
Assisting Data Warehousing Populating Processes Design
through Modelling using Coloured Petri Nets

Diogo Silva, João M. Fernandes and Orlando Belo
Algoritmi R&D Centre, University of Minho, Braga, Portugal

diogosantossilva@gmail.com, jmf@di.uminho.pt, obelo@di.uminho.pt

Keywords: Data Warehousing Systems, Populating Processes, Modelling and Simulation, Coloured Petri Nets, Change
Data Capture Process.

Abstract: Data warehousing systems populating processes are responsible for loading their data repositories – the data
warehouses – with information they extract from operational sources. The tasks that integrate these
processes are the most complex ones that we can find in a data warehousing system. For a flawless
implementation, modelling these processes previously is important so that a correct set of requirements is
considered. This paper approaches conceptual modelling and simulation of the populating processes of a
DWS, by applying Coloured Petri Nets in the design of independent populating tasks. We adopt a change
data capture task as the case study in order to demonstrate the effective application of coloured petri nets for
modelling and simulating data warehousing populating processes.

1 INTRODUCTION

Any Data Warehousing System (DWS) integrates a
highly specialized “single” repository – a data
warehouse (DW) - containing high quality data that
are detailed, historic, subject oriented and non-
volatile (Inmon, 1996). ETL (Extract-Transform-
Load) processes are responsible for populating DWs,
extracting data from distinct operational sources, in
different formats, applying a series of cleansing and
transformation operations in order to make these
data consistent, correctly structured and error-free.
These types of processes usually take place in an
intermediate storage area, a Data Staging Area
(DSA), designed specifically to sustain this kind of
operations, After the successful execution of all the
defined ETL processes, if suitable, the data
previously extracted is finally loaded into the DW.
The extracted data can contain errors such as
duplicate data, invalid or wrong values, or other
inconsistent values, often caused by simple typing
errors or transformation functions badly designed
and programmed. It is fundamental to assure that all
the data flaws are corrected prior to their insertion in
the DW. A group of operations (or transformations)
are then applied to the data residing in the DSA with
the objective of converting the data format to the
formats required by the DW, enhancing as well its

overall quality. Operations, such as the conversion
of measures or monetary units, calculations of
derived attributes, creation and assignment of
surrogate keys, matching of data from different
sources, among others, are included in this ETL
stage. Posteriorly, the data can then be used to
refresh the DW, by rewriting part of the stored
information, especially the one related to dimension
tables, or by updating it with new data. A poor
implementation of an ETL system may result in low
quality information, which can entirely compromise
a DWS (English, 1999). Furthermore, the costs
associated with fixing and correcting low quality
data after the implementation and deployment of the
DWS are usually very high, as are the time and the
involved resources. Kimball and Caserta (2004) state
that an ETL system can consume up to 70% of the
resources needed for its implementation and
maintenance. This happens because it is one of the
most complex and technically challenging processes
among all of the DWS implementation phases
(Golfarelli and Rizzi, 2009). Taking into account all
the different operations that are implemented in ETL
systems, the high learning curve presented by the
available ETL implementation tools and the lack of
a conceptual model operation provided by these
tools, it is no surprise that several organizations
choose to implement their ETL systems in an ad hoc
fashion (Vassiliadis et al., 2002), and that an

35

important fraction of these projects fail because the
final set of data does not meet the requirements of
the DWS project. To overcome this situation, we
believe that is necessary to adopt strong conceptual
modelling and validation methodologies in the
development of ETL systems, in order to design and
test different operations in each stage. Work
concerning conceptual modelling approaches for
ETL systems is extensive, e.g. (Vassiliadis et al.,
2002) (Abelló et al., 2006) (Golfarelli, 2008), but no
standard language is used for this matter, and the
design and the validation tasks are not supported by
a proper tool.

In this paper we tackle these issues by proposing
the Coloured Petri Nets (CPN) modelling language
(Jensen and Kristensen, 2009) to be used within the
design and specification of ETL processes. CPN
models are very adequate to describe and study all
systems that are concurrent, asynchronous,
distributed, non-deterministic and stochastic. The
implementation of ETL systems includes many of
these characteristics, which makes CPN quite
suitable to specify and analyse them, at least in a
preliminary development phase. We intend to
provide a well-sustained approach to specify the
behaviour of ETL systems using CPN models. We
present a case study in modelling and validation of
ETL systems, related with the Change Data Capture
(CDC) in a conventional operational system. The
paper was organized as follows: section 2 presents a
generic introduction about ETL modelling and
CPNs; section 3, describes the behaviour of a CDC
operation; and section 4 gives a closer look to the
transaction log used in the CDC process selected:
section 5 presents the CPN model (and its
corresponding modules) that were implemented;
and, finally, section 6, includes the conclusions of
this paper.

2 MODELING ETL PROCESSES

Usually, implementation of a DWS is a difficult
endeavour to accomplish, since errors and
ambiguous requirements are recurrent. Many of
these undesirable circumstances are related with the
specific implementation of the ETL component of
the DWS. As we said, it is one of the most important
pieces of the entire system, being responsible to take
data from different information sources to DWs. The
ETL implementation is accomplished through a very
diversified set of treatments ensuring that data
arrives to the DW in perfect conditions and in
accordance with the requirements of the decision-

makers. Thus, it is not a surprise that such
component had taken so many attentions by
researchers in the field. In part, such is due to the
lack of standards in the design and development of
ETL processes and to the potential impact of a DWS
implementation failure. According with Kimball and
Caserta (2004), the development of a conventional
ETL system involves two distinct paths, covered in
parallel: plan and design the entire system, and deal
with all the aspects of data flowing. Both paths
could be modelled and simulated using CPNs, with
clarity and effectively.

CPN models (Jensen, 1998) have been
successfully applied in numerous industrial and
academic projects worldwide in distinctive areas.
They are an extension to the original Petri Nets
(Petri, 1966), which are adequate to build models,
for laPetrirge and complex systems, that are
composed of several smaller parts, and where
concurrency, communication and synchronization
are important characteristics. They come to cover
the inexistence of data and hierarchical concepts
(Jensen and Kristensen, 2009) often used in practical
real-world applications. The main advantage in
building hierarchical CPN models is that each of the
modules can be designed, tested and validated
independently, allowing the system modeller to
work both bottom-up or top-down, and also allowing
for a system to be built and visualised with several
levels of abstraction, resulting in smaller and more
compact models. The CPN modelling language,
together with CPN Tools, may bring many
advantages when it comes to model and validate
ETL systems. It allows to analyse and to study their
behaviour through simulation, which can be used to
verify their performance-wise behaviour. This
approach has the potential to detect anomalies and
incorrect behaviours in an early stage of the design.
CPN models have been used in communication
protocols and networks to model different versions
of the TCP protocol (Figueiredo and Kristensen,
1999), for instance. Hewlett-Packard has also used
the CPN in industrial projects to model and analyse
their on-line transaction processing system
(Cherkasova et al., 1993). These are just a few
examples of what we can do with CPN in real-world
applications. As far as we know, the CPN modelling
language has not yet been applied in the design and
validation of ETL systems. Different approaches to
the design of ETL systems using other languages
were proposed. Those approaches focus on several
aspects of ETL processes, ranging from modelling
the structure and content of the data stores of a DW
(Vassiliadis et al., 2002) to modelling ETL activities

SIMULTECH�2013�-�3rd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

36

(Muñoz et al., 2009). Thus, taking advantage of the
features provided by the CPN modelling language,
we use CDC, one of the most relevant (and frequent)
ETL tasks, to demonstrate the application of CPNs
for modelling and validation of real-world ETL
processes.

3 CDC TASKS

Commonly, CDC mechanisms are used to identify
and capture data changes in the tables of the source
systems, so they can be delivered to the DW. There
are a number of different ways to set up this kind of
mechanisms. The simpler ones consist on having
dedicated columns in the tables of the operational
systems, in order to track row modifications, such as
timestamp, version number or status indicator
columns, whose values need to be updated when a
modification takes place. A CDC mechanism,
although simple, must be considered in the design
stage of the database of the source system, so that
the tables that need to be audited possess the correct
structure right from scratch. A more reliable method
to implement a CDC mechanism is through the use
of triggers on tables that need to be audited. The
trigger acts as an automatic mechanism to record
information about changes that occur in a specific
transactional table into a corresponding audit table.
The latter acts as an ordered queue that can
subsequently be used in the target Slowly Changing
Dimension (SCD), a special table in a DW that
supports the analysis of the data of the DW with
respect to a specific decision-maker perspective.
This method overcomes the downsides of the
previously presented method, by using audit tables
on the source tables that need to be audited the
impact is minimum and the dimension table’s
structure remains unaltered. However, this method
stills is an intrusive CDC method, since the log
trigger may not be implemented in the transactional
source tables that need to be audited and, in many
occasions, the DWS administrator may not have
permissions to do so during the implementation of
the current ETL process, once this is of the
competence of the operational system administrator.
A different manner to capture changes made in the
databases of the operational sources consists in
reading transaction log files to detect modifications
occurred in source tables that need to be audited.
This CDC mechanism is the less intrusive one, with
minimal impact on source systems, since we don’t
need to alter any part of the operational database
schema and no triggers need to be implemented in

each of the tables, avoiding their negative impact on
the performance of the systems. Instead, all the
information about data modification is read and
interpreted from the transaction log into audit tables
that can be similar to the ones used in the log trigger
CDC mechanism. Because of the non-intrusive
manner in which the source modifications are
captured, this is the CDC method adopted for our
ETL process. The reading and interpretation of the
transaction log presents itself as the most
challenging part of the process since each Database
Management System (DBMS) adopts a specific
structure and content for its transaction log files,
without providing the much needed documentation.
The SQL Server 2008 was the chosen DBMS for the
analysis of the structure of the transaction log file
and interpretation of its content, so that, from this
initial study, the corresponding CPN model could be
implemented.

4 THE TRANSACTION LOG

The fn_dblog(NULL,NULL) function in Microsoft
SQL Server 2008 allows us to view a transaction log
as a relational table. This function has two optional
parameters - the starting and ending log sequence
number (LSN) -, which can be viewed as the unique
identifier of each log record. By replacing the
‘NULL’ values with an actual LSN, we limit the
number of presented log records. The first step of
the CDC modelling process is to analyse the
structure and content of the transaction log’, as well
as the implication of each of its records
(transactions) created by Data Manipulation
Language (DML) queries, as these are the ones
responsible for update, insert and delete operations.
Our transaction log has 119 columns, the majority of
them possess solely ‘NULL’ values, and their
importance is unknown because we didn’t have
access to the respective documentation. For this
reason, we have created a view of the transaction log
with the necessary and most relevant attributes to
this work, for an easier analysis, and a subset of the
view (Table 1). The created view has only 7
attributes, which are the ones that are needed to
support modelling the selected CDC process. The
LSN is the unique identifier of each transaction log
record, while the T.ID (i.e., the Transaction ID) is
the reference to the database transaction that has
generated the log record – note that the same
transaction usually creates several entries in the
transaction log table. Both attributes contain
hexadecimal values that can be long and difficult to

Assisting�Data�Warehousing�Populating�Processes�Design�through�Modelling�using�Coloured�Petri�Nets

37

differentiate. In this example they were replaced by
integer values in order to simplify the analysis and
the interpretation of each record.

Table 1: A view of the transaction log.

LSN T. ID Operation T. Name End Time AllocUnitName
RowLog
Contents

1 1 LOP_BEGIN
_ XACT

INSERT NULL NULL NULL

2 1 LOP_INSER
T_ROWS

NULL NULL dbo.TestTable
0x10006

C0
3 1 LOP_COM

MIT_XACT
NULL

2012/08/03
22:57:05

NULL NULL

4 2 LOP_BEGIN
_ XACT

UPDATE NULL NULL NULL

5 2 LOP_MODI
FY_ROW

NULL NULL dbo.TestTable 0x63

6 2 LOP_MODI
FY_ROW

NULL NULL dbo.TestTable 0x63

7 2 LOP_COM
MIT_XACT

NULL
2012/08/03

22:58:29
NULL NULL

8 3 LOP_BEGIN
_ XACT

DELETE NULL NULL NULL

(…) (…)
(…) (…) (…) (…) (…)

The Operation attribute receives the type of
operation that was performed and recorded in the
log. Each transaction begins with the
LOP_BEGIN_XACT operation, and ends with the
LOP_COMMIT_XACT operation. The T.Name
indicates the name of the transaction, which can be
identified in its first log record, i.e., the
LOP_BEGIN_XACT record. In the remaining
records, this field is left as ‘NULL’. Each
transaction has an associated timestamp and the End
Time is recorded in each LOP_COMMIT_XACT
statement and left as ‘NULL’ in the remaining log
records. The name of the schema and table where
modifications occurred are stored in the
AllocUnitName for log records that represent actual
modifications and are left as ‘NULL’ in the
remaining records. The types of operations, their
timestamps and the name of the tables where
modifications took place have been identified. So
the final piece to the puzzle is the identification of
the transaction log’s attributes that store information
about the actual modifications, that is, the attributes
names, their types and values that were modified.
Unfortunately, this information is not directly
displayed in the transaction log. Instead, it is stored
as a hexadecimal value in a series of attributes
named Row Log Contents. There is a series of 5 Row
Log Contents attributes in the transaction log,
numbered from 0 to 4. They store the modified
information according to the type of operation. In
this case study, once again to make it simpler and
more readable, merely one attribute is used to
represent this series of attributes. The actual data

extraction process from these attributes is out of the
scope of this study but was simulated in the
implemented model of the CDC process. Table 1
presents some examples of transactions and log
records. The type of the first transaction can be
identified in the T field of the first record. Name
attribute (i.e., an insert), the following record is the
one that holds the information about the inserted
row, while the timestamp of the operation is
presented in the End Time attribute of the first
transaction’s final log record. The second
transaction, an update, begins in the table’s fourth
record; in this transaction there are two records with
the LOP_MODIFY_ROW operation, meaning that
two rows were updated with a single DML query.
The third transaction, representing a delete operation
on two rows, can be interpreted in an analogous
way.

Figure 1: The CDC process prime module.

5 CAPTURING CHANGES

The CDC process is implemented using a
hierarchical CPN composed of three main modules.
The prime module, composed by three sub-modules,
allows for a more abstract and cleaner view of the
entire net (Figure 1). The first step of the CDC
process is to read the transaction log of the
operational system, processing records according to
its operation type. That is accomplished in the Read
module, represented by the Read Transaction Log
substitution transition. The Decode module is
responsible for extracting modified data from the
Row Log Content attribute of the record, which is
represented by the Decode Row Log Contents
substitution transition. Finally, in the Audit module,
represented by the Update Audit Tables substitution
transition, the audited data is inserted in the
corresponding audit table. In addition to these
substitution transitions, the prime module is also
formed by four places: 1) Opr that is the output
socket of the Read Transaction Log substitution

SIMULTECH�2013�-�3rd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

38

transition and the input/output socket of the Decode
Row Log Contents substitution transition; 2) End
Time that is the second output socket of Read
Transaction Log, which is also the input/output
socket of Update Audit Tables; 3) TLog Record, that
is used to model a transaction log record; is the third
output socket of Read Transaction Log and the input
socket of Decode Row Log Contents; and 4) Row,
that models a log record after the decoding of the
Row Log Contents, acting as the output socket of
Decode Row Log Contents and input socket of
Update Audit Tables. The TIDxOPR and
TIDxENDTIME colour sets represent the product of
an integer and a string, being implemented as:

colset NO = int;
colset ST = string;
colset TIDxENDTIME = product NO * ST;
colset TIDxOPR = product NO * ST;

The RECORD colour set is used to model a record
from a relational database and it is defined as the
union of the different types of records used in this
CDC process:

colset RECORD = union TLogRec:TLOGREC +
AudRec:AUDREC + DecRec:DECREC;

In order to make the model more uniform, all the
places that represent a relational table (e.g., an audit
table) or individual records have this colour set. The
colour sets that are part of this union and represent
the existing types of records are described in the
following sections.

5.1 The Read Module

The Read module (Figure 2) is responsible for the
extraction and initial processing of the records of the
transaction log according to their type of operation.
In our case, three or more records with different
operations compose each transaction. The log record
with the LOP_BEGIN_XACT operation marks the
beginning of the transaction and holds the name of
the transaction (insert, update or delete), the record
with the LOP_COMMIT_XACT operation is the
final record of every transaction and also holds
information on its end time. The LOP_INSERT
_ROWS, LOP_UPDATE_ROWS and the
LOP_DELETE_ROWS operations belong to the log
records holding the information about the actual row
modification in the operational sources. A single
transaction is responsible solely for one kind of
operation (insert, delete or update), but the same
operation can occur in several different records.

This module is composed by five places and
three transitions. Three of the places – Opr, TLog
Rec and End Time – are the output ports of the

Figure 2: The Read module.

module. They were already described previously.
The fusion place TLog Prog of the colour set NO is
used to manage the progress of this CDC process by
saving the LSN of the last log record to be fully
processed, which is necessary to resume the process
should it terminate unexpectedly. The last place,
Transact Log of the colour set RECORDLIST, is
used to model the transaction log view presented
previously. In spite of representing a relational table,
the colour set RECORDLIST is used exceptionally,
instead of RECORD, so that the log records can be
processed sequentially as a FIFO list. This colour set
is implemented as:

colset RECORDLIST = list RECORD;

The three existing transitions are used to extract
individual log records from the place Transact Log
according to the records’ type of operation. The arc
expression TLogRec tlr::tlog is used to extract the
head of the list (i.e., a log record) into the
corresponding transition, while the remaining list is
returned to Transact Log through the arc expression
tlog1:

var tlog: RECORDLIST;
var tlr : TLOGREC;

The colour set TLOGREC is used to model the
transaction log record, a record with seven fields that
is defined as:

colset TLOGREC = record lsn:NO * tid:NO *
opr:ST * tname:ST * endtime:ST *
aun:ST * rlc:ST;

The lsn and tid fields, with colour set NO, are
integers used to represent the LSN and the
Transaction ID, respectively. The remaining fields –
tname, opr, endtime, aun and rlc – with colour set
ST, are strings that represent the Transaction Name
(i.e., insert, update or delete), the operation of the
log record, the End Time of the transaction, the Alloc
Unit Name and the Row Log Contents of the log
record. The Extract BEGINS transition is

(#lsn tlr)(#lsn tlr)

(#tid tlr,
#tname tlr)

(#tid tlr,
#endtime tlr)

TLogRec tlr

TLogRec tlr::tlog

tlog tlog

TLogRec tlr::tlogTLogRec tlr::tlog

tlog

Extract
COMMITS

[(#opr tlr)=
"LOP_COMMIT_XACT"]

P_1

Extract
I, U, D

[(#opr tlr) =
"LOP_INSERT_ROWS"
orelse
(#opr tlr) =
"LOP_UPDATE_ROWS"
orelse
(#opr tlr) =
"LOP_DELETE_ROWS"]

P_1

Extract
BEGINS

[(#opr tlr)=
"LOP_BEGIN_XACT"]

P_3

TLog
Prog

Progress NO

Opr
Out
TIDxOPR

End
Time

Out
TIDxENDTIME

TLog
Rec

Out
RECORD

Transact
Log

I/O

TLogRecords

RECORDLISTI/O

Out OutOut

Progress

Assisting�Data�Warehousing�Populating�Processes�Design�through�Modelling�using�Coloured�Petri�Nets

39

responsible for extracting the first record of each
transaction, i.e., the records with the
LOP_BEGIN_XACT operation, through the guard
expression [(#opr tlr) = “LOP_BEGIN_XACT”].
From this point, the ID and the name of the
transaction are passed to the output port Opr,
through the arc expression (#tid tlr, #tname tlr), and
the place TLog Prog is updated with the LSN of the
processed record through the arc expression (#lsn
tlr). The importance of this first record is to mark the
beginning of a new transaction, as well as to
preserve the operation of the transaction in the place
Opr, so that the remaining log records (i.e., the ones
that contain the Row Log Contents values) can be
processed accordingly in the Decode module. The
“Extract I, U, D” transition is responsible for the
extraction of all the log records that are neither
BEGINs nor COMMITs. The guard expression
allows the transition to activate if the operation of
the log record is LOP_INSERT_ROWS,
LOP_MODIFY _ROWS or LOP_DELETE_ROWS.
The records extracted through this transition are
passed to the output port TLog Rec so that the
information contained in the rlc field can be decoded
in the next module. The final piece of information
needed to construct an audit record is the end time of
the transaction. This information is presented in final
record of every transaction that is extracted from
Transact Log through the Extract COMMITS
transition. From this transition, the place End Time
is updated with the timestamp of the transaction’s
commit operation as well as the transaction ID, so
that this timestamp can be correctly associated with
the records that possess modified information (i.e.,
the ones extracted in the “Extract I, U, D”
transition). This is accomplished through the arc
expression (#tid tlr, #tname tlr). At the same time,
the progress of the CDC process is once again
recorded. Note that the TLog Prog is not updated for
the log records extracted in the “Extract I, U, D”
transition as they aren’t fully processed until they
are used to update the corresponding audit table. In
this module, the Extract BEGINS transition has the
lowest priority (P_3), which makes that a new
transaction is only processed after the records of the
current transaction have been fully processed in the
remaining modules.

5.2 The Decode Module

After LOP_BEGIN_XACT and LOP_COMMIT
_XACT log records have been fully processed, the
next step is to process the remaining records
extracted in the previous module, i.e., the ones

related with LOP_INSERT_ROWS, LOP_
MODIFY_ROWS or LOP_DELETE_ROWS
operations. These are the records that posses
hexadecimal values in the Row Log Contents
attributes, rather that ‘NULL’ values, and this is
where the information about the inserted, deleted or
updated data resides. The actual transformation of
the hexadecimal values into the modified rows is out
of the scope of this study, which is focused on the
interpretation of the transaction log for CDC and the
update of the audit tables once the modified data has
been decoded. Nevertheless, in the physical design
of this ETL process, these transformations would be
represented by a decoding function that is simulated
in this module.

Figure 3: The Decode module.

The Decode module (Figure 3) is used to simulate
the transformation of hexadecimal values into the
modified rows and is formed by a single transition
and four places. The place TLog Record acts as an
input port and is used to model the log records with
modified data extracted in the previous module,
while the place Row is used to model a log record
after the Row Log Contents attribute has been
decoded. This new record, referred to as decoded
record, contains additional attributes that represent
the modified row in the operational source:

colset DECREC = record lsn:NO * tid:NO *
src:ST * opr:ST * tn:ST * nk:ST *
atb:ST;

This new type of record maintains the lsn, tid and
opr fields from the original log record. The nk and
atb fields are strings used to represent the natural
key and a second attribute resulting from the Row
Log Contents decoding. The fields src and tn, both
strings, represent the name of the operational source
and the name of the audited table respectively; these
values are derived from the aun field of the original
log record. The place Opr, an input/output port,
holds tokens with information on the names of the
transactions, plus their IDs, extracted from the
LOP_BEGIN_XACT log records in the first module.

TLogRec tlr

oprt

DecodeRLC(tlr,(#2 oprt),Int.toString(nk))

nk

nk+1Row Log
Contents

Simulation

[(#1 oprt)
=(#tid tlr)]

P_2

TLog
Record

In

RECORDOpr
I/O TIDxOPR

Row
Out RECORD

NK

1

NO

Out

I/O In

SIMULTECH�2013�-�3rd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

40

The guard expression [(#1 opr) = (#tid tlr)] is
used so that the correct transaction name (‘Insert’,
‘Delete’ or ‘Update’) is passed to the transition and
used later in this module. To simulate the decoding
of the Row Log Contents the place NK, with colour
set NO and initial marking ‘1’, is used together with
the function DecodeRLC in the arc expression that
leads to Row. In each marking the variable nk is
incremented and passed to the transition trough the
arc expression nk+1; the incremented integer is then
converted to a string and used as parameter in the
DecodeRLC function. This function takes three
parameters: the log record represented by the tlr
variable, the name of the transaction, and the
incremented value of nk.

fun DecodeRLC(tlr:TLOGREC,tranName,nk) =
1`DecRec{lsn =(#lsn tlr), tid =
(#tid tlr),

src = "srcDB", opr = tranName,
tn = substring((#aun tlr),4,2),
nk = "nk"^nk, atb = "atb"^nk};

The new decoded record maintains the values in the
lsn and tid fields of the log record. The value of the
opr field is substituted by the transaction name
passed in the tranName variable so that the
operation is displayed as ‘Insert’, ‘Delete’ or
‘Update’. The name of the audited table in the
operational source is extracted from the alloc unit
name field (aun) of the original log record, which
contains the schema name and the name of the table
where the operation occurred. This is done through
the substring function and the resulting string is
saved into the tn field of the decoded record. The
name of the source database can be obtained either
by querying the operational source for the current
database name, or by executing the stored procedure
sp_Msforeachdb, comparing the name of the audited
table with the column name in either sys.tables or
sysobjects tables. This check all the names of the
tables in the existing databases and return the name
of the database that has the requested table name.
This procedure can be implemented as:

exec master.dbo.sp_msforeachdb
"USE [?]
SELECT db_name()

FROM sysobjects
WHERE name='T1'"

In the model we created, the execution of such a
query is not possible and the DecodeRLC function is
also used to simulate this operation by updating the
src field. To simulate the decoding of the natural key
value of the source record, the nk variable passed as
a function parameter is concatenated with the string
“nk” so that a different natural key value (e.g. ‘nk1’,
‘nk2’, ‘nk3’) is created for each record. The same
happens with the atb field.

Figure 4: The Audit module.

5.3 The Audit Module

The Audit module (Figure 4) is our last module. It
assigns the timestamps of the transactions to the
correct decoded records, as well as their insertion in
the corresponding audit tables. The place Row is an
input port and has tokens representing the decoded
records, the place End Time is an input/output port
and has tokens with information on ID of each
transactions and the corresponding timestamp, and
the fusion place TLog Prog is once again used to
record the log progress. The places Audit Table 1-3
are used to model the audit tables of three different
relations in the operational sources and receive
tokens representing the final audit records. The
colour set AUDREC is used to model this type of
records and it is defined as:

colset AUDREC = record src:ST * dtm:ST *
opr:ST * nk:ST * atb:ST;

This record maintains the src, opr, nk and atb fields
and has an extra field, dtm, which represents the
timestamp of the operation in the operational source.
The single transition Update Audit Table receives a
decoded record through the arc expression DecRec
row and the corresponding timestamp through the
variable et in the arc that connects the place End
Time with the transition. For the transition to be
enabled, the guard expression [(#1 et) = (#tid
row)] must be true, meaning that there is a
transaction ID in the place End Time that matches
the transaction ID of one of the decoded records in
Row. The UpdAudTable function creates a fresh
audit record with the corresponding timestamp and
inserts it in the correct audit table:
fun UpdAudTable(r:DECREC,et:TIDxENDTIME,tname)=

if (#tn r)= tname
then CreateAudRec(r,et)
else empty

This function receives the decoded record r, the pair
transaction ID – end time, represented by the

UpdAudTable
(row,et,"T2")

UpdAudTable
(row,et,"T3")

DecRec row

et

UpdAudTable
(row,et,"T1")

(#lsn row) Update
Audit
Table

[(#1 et)=
(#tid row)]

P_1

Audit
Table 2

RECORD

Audit
Table 3

RECORD

Row

In
RECORD

End
Time

I/O
TIDxENDTIME

TLog
Prog

Progress
NO

Audit
Table 1

RECORD

Progress I/O

In

Assisting�Data�Warehousing�Populating�Processes�Design�through�Modelling�using�Coloured�Petri�Nets

41

variable et and the name of the table, represented by
the variable tname. Then, it compares the value in
the tn field of the decoded record with the value in
the tname variable passed as a parameter; if they
match, then the correct audit table is being updated
and a new audit record can be created through the
function CreateAudRec:

fun
CreateAudRec(r:SRCREC,et:TIDxENDTIME)

= 1`AudRec{src = (# src),
dtm = (#2(et)),
opr = (#opr r), nk = (#nk r),
atb = (#nk r)};

The CreateAudRec function creates a fresh audit
record. The only piece of information missing is the
timestamp of the operation, passed as a parameter
through the variable et. By using these two functions
and a single transition, it is possible to insert the
final audit record in the correct audit table. The final
step of this module’s process is to update the fusion
place TLog Prog with the LSN of the decoded
records used to generate the audit records.

6 CONCLUSIONS

In this paper, a CDC mechanism is presented as a
case study to demonstrate the viability of adopting
the CPN modelling language to model and validate
ETL processes and tasks. The CPN modelling
language allows a DWS to be hierarchically
modelled, i.e., one can build a module that can be
composed of several smaller modules representing
each populating process. This is very useful when
modelling these types of systems as they can be
greatly simplified by adding different abstraction
levels, making it easier for the designer to build
large models while improving their readability and
understanding. At the DWS conceptual design stage,
a correct ETL system specification, written in the
CPN modelling language, allows for reducing the
occurrence of design errors and their impact in the
development of the entire DWS, once through
simulation we can detect them previously. The CDC
process described here can be used as an
independent module and used together with other
modules that represent different tasks to build
higher-level models of ETL systems. The described
model is based in a general CDC mechanism of a
DBMS and some predefined values and environment
configuration. This is not enough for supporting real
world ETL systems modelling, but it helps a lot.
However, we need to extend it in the short term so
that it can be applied to a wide variety of ETL
scenarios and, consequently, to be used as an

effective modelling tool for DWS.

REFERENCES

Abelló, A., Samos, J., and Saltor, F. YAM2: a
multidimensional conceptual model extending UML.
Information System, 31(6), 541–567, 2006.

Cherkasova, L., Kotov, V., and Rokicki, T., On Scalable
Net Modelling of OLTP. In Proceedings of the 5th
International Workshop on Petri Nets and
Performance Models. IEEE Computer Society Press,
270–279, 1993.

English, L. P., Improving data warehouse and business
information quality: methods for reducing costs and
increasing profits. John Wiley & Sons, New York, NY,
USA, 1999.

Figueiredo, J. C. A. D. and Kristensen, L. M., Using
Coloured Petri Nets to Investigate Behavioural and
Performance Issues of TCP protocols. In Department
of Computer Science, Aarhus University. 21–40, 1999.

Golfarelli, M., The DFM: A Conceptual Model for Data
Warehouse. Encyclopedia of Data Warehousing and
Mining (2nd Edition), John Wang (ed.), IGI Global,
2008.

Golfarelli, M., Rizzi, S., Data Warehouse Design: Modern
Principles and Methodologies, 1st ed. McGraw-Hill,
New York, NY, USA, 2009.

Inmon, W., Building the Data Warehouse, John Wiley &
Sons, 1996.

Jensen, K., An introduction to the practical use of coloured
petri nets. In Lectures on Petri Nets II: Applications,
Advances in Petri Nets, Springer, London, UK, 237–
292, 1998.

Jensen, K., Krinstensen, L., Coloured Petri Nets:
Modeling and Validation of Concurrent Systems.
Springer, New York, NY, USA, 2009.

Kimball, R., Caserta, J., The Data Warehouse ETL
Toolkit: Practical Techniques for Extracting, Cleaning,
Conforming, and Delivering Data. John Wiley &
Sons, 2004.

Muñoz, L., Mazón, J., Trujillo, J., Automatic generation of
ETL processes from conceptual models. In Proceeding
of the ACM 12th International Workshop on Data
warehousing and OLAP DOLAP 09, ACM Press,
2009.

Petri, C.A., Kommunikation mit Automaten. Schriften des
IIM Nr. 2, Institut für Instrumentelle Mathematik,
Bonn, 1962. English translation: Technical Report
RADC-TR-65-377, Griffiths Air Force Base, New
York, Vol. 1, Suppl. 1, 1966.

Vassiliadis, P., Simitisis, A., Skiadopoulos, S.. Conceptual
modeling for ETL processes. In Proceedings of the 5th
ACM International Workshop on Data Warehousing
and OLAP (DOLAP ’02). ACM Press, 14–21, 2002.

SIMULTECH�2013�-�3rd�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

42

