-based approach for managing clones in 
clone-and-own product lines. In Proceedings of the 20th International 
Systems and Software Product Line Conference, 35-44. 

[13] Samuel A. Ajila and Patrick J. Tierney (2002). The FOOM method-

modeling software product lines in industrial settings. In Proceedings of 
the 2002 Int. Conf. on Software Engineering Research and Practice.  

[14] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. 
(2011). Extracting software product lines: A case study using 
conditional compilation. In 15th European Conference on Software 
Maintenance and Reengineering, 191-200.  

[15] Jabier Martinez, Tewfik Ziadi, Tegawende F. Bissyande, Jacques Klein, 
and Yves Le Traon (2015). Automating the extraction of model-based 
software product lines from model variants. In 30th IEEE/ACM Int. 
Conf. on Automated Software Engineering, 396-406.  

[16] Vander Alves, Pedro Matos, Leonardo Cole, Paulo Borba, and Geber 
Ramalho (2005). Extracting and evolving mobile games product lines. 
In Int. Conf. on Software Product Lines, 70-81.  

[17] Bo Zhang and Martin Becker (2012). Code-based variability model 
extraction for software product line improvement. In Proceedings of the 
16th International Software Product Line Conference-Volume 2, 91-98. 

[18] Vander Alves, Rohit Gheyi, Tiago Massoni, Uirá Kulesza, Paulo Borba, 
and Carlos Lucena (2006). Refactoring product lines. In Proceedings of 
the 5th Int. Conf. on Generative Programming and Component 
Engineering, 201-210.  

[19] Mohammad Tanhaei, Jafar Habibi, and Seyed-Hassan Mirian-
Hosseinabadi (2016). A feature model based framework for refactoring 
software product line architecture. Journal of Computer Science and 
Technology 31(5), 951-986. 

[20] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik (2013). 
Managing cloned variants: a framework and experience.  In 
Proceedings of the 17th International Software Product Line 
Conference, 101-110.  

[21] Wesley KG Assunção, Roberto E. Lopez-Herrejon, Lukas Linsbauer, 
Silvia R. Vergilio, and Alexander Egyed (2017). Reengineering legacy 
applications into software product lines: a systematic mapping. 
Empirical Software Engineering, 22(6), 2972-3016. 

[22] Cem Mengi, Christian Fuß, Ruben Zimmermann, and Ismet Aktas 
(2009). Model-driven Support for Source Code Variability in 
Automotive Software Engineering. In 1st MAPLE Workshop, 44-50.  

[23] Diana L. Webber and Hassan Gomaa (2004). Modeling variability in 
software product lines with the variation point model. Science of 
Computer Programming 53(3), 305-331. 

[24] Hitesh Yadav and A. Charan Kumari (2018). Analysis of Features using 
Feature Model in Software Product Line: A Case Study. International 
Journal of Education and Management Engineering 8(2), 48-57. 

[25] Andreas Metzger, Klaus Pohl, Patrick Heymans, Pierre-Yves 
Schobbens, and Germain Saval (2007). Disambiguating the 
documentation of variability in software product lines: A separation of 
concerns, formalization and automated analysis. In 15th IEEE Int. 
Requirements Engineering Conference (RE 2007), 243-253.  

[26] Jabier Martinez, Tewfik Ziadi, Jacques Klein, and Yves Le Traon 
(2014). Identifying and visualising commonality and variability in 
model variants. In European Conference on Modelling Foundations and 
Applications, 117-131. 

[27] Nili Itzik, Iris Reinhartz-Berger, and Yair Wand (2015). Variability 
analysis of requirements: Considering behavioral differences and 
reflecting stakeholders’ perspectives. IEEE Transactions on Software 
Engineering, 42(7), 687-706. 

[28] Steven She, Uwe Ryssel, Nele Andersen, Andrzej Wąsowski, and 
Krzysztof Czarnecki (2014). Efficient synthesis of feature models. 
Information and Software Technology 56(9), 1122-1143. 

[29] Matthias Weber and Joachim Weisbrod. 2002. Requirements 
engineering in automotive development-experiences and challenges. In 
Proceedings IEEE Joint International Conference on Requirements 
Engineering. IEEE, 331-340. 

[30] Ashwini Rupnawar, Ashwini Jagdale, and Samiksha Navsupe (2016). 
Study on Forward Chaining and Reverse Chaining in Expert System. 
Int. Journal of Advanced Engineering Research and Science, 3(12), 
60-62. 

[31] Johan Linaker, Sardar Muhammad Sulaman, Martin Höst, and Rafael 
Maiani de Mello (2015). Guidelines for Conducting Surveys in 
Software Engineering v. 1.1.  

 


