
Using Scrum Together with UML Models: A Collaborative
University-Industry R&D Software Project

Nuno Santos1(✉), João M. Fernandes1,2, M. Sameiro Carvalho1,3, Pedro V. Silva4,
Fábio A. Fernandes1, Márcio P. Rebelo1, Diogo Barbosa1, Paulo Maia1,

Marco Couto4, and Ricardo J. Machado1,5

1 ALGORITMI Research Center, School of Engineering, University of Minho,
Guimarães, Portugal

nuno.a.santos@algoritmi.uminho.pt
2 Department of Informatics, University of Minho, Braga, Portugal

3 Department of Production and Systems, University of Minho, Guimarães, Portugal
4 Bosch Car Multimedia Portugal S.A., Braga, Portugal

5 Department of Information Systems, University of Minho, Guimarães, Portugal

Abstract. Conducting research and development (R&D) software projects, in an
environment where both industry and university collaborate, is challenging due to
many factors. In fact, industrial companies and universities have generally different
interests and objectives whenever they collaborate. For this reason, it is not easy to
manage and negotiate the industrial companies’ interests, namely schedules and
their expectations. Conducting such projects in an agile framework is expected to
decrease these risks, since partners have the opportunity to frequently interact with
the development team in short iterations and are constantly aware of the character‐
istics of the system under development. However, in this type of collaborative R&D
projects, it is often advantageous to include some waterfall practices, like upfront
requirements modeling using UML models, which are not commonly used in agile
processes like Scrum, in order to better prepare the implementation phase of the
project. This paper presents some lessons learned that result from experience of the
authors in adopting some Scrum practices in a R&D project, like short iterations,
backlogs, and product increments, and simultaneously using UML models, namely
use cases and components.

Keywords: Agile · Scrum · UML · Research projects

1 Introduction

When research and development (R&D) projects are executed within industrial envi‐
ronments, project management commonly follow plan-centric processes, like waterfall
[1], the spiral [2] or the Rational Unified Process (RUP) [3]. All these processes allow
research to performed and clearly refine the requirements before moving to the imple‐
mentation phase.

However, requirements are not always clear at the beginning of projects from R&D
nature, which, when using plan-centric processes, makes very difficult to define an early
schedule to any software development project due to the high uncertainty that

© Springer International Publishing Switzerland 2016
O. Gervasi et al. (Eds.): ICCSA 2016, Part IV, LNCS 9789, pp. 480–495, 2016.
DOI: 10.1007/978-3-319-42089-9_34

nuno.a.santos@algoritmi.uminho.pt

characterizes these types of projects. This schedule uncertainty typically occur in early
stages of the project when a high effort in domain and technological research tasks is
required. When R&D projects are executed in an industrial environment, projects face
many challenges as timeliness, addressing the needs of stakeholders, rigor and access
[4]. In such industrial environment, agile software development processes bring many
advantages, since they are characterized by frequent interactions and collaboration with
clients [5]. Agile processes are based in self-organized teams that perform the develop‐
ment tasks. These processes are divided in small iterations, where software systems are
periodically assessed, in order to detect/solve possible problems as soon as they emerge.
This approach works fine when future requirements are largely unpredictable [6]. Within
these processes, eXtreme Programming (XP) [7] and Scrum [8] are among the most
popular methodologies [9].

This paper describes how Scrum was adapted by a newly-formed team to develop a
software system in a R&D project, called Inbound Logistics Tracking System project
(hereafter referred as iFloW project) [10], which is described in this paper as a demon‐
stration case. The Scrum process adaptation was based by performing upfront require‐
ments modelling before the implementation phase (more common in waterfall
approaches), instead of starting directly in implementing the software within the small
iterations. For the requirements modelling, UML diagrams were modelled, namely use
cases and component diagrams. The choice of using UML models was based by their
wide acceptance, but any other models that bring upfront knowledge of software
requirements could be used. The iFloW project, as its name refers, relates to logistics
domain, and was mainly focused in integration with third party logistics (3PL) service
providers and integrating Radio Frequency Identification (RFID) technology [11, 12],
Global Positioning System (GPS) technologies [13], and an integrated web-based RFID-
Electronic Product Code (EPC) compliant logistics information system [14].

The R&D context required domain research tasks in an initialization phase, as well
as technological-related research and third-party collaboration during the implementa‐
tion phase. This phase was performed in form of Sprints, which are small cross-func‐
tional development cycles and are used in agile frameworks like XP and Scrum. Soft‐
ware development projects with important integration and interoperability issues require
additional concerns when compared with typical agile processes, since implementation
requires prior studies related to the technologies involved (except if the team has solid
experience with those technologies) and collaboration with third-party entities.

This paper is structured as follows: Sect. 2 presents the related work; Sect. 3 describes
the collaborative University-Industry context; Sect. 4 describes our proposed Scrum
adaptation, which integrates typical agile practices together with UML models; in
Sect. 5 is presented the lessons learned of the process adoption; conclusions are presented
in Sect. 6.

2 Related Work

The adoption of agile frameworks commonly found in literature is basically grounded in
practical experience. There has been an increased interest in performing some empirical
studies in agile software development [15]. Agile principles (namely those from XP) are

Using Scrum Together with UML Models 481

nuno.a.santos@algoritmi.uminho.pt

introduced within a research work related to enterprise architecture development projects
and software development projects [16]. Abrahamsson [17] notes that while more research
was being done, agile methods were still driven by consultants and practitioners, that there
was a lack of research rigour, and that researchers needed to address core questions such
as what constitutes agility, how agile methods can be extended, and how mature teams use
agile methods. Barroca et al. [4] state that collaboration between industry and research in
agile methods allowed building trust and regular feedbacks, appropriate contracts at the
beginning of the project, and learning experience for both teams. However, to the best of
our knowledge, there are no research works in literature that describe the adoption of agile
frameworks within R&D projects.

At first glance, agile processes seem to be only suitable for small teams operating in
a local environment. The iFloW software system (the main deliverable of the iFloW
project) was designed to perform in an environment where the main inputs are provided
by integrated systems from suppliers or forwarders. Therefore, agile processes must
consider implementations that refer specifically to integration, like the research from
Niemelä and Vaskivuo for developing a middleware [18]. Välimäki and Kääriäinen
propose an organizational pattern for these cases [19].

Projects where significant interoperability issues strongly rely upon dependency and
communication with third-parties, like the case of the iFloW project, commonly involve
development effort by distributed teams, which can be highly challenging. In fact, he
coordination between different teams in agile development is one of the top concerns
identified in [20]. In agile development, some techniques for adapting events, actors and
artifacts arise so that both distributed and dispersed teams may work in the same product
development [21]. Some examples within Scrum are Isolated Scrums, Scrum of Scrums
[22] and Totally Integrated Scrum [23]. In these distributed environments, good require‐
ments modeling, including using UML models, can be advantageous. It is the case of
[24], where the identification of contact points where there is a need for synchronizing
efforts within distributed Scrums and effort dependencies can be performed using arti‐
facts like an architecture. Managing the distributed work is not an exclusive concern
within Scrum framework. An example for these practices within the XP framework is
Industrial XP [25].

3 The Collaborative University-Industry R&D Software Project

3.1 The HMI-Excel Program

The Human-Machine Interface Excellence (HMIExcel) project [26] was sponsored by
the consortium between University of Minho (UMinho) and Bosch Car Multimedia
Portugal (Bosch). It was designed in order to tackle scientific and technological chal‐
lenges of Bosch Braga and to obtain recognition of this unit as an International Compe‐
tence Centre in Human-Machine Interface (HMI). The project was 28 months long,
starting in March 2013 and ending in June 2015. Although HMIExcel for the funding
body is seen as a project, its complexity and uncertainty led the consortium (UMinho
and Bosch) to manage it as a program, i.e., a set of projects that are somehow related
and contribute to the same goal [27]. The main goal for the HMIExcel was to promote

482 N. Santos et al.

nuno.a.santos@algoritmi.uminho.pt

the investment in R&D, for developing and producing future mobility concepts in the
automotive domain, where academia and industry worked together aiming innovative
products and processes. These solutions were developed to meet production needs and
preparing Bosch to respond to the challenges from the Fourth Industrial Revolution
(Industry 4.0).

The HMIExcel project divided itself into thirteen research lines, each one tackling
one specific challenge. Each research line followed an independent course, as all projects
were coordinated by one team focused on the objectives and deliverables expected in
each individual line. One of those research lines, iFloW, is used in this paper as a case
study analysis for purpose of validation of our approach.

3.2 The iFloW Project

iFloW is an R&D project that aims at developing an integrated logistics software system
for inbound supply chain traceability. iFloW is a real-time tracking software system of
freights in transit from the suppliers to the Bosch plant, located in Braga. The main goal
of the project is to develop a tracking platform that by integrating information from
freight forwarders and on-vehicle GPS devices allows to control the raw material flow
from remote (Asian) and local (European) suppliers to the Bosch’s warehouse, alerts
users in case of any deviation to the Estimated Time of Arrival (ETA) and anticipates
deviations of the delivery time window.

Figure 1 illustrates the architecture of the iFloW software system, namely the inte‐
gration of the iFloW main server with other systems. The architecture allows depicting
the significant interface protocols and systems that were involved. The system uses
information that is provided by different sources, like GPS, Personal Digital Assistant

Fig. 1. The architecture of the iFlow software system

Using Scrum Together with UML Models 483

nuno.a.santos@algoritmi.uminho.pt

(PDA) devices or SAP-OER (Object Event Repository). The ‘middleware server’ was
developed aiming to standardize the way information between Bosch and providers is
exchanged. Then, the ‘iFloW server’ executes all business logic, where Bosch
employees access all features via a web-based user-interface (web app).

In the case of the iFloW project, this collaboration UMinho and Bosch was based in
the premise where Bosch mainly performed as a software customer and UMinho as a
contracted software development entity. The core iFloW team was composed of nine
collaborators with multidisciplinary backgrounds:

• Bosch:
– one Product Owner, that was representing other eight elements from the Logistics

department, that formally dictated the requirements.
– one member of the IT department, responsible for validating that each developed

product increment could be easily integrated within Bosch information system;
• UMinho:

– three R&D coordinators, with the role of assuring that the scientific rigor (from
both the system and the software development process) and deadlines of the
project are met;

– four software developers with methodological and technological competences
(like analysis, requirements, design, database modeling, programming, testing,
deployment, etc.).

The entire software development was performed within Bosch’s premises, where
the iFloW team elements (in exception of R&D Coordinators) were located on a daily
basis. The elements from UMinho had no previous knowledge of the domain (in this
case, logistics), so the team decided that the project kicked-off by gathering and docu‐
menting requirements in a waterfall-based approach.

After the requirements engineering was performed, and since iFloW aimed devel‐
oping a software system for an industrial context, the team decided to follow the Scrum
framework as the iterative approach for the implementation phase. This phase was
performed by development iterative cycles in form of Scrum sprints. Based in incre‐
mental software deliveries, both UMinho and Bosch could manage their project’s
expectations.

As a collaborative University-Industry R&D software project, the previously
presented roles are slightly different from the roles defined by the Scrum framework
(namely, Product Owner, Scrum Master and Development Team) [28], however easily
mapped, as depicted in Table 1.

The Product Owner (PO) was the element responsible for dictating the requirements,
as previously stated, but also participated in meetings with UMinho R&D coordinators
and Software Developers for project monitoring (the Project Manager role is not
included within a Scrum team). Thus, it is directly mapped with a typical Scrum PO.
Additionally, the PO performed as a contac point for distributed development with third-
party service provider entities that composed the ecossystem. The fact that Bosch’s
information system (not only from Braga plant, but from all Bosch Car Multimedia
worldwide plants) is managed by the Bosch Car Multimedia Group, in Germany, and
that the system under development will be included in Bosch’s information system, also

484 N. Santos et al.

nuno.a.santos@algoritmi.uminho.pt

includes Bosch’s IT department from Germany in the project’s ecossystem. Thus, the
PO also performed as a contact point in the negotiation between the iFloW team and the
IT department form Germany, regarding the compliance requirements from security and
policy issues of Bosch Car Multimedia Group.

The Bosch IT element was responsible for validating the code developed during
sprints, in order to be integrated within the existing information systems. He interacts
directly with the software developers from UMinho. For this reason, he is considered
as part of the development team. However, he was responsible for representing the IT
department from Braga during the negotiations with IT department form Germany and
with third-party service provider entities. So, within these tasks he also performed the
role of a typical Scrum PO.

The R&D Coordination was composed by three professors from UMinho, from the
fields of software engineering and also logistics. They were responsible for assuring that
the academic concerns of these types of R&D projects were met, where their main
concerns was to assure development beyond the state of the art, and to coordinate and
monitor the development of the project’s deliverables and scientific papers. This respon‐
sibility is not mapped to any role in Scrum. Since Bosch had never adopted agile software
development processes, they were responsible for training and control the adoption of
Scrum practices by the project team, when the project entered the implementation phase.
For this responsibility in this phase, these elements are mapped as typical Scrum Masters.

The Software Developers performed tasks related with software engineering (e.g.,
analysis, requirements, architecture, layout design, coding, testing, deployment, etc.)
thus, their responsibility was directly mapped with a Scrum development team.

Table 1. Mapping between iFloW roles and typical Scrum roles

4 Using Scrum with UML Models

This section presents the software process and the required adaptations that were due to
the research nature of the project and the required integration with third-party services.
An overview of the process is depicted in Fig. 2. The process is composed of three
phases: Initialization, Implementation, and Deployment.

The initialization phase includes typical activities from domain engineering, require‐
ments engineering and design. In this phase, use cases diagrams and the component
diagram were modelled. The implementation phase was performed in small iterations

Using Scrum Together with UML Models 485

nuno.a.santos@algoritmi.uminho.pt

and incremental releases in the form of Scrum sprints. This phase is similar to typical
Scrum process. The UML models from the previous phase were just verified for changes,
except for some new use cases referring newly discovered requirements. It should be
noted that Fig. 2 depicts seven cycles performed like typical Scrum sprints (circles with
filled border), and one cycle that rather addressed architectural refactoring (circle with
dashed border). This different cycle may not be required in other R&D projects if the
architecture is stable during the whole project. Finally, the Deployment phase is similar
to the Transition phase of RUP. This phase included modeling a UML deployment
diagram. This phase is not detailed in this paper due to size reasons.

4.1 Initialization Phase

Within the initialization phase, the objective was to develop a product backlog artifact
in order to start the development phase in the form of sprints that, due to the perceived
complexity of the project, was delivered together with widely accepted forms of require‐
ments documentation (the overall process is depicted in Fig. 3).

Since iFlow is a R&D software project, some research activities were conducted
throughout the project and the research outputs had to be documented. This project
kicked–off as a typical waterfall process, and initial tasks were conducted to specify the
project scope, to characterize the domain and the organization’s (logistics–related)
activities, to define terms, and to analyze flows, legacy software and data.

The organization’s logistics–related processes and current gaps were documented in
a report designated as ‘As-Is report’. Then, the requirements were elicited, formally
specified in the form of UML use cases (see Fig. 4), a list of quality (non-functional)
requirements and in a first version of the logical architecture (UML component diagram).
This set of requirements was documented in a report designated as ‘To–Be report’
(which was constantly updated as the implementation went along). Both use case models
(especially the ‘To-Be’) were used as basis to define a ‘Product Backlog’. This differs
from other agile frameworks where, for instance, although complementary and able to
be used together [8], in Scrum backlogs are composed of user stories. A user story is a
customer-centric characterization of a requirement, containing only the information
needed for the project developers to see clearly what is required to implement [29]. Use
cases are used in backlogs in [30, 31].

Fig. 2. Overview of the process executed in the iFloW project

486 N. Santos et al.

nuno.a.santos@algoritmi.uminho.pt

Fig. 3. Initialization phase

The use case diagram illustrated in Fig. 4 shows the overall use case model of the
iFloW project. For the purpose of this paper, the use cases are not described, as the
diagram is used only for demonstration purposes. Each of the use cases were functionally
decomposed, which resulted in a total of 90 lower level use cases.

The Initialization phase ends with a Sprint 0 ceremony. Most of the technological
research was performed during this ceremony, prior to the implementation in the
following sprints. Like in a typical Sprint 0, each item (use case) was prioritized by its
perceived value from stakeholders, in this case by using MoSCoW prioritization tech‐
nique [32]. For this task, the PO provided input on the perceived business value of the
requirement. On the other hand, R&D Coordinators identified critical implementation
issues.

Also, each use case was estimated related to a quantitative effort for its implemen‐
tation, where it was defined that the effort for each sprint corresponds to a total of 20
points (which resulted in approximately five points per week) as basis for distribution
of these points per use case. This was a decision made by PO and R&D Coordinators.
A commonly used technique is use case points [33], however in this project this tech‐
nique was not used. Rather, and following a comparative technique similar to a planning
poker [34]. Finally, based in efforts and prioritizations, the remaining step to define the
‘Sprint Backlogs’ (which use cases from the ‘Product Backlog’ to implement during the
sprint) and to plan them.

Using Scrum Together with UML Models 487

nuno.a.santos@algoritmi.uminho.pt

Fig. 4. Use case diagram

4.2 Implementation Phase

Within the implementation phase, the use cases from the ‘Product Backlog’ were imple‐
mented iteratively and incrementally during eight four-week Scrum sprints. In this
phase, typical Scrum iterations were performed, where each ‘Sprint Backlog’ is a
selected subset from the ‘Product Backlog’ (see Fig. 5).

Fig. 5. The implementation phase

In Fig. 6 is depicted an example of a ‘Sprint Backlog’ tracking sheet, which allowed
monitoring through a breakdown chart. In this sheet, use cases were included until the
total effort reached 20 points. Then, the use case implementation was monitored
throughout each of the four weeks that compose the Sprint, by registering the remaining
units (from the initial estimation) that were implemented during that week. This way,

488 N. Santos et al.

nuno.a.santos@algoritmi.uminho.pt

the tracking sheet allowed monitoring the implemented functionalities (and thus, the
value delivered to the organization), but also if the Sprint’s initial planned target (column
SPx Target) was obtained.

Fig. 6. Example of a sprint backlog based in use cases

Each sprint has a standard planning and structure consisting of several milestones,
previously negotiated by the project members:

• Sprint development: lasts four weeks, and is allocated to the development of the
items from the ‘Sprint Backlog’;

• Sprint Monitoring meeting: takes place in second week to show sprint progress and
monitor sprint tasks. The attendees are the Product Owner, R&D coordination and
development team;

• Sprint Verification and Validation (V + V) meeting: takes place in the fourth (i.e.,
last) week and the goal is to test and validate the requirements implemented by the
development team. The attendees are the Product Owner, the development team, a
member of the Bosch IT department, and an assigned Product User from Bosch. In
each Sprint V + V meeting, the Product User was assigned a different user from

Using Scrum Together with UML Models 489

nuno.a.santos@algoritmi.uminho.pt

Logistics department so the performed tests could encompass different insights from
the organization. During the sprint, if any requirement (use case) is moved to a next
sprint due to a given constraint and will not be presented in this meeting, the team is
notified;

• Sprint Closure and Planning meeting: takes place at most two days after the Sprint
V + V meeting, and the attendees are the Product Owner, the R&D coordination, a
member of the Bosch IT department and the development team. It is similar to a
Sprint Retrospective and a Sprint Planning meeting from typical Scrum, performed
within the same meeting. The main goal is to analyze the progress of the implemen‐
tation phase, by assessing the percentage and completion of the use case implemen‐
tation and thus updating the burndown chart. If applicable, short rework actions
(depicted from the Sprint V + V) are approved to perform until the end of the sprint.
Additionally, the next Sprint is planned, resulting in the construction of the ‘Sprint
Backlog’ artifact;

• Sprint Rework meeting: takes place the day after the Sprint Closure meeting. After
Sprint V + V, some rework actions can arise due to a suggestion by the verification
and validation team. If applicable, the development team has to implement these
rework actions until the end of the sprint. The Sprint Rework meetings are used to
validate the rework actions performed. The attendees are the assigned Product Users,
Product Owner, a member of the Bosch IT department and the development team.

For implementing each use case, the team performed tasks involving several soft‐
ware engineering disciplines. In this paper, we use the terminology from RUP’s disci‐
plines (only for demonstration purposes) to depicts the type of effort involved within
the Sprints.

Occasionally, the team performed spikes (originally defined within XP), a technique
used for activities such as research, innovation, design, investigation and prototyping.
With spikes, one can properly estimate the development effort associated with a require‐
ment or even to better understand a requirement. The use of spikes in the iFloW project
justifies the inclusion of the Requirements discipline in the each Sprint, as shown in Fig. 7.

Fig. 7. The performed disciplines within the sprints (Color figure online)

490 N. Santos et al.

nuno.a.santos@algoritmi.uminho.pt

In all sprints, the need for updates to the logical architecture was assessed (within
the Analysis & Design). Afterwards, the typical disciplines were carried out within the
sprints: Implementation, Testing and Deploy. These spikes were, in their majority,
originated from middleware-based use cases (for instance, related to integration with
third-party service providers, GPS, EPCIS or SAP-OER). Within the remaining use
cases, the Requirements discipline was not required. Thus, in comparison with the
disciplines included in Fig. 7, the Sprint performed the remaining disciplines like illus‐
trated with exception of Requirements. In fact, it is what indeed occurs in typical Scrum
process (where almost every requirements-related effort is performed before Sprint
cycles, like Sprint 0 or similar).

Additionally, the implementation of some middleware-related use cases involved
third-party collaboration. The implementation of those use cases must be managed from
a distributed team perspective. It is required that the implementation effort by third–
parties is properly aligned with the team’s development process. In the case of the iFloW
project, the integration with third-party service provider entities required that both teams
worked together and their work aligned.

At a given point in time, both Bosch and UMinho identified the need for refactoring
the code and the architecture of the system, namely to cope with security and standard‐
ization issues. Such refactoring led to a pause in the implementation tasks. The software
logical architecture was revisited and the impacts were analyzed. Some design-oriented
spikes (similar to architectural spikes from XP) were conducted, which then followed
the re-design of the architecture. In this case, there was a focus in Analysis & Design
instead of Implementation (see Fig. 8, where it is detailed the sixth Sprint included in
Fig. 2). Similarly to the other sprints, this effort also lasted four weeks. This effort was
required in this case but it may occur, or not, in any project.

Fig. 8. The performed disciplines within the architectural spike sprint (Color figure online)

Using Scrum Together with UML Models 491

nuno.a.santos@algoritmi.uminho.pt

5 Lessons Learned

Defining a hybrid approach (waterfall-based during initialization and Scrum-based
during implementation) in a collaborative Industry-University context arose many chal‐
lenges. We believe that the inclusion of artifacts modeling and documentation strength‐
ened the adoption of a Scrum process in these contexts. However, the entire adoption
was a learning process, with advantages and disadvantages, which are detailed in this
section.

5.1 Advantages

Industrial and scientific interests – typically, these kinds of collaborative Industry-
University software projects aim timeliness, addressing the needs of stakeholders, rigor
and access. In terms of university interests, the initial approach on documenting require‐
ments allowed the team to gain domain knowledge, to assure the academic rigor of R&D
projects. In terms of industry interests, the use of an iterative development process
facilitated negotiation concerning schedules and their expectations.

Requirements documentation waterfall-based – the fact that the Product Backlog
was composed of 90 use cases led to a shared perception of the system complexity that
originated the need to perform proper efforts in documenting the requirements. Thus,
consuming efforts in almost exclusively for requirements engineering typically
performed in waterfall approaches, in the initialization phase, allowed the project team
to gain the required knowledge to properly implement a system of such complexity.

Implementation Scrum-based – within a customer perspective, Bosch was always
aware of the system’s current state of development. The iterative development, in form
of Scrum sprints, was crucial to manage Bosch’s expectations, due to the periodical
meetings and the incremental delivery of working software.

Use of a logical architecture – to enforce a proper organization on the set of
components. The relationships among components suggest dependencies that may
impact the implementation of functionalities and their inclusion in the Sprint Backlog.

Assess the logical architecture – the software logical architecture was revisited and
the impacts were analyzed at the end of each iteration, in order to predict refactoring
efforts. Additionally, when a change was identified, the logical architecture representa‐
tion allowed to analyze which components are targeted with impacts from those changes.

5.2 Disadvantages

Effort estimation for use cases – the fact that it was a completely new development
team (thus team velocity was unknown) and the need to frequently perform research
spikes in order to overcome technological issues (for instance, related to GPS, EPCIS
or SAP-OER) were the main obstacles for the estimation. In Scrum, estimation is
performed using techniques such as planning poker, where user stories are estimated
based in comparing efforts between other user stories. Due to the inexperience of the
team, estimating the required effort for implementing use cases by comparing with other
was itself a learning process. Such approach resulted in sprint backlogs where use cases

492 N. Santos et al.

nuno.a.santos@algoritmi.uminho.pt

had not been implemented due to error in estimating and required conclusion in further
sprints, and where the effort estimating of the remaining use cases (as well as rework,
whenever was required, and the spikes that were performed within almost every sprints)
required constant updates on every Sprint Closure and Planning meeting.

Dependence on negotiation for middleware use cases – collaborative coding
among iFloW team members and service provider team members was required to imple‐
ment middleware-related use cases. Most of the times the implementation required
previous negotiation and agreements and the implementation did not progress at the
desired velocity. The team’s work reached a point where they had to pause and wait for
those agreements, which resulted in the extension of use cases (and use cases with
dependencies with them) through several sprints.

6 Conclusions and Outlook

The iFloW project is a collaborative R&D software project, where University
researchers were contracted for developing an industrial software system. Since the
project aimed at delivering a software product, the R&D coordination elements decided
to use many practices available in agile process, namely in Scrum (and, to a lesser extent,
in XP). During this project, there was always the concern to fulfill both industry and
university needs. Thus, this project had to face key challenges as timeliness, addressing
the needs of stakeholders, rigor and access. It should be noticed that the nature and
context of the project created the need for firstly proposing an initialization phase
(similar to what happens in waterfall model) and afterwards performing sprints
throughout the implementation phase. The project ended with a deployment phase.

This paper presents how a R&D project for developing a software system was
conducted by combining some Scrum practices with UML models dedicated to docu‐
ment requirements and architecture. Agile processes are commonly used among prac‐
titioners but not much in R&D projects. The main advantages that result from using
Scrum practices within the implementation phase are related with the facilitated nego‐
tiation with the stakeholders concerning deadlines and their expectations regarding the
system. Thus, stakeholders have the opportunity to frequently interact with the devel‐
opment team in short iterations, allowing them to adjust their ideas about the system.

Some issues stated as lessons learned are seen as opportunities for improvement. In
order to prevent the stated errors within the sprint backlog definition in future projects,
effort estimation techniques as use case points should be considered. Additionally,
architecture design (and re-design) can also be improved. By using an architecture deri‐
vation method (like the 4SRS method [35]), through traceability mechanisms, require‐
ments change during the implementation can be supported.

Acknowledgements. This research is sponsored by the Portugal Incentive System for Research
and Technological Development PEst-UID/CEC/00319/2013 and by project in co–promotion nº
36265/2013 (Project HMIExcel - 2013-2015).

Using Scrum Together with UML Models 493

nuno.a.santos@algoritmi.uminho.pt

References

1. Royce, W.W.: Managing the development of large software systems. In: IEEE WESCON.
Los Angeles (1970)

2. Boehm, B.W.: A spiral model of software development and enhancement. Computer (Long.
Beach. Calif) 21, 61–72 (1988)

3. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Professional,
Boston (2004)

4. Barroca, L., Sharp, H., Salah, D., Taylor, K., Gregory, P.: Bridging the gap between research
and agile practice: An evolutionary model. Int. J. Syst. Assur. Eng, Manag. 1–12 (2015)

5. Cho, J.: A hybrid software development method for large-scale projects: rational unified
process with scrum. Issues Inf. Syst. 10 (2009)

6. Boehm, B.: Get ready for agile methods, with care. Computer (Long. Beach. Calif) 35,
64–69 (2002)

7. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (2004)

8. Schwaber, K.: Scrum development process. In: Sutherland, J., Casanave, C., Miller, J., Patel,
P., Hollowell, G. (eds.) Business Object Design and Implementation, pp. 117–134. Springer,
Heidelberg (1997)

9. VersionOne Inc: 8th Annual State of Agile Survey (2013) http://www.versionone.com/pdf/
2013-state-of-agile-survey.pdf

10. Santos, N., Barbosa, D., Maia, P., Fernandes, F., Rebelo, M., Silva, P.V., Carvalho, S.M.,
Fernandes, J.M., Machado, R.J.: iFloW: an integrated logistics software system for inbound
supply chain traceability. In: Mendonça, J.P., Fensterbank, S.-A., Barthet, E. (eds.) Enterprise
Interoperability, Proceedings of 8th International Conference on Interoperability for
Enterprise Systems and Applications (I-ESA). (in-press). Springer, Guimarães, Portugal
(2016)

11. Choy, K.L., Ng, S.W.K., So, S.C.K., Liu, J.J., Lau, H.: Improving supply chain traceability
with the integration of logistics information system and RFID technology. Materials Science
Forum, pp. 135–155. Trans Tech Publ (2006)

12. Choy, K.L., So, S.C.K., Liu, J.J., Lau, H.: Improving logistics visibility in a supply chain: an
integrated approach with radio frequency identification technology. Int. J. Integr. Supply
Manag. 3, 135–155 (2007)

13. Kandel, C., Klumpp, M., Keusgen, T.: GPS based track and trace for transparent and
sustainable global supply chains. In: 17th International Conference on Concurrent
Enterprising (ICE), pp. 1–8. IEEE (2011)

14. Doukidis, G.I., Chow, H.K.H., Choy, K.L., Lee, W.B., Chan, F.T.S.: Integration of web-based
and RFID technology in visualizing logistics operations-a case study. Supply Chain Manag.
Int. J. 12, 221–234 (2007)

15. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50, 833–859 (2008)

16. Ramos, H., Vasconcelos, A.: eXtreme enterprise architecture planning. In: 29th Annual ACM
Symposium on Applied Computing (SAC), pp. 1417–1419. ACM (2014)

17. Abrahamsson, P., Conboy, K., Wang, X.: Lots done, more to do: the current state of agile
systems development research. Eur. J. Inf. Syst. 18, 281–284 (2009)

18. Niemelä, E., Vaskivuo, T.: Agile middleware of pervasive computing environments. In:
Second IEEE Annual Conference on Pervasive Computing and Communications Workshops,
pp. 192–197. IEEE (2004)

494 N. Santos et al.

nuno.a.santos@algoritmi.uminho.pt

19. Välimäki, A., Kääriäinen, J.: Patterns for distributed scrum—a case study. In: Mertins, K.,
Ruggaber, R., Popplewell, K., Xiaofei, X. (eds.) Enterprise interoperability III, pp. 85–97.
Springer, Heidelberg (2008)

20. Dingsøyr, T., Moe, N.B.: Towards Principles of Large-Scale Agile Development: A Summary
of the Workshop at XP2014 and a revised research agenda (2014)

21. Eckstein, J.: Agile Software Development With Distributed Teams: Staying Agile in a Global
World. Addison-Wesley, Boston (2013)

22. Sutherland, J., Viktorov, A., Blount, J.: Adaptive engineering of large software projects with
distributed/outsourced teams. In: Proceedings of the International Conference on Complex
Systems, Boston, MA, USA, pp. 25–30 (2006)

23. Cristal, M., Wildt, D., Prikladnicki, R.: Usage of scrum practices within a global company.
In: IEEE International Conference on Global Software Engineering (ICGSE), pp. 222–226.
IEEE (2008)

24. Costa, N., Santos, N., Ferreira, N., Machado, R.J.: Delivering user stories for implementing
logical software architectures by multiple scrum teams. In: Murgante, B., Misra, S., Rocha,
A.M.A., Torre, C., Rocha, J.G., Falcão, M.I., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.)
ICCSA 2014, Part III. LNCS, vol. 8581, pp. 747–762. Springer, Heidelberg (2014)

25. Kerievsky, J.: Industrial XP: Making XP work in large organizations. Exec. Report. Cut.
Consort. 6 (2005)

26. Fernandes, G., Pinto, E.B., Machado, R.J., Araújo, M., Pontes, A.: A program and project
management approach for collaborative university-industry R&D funded contracts. Procedia
Comput. Sci. 64, 1065–1074 (2015)

27. Pellegrinelli, S.: What’s in a name: Project or programme? Int. J. Proj. Manag. 29(2), 232–
240 (2011)

28. Schwaber, K., Beedle, M.: Agile Software Development with Scrum, 1st edn. Prentice Hall
PTR, Upper Saddle River (2001). ISBN: 0130676349

29. Ambler, S., Lines, M.: Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software
Delivery in the Enterprise. IBM Press, Boston (2012)

30. Kroll, P., MacIsaac, B.: Agility and Discipline Made Easy: Practices from OpenUP and RUP.
Pearson Education, Boston (2006)

31. Jacobson, I., Spence, I., Bittner, K.: Use case 2.0: The Definite Guide. Ivar Jacobson
International (2011)

32. Waters, K.: Prioritization using moscow. Agil. Plan. (2009)
33. Anda, B., Dreiem, H., Jørgensen, M.: Estimating software development effort based on use

cases-experiences from industry. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol.
2185, pp. 487–502. Springer, Heidelberg (2001)

34. Grenning, J.: Planning poker or how to avoid analysis paralysis while release planning.
Hawthorn Woods Renaiss. Softw. Consult. 3, 1–3 (2002)

35. Ferreira, N., Santos, N., Machado, R., Fernandes, J.E., Gasević, D.: A V-model approach for
business process requirements elicitation in cloud design. In: Bouguettaya, A., Sheng, Q.Z.,
Daniel, F. (eds.) Advanced Web Services, pp. 551–578. Springer, New York (2014)

Using Scrum Together with UML Models 495

nuno.a.santos@algoritmi.uminho.pt

