
Accepted Manuscript

Enriching MATLAB with aspect-oriented features for developing embedded

systems

João M.P. Cardoso, João M. Fernandes, Miguel P. Monteiro, Tiago Carvalho,

Ricardo Nobre

PII: S1383-7621(13)00052-0

DOI: http://dx.doi.org/10.1016/j.sysarc.2013.04.003

Reference: SYSARC 1108

To appear in: Journal of Systems Architecture

Received Date: 7 November 2012

Revised Date: 28 February 2013

Accepted Date: 16 April 2013

Please cite this article as: J.M.P. Cardoso, J.M. Fernandes, M.P. Monteiro, T. Carvalho, R. Nobre, Enriching

MATLAB with aspect-oriented features for developing embedded systems, Journal of Systems Architecture (2013),

doi: http://dx.doi.org/10.1016/j.sysarc.2013.04.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.sysarc.2013.04.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.sysarc.2013.04.003

Enriching MATLAB with aspect-oriented features for
developing embedded systems

João M. P. Cardoso1, João M. Fernandes2, Miguel P. Monteiro3,

Tiago Carvalho1, and Ricardo Nobre1

1Universidade do Porto

Faculdade de Engenharia/Dep. Eng. Informática
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal

jmpc@acm.org, tiago.carvalho@fe.up.pt, ricardo.nobre@fe.up.pt

2Universidade do Minho
Dep. Informática / Centro Algoritmi

Campus de Gualtar, 4710-435 Braga, Portugal
jmf@di.uminho.pt

3Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia, Dep. Informática,
Quinta da Torre, 2829-516 Caparica, Portugal

mtpm@fct.unl.pt

ABSTRACT

This article presents an approach to enrich the MATLAB1 lan-
guage with aspect-oriented modularity features, enabling develop-
ers to experiment different implementation characteristics and to
acquire runtime data and traces without polluting their base
MATLAB code. We propose a language through which pro-
grammers configure the low-level data representation of variables
and expressions. Examples include specifically-tailored
fixed-point data representations leading to more efficient support
for the underlying hardware, e.g., digital signal processors and
application-specific architectures, without built-in floating point
units. This approach assists developers in adding handlers and
monitoring features in a non-invasive way as well as configuring
MATLAB functions with optimized implementations. Different
aspect modules can be used to retarget common MATLAB code
bases for different purposes and implementations. We validate the
proposed approach with a set of representative examples where
we attain a simple way to explore a number of properties. Ex-
periment results and collected aspect-oriented software metrics
lend support to the claims on its usefulness.

Keywords

Aspect-Oriented Programming, MATLAB, Embedded Systems.

1. INTRODUCTION
In MATLAB, features such as configuration of the low-level
numeric representation of variables, assignment of specific data
types and dynamic type specialization are directly supported by
the language. In simulation tasks, such features provide significant
support for developers that need to explore non-uniform fixed-
point representations, monitor specific variables throughout a

1 MATLAB is a registered trademark of MathWorks Inc.

http://www.mathworks.com

timing window and include handlers to observe specific behav-
iors. However, these features are also extremely cumbersome,
error-prone and tedious to use. Each time they are used, develop-
ers are forced to perform invasive changes on the base code,
namely adding “temporary” new code that must subsequently be
removed before delivering the final version.

As MATLAB is typically used as a specification rather than an
implementation language, tools to translate MATLAB code to the
target programming language are important to achieve high-levels
of productivity and efficiency. However, in order to attain a given
desired efficiency level, the high abstraction level provided by
MATLAB requires that tools be guided by users. In fact, the
issues described above arise often in relation to automatic synthe-
sis of MATLAB specifications to a software language [1][2] or a
hardware description language [3]. In the steps for finding effi-
cient implementations, users have to conduct customized profiling
schemes, monitoring techniques, and data type and word-length
exploration, mostly through the invasive insertion of new code.

In the past, multiple research efforts attempted to automate spe-
cific implementation issues. For instance, the transformation from
floating- to fixed-point data types was conducted with some re-
strictions to MATLAB specifications [3][4]. However, it is usu-
ally claimed that the developer should have full control of the
development process. Data type conversions are not trivial and
usually require the intervention of the developers. Devising data
types and word-lengths requires complex precision and accuracy
analyses, which tend to become even more complex when consid-
ering customized data types and word-lengths. Typically, devel-
opers of MATLAB models rely on the default MATLAB data
type (i.e., double precision floating-point) when often the full
precision is not required. In the implementation stages of an em-
bedded system, developers need to analyze the data type and
word-length trade-offs in order to produce efficient solutions.
Furthermore, when using customized word-lengths, developers

may also have to explicitly define type conversions and the result-
ing word-lengths for the operations dealing with those types, as
the associated type conversion semantic rules are not built-in in
the programming language2. Even when this process is assisted by
tools, developers must explore and evaluate different data type
representations, often by modifying the base MATLAB code and
by simulating their effects on the precision of the system. In addi-
tion, according to the system being targeted, the same MATLAB
code base may have different final implementations, forcing the
developers to maintain different code bases pertaining to the same
core functionality.

Since MATLAB is commonly used as a modeling/specification
language, most MATLAB code aims to maximize its scope of
applicability and dynamic configurability but at the price of unac-
ceptable overheads for most common embedded computing im-
plementations. In addition, developers often need to evaluate
multiple algorithm implementations for a specific function, and
each of those evaluations requires modifications to the MATLAB
base code. An approach to provide different MATLAB versions
from the same input MATLAB code would provide an important
mechanism to avoid cumbersome, error-prone, code conversions
and the maintenance of different MATLAB versions.

The root cause of the aforementioned problems is lack of modu-
larity for dealing with secondary concerns. Ideally, core function-
alities would be represented in the MATLAB code while secon-
dary concerns, such as verification of the type and the number of
the arguments for a given call of a function, should be kept in
separate aspect modules as proposed in the context of aspect-
oriented programming (AOP) [5][6]. Such concerns are not sup-
posed to be implemented in the target embedded system and the
developer needs to remove (or unplug) them in the process of
translating the MATLAB code to the target programming lan-
guage. Modularization of such concerns allows us to keep the core
MATLAB code ready for translation to the target programming
language, and thus to be implemented in the target embedded
system and to automatically generate the generic MATLAB code
used as a model. The generation of this generic MATLAB code is
the responsibility of an aspect weaver – a tool or compiler com-
ponent that composes aspect modules to the other parts of the
system.

Hence, an approach is needed to generate and maintain a clean
version of a MATLAB code. By clean (or unpolluted), we mean a
version of the MATLAB code that includes just the core function-
ality, necessary for the system implementation. Clean code does
not include configuration code or secondary concerns needed only
during development, which should be kept in separate aspect
modules.

Specialization is important when implementing the MATLAB
application in the embedded system. This specialization can be
leveraged by an AOP approach to MATLAB. The removal of the
aforementioned secondary concerns can be approached as a spe-
cialization. Examples include data type specialization – assigning
non-default data types to variables – and array size and shape
specialization – defining statically the size and the shape of an

2 Even if they are part of the programming language, it is an ad-

vantage to make possible the exploration of those rules, as for a
specific implementation, we may prefer to reduce accuracy and
to use less costly operations and word-lengths.

array instead of including MATLAB code to get those parameters
dynamically.

In this article, we propose aspect-oriented extensions to
MATLAB to assist developers in system modeling and explora-
tion of specific features related to embedded systems’ implemen-
tations. Our approach, which builds on our previous work [7],
relies on the principle of separation of concerns [8][9][10] to
separately handle data types and behaviors. One of the ensuing
advantages is that a single version of the specification (i.e., a
MATLAB code base) can be used throughout the entire develop-
ment cycle without the need for maintaining multiple versions –
as is the case with existing technology. This separation facilitates
the development, simulation, exploration and implementation
phases. The extensions we propose can be used in other languages
as well, namely “MATLAB clones” such as GNU Octave3 [11]
and Scilab [12]. Furthermore, preliminary studies show that the
use of aspect modules in the MATLAB context improves the
quality of MATLAB programs [13].

The main contributions of this article are:

− An aspect-oriented language to extend MATLAB models
with features for supporting aspect modules that separately
enclose concerns related to specialization, configuration, and
monitoring.

− An aspect-oriented approach to enable programmers to flexi-
bly explore a range of data type specializations, which in-
cludes aspect-oriented rules to specify the semantic rules for
data type conversions and word-length assignments in opera-
tions using different, possibly customized, data types.

− An approach designed to tackle the problem of managing
multiple implementations that depend on the target system,
without forgoing a “clean” version of the MATLAB high-
level model.

The rest of the paper is organized as follows. Section 2 provides a
short introduction to the MATLAB programming language. Sec-
tion 3 describes the main motivation for our work. Section 4
presents the approach and describes the domain-specific aspect
language. In Section 5 we present a number of test cases per-
formed. Section 6 compares our approach to related work. Con-
cluding remarks are presented in Section 7.

2. THE MATLAB PROGRAMMING
LANGUAGE
MATLAB is a dynamic, interpreted, imperative programming
language mainly based on array data types and operations on
those types. It is widely used in scientific computing, control
systems, signal processing, image processing, system engineering,
simulation, etc. Mathworks – the company that developed and
holds the language’s rights – provides a complete integrated envi-
ronment to develop MATLAB projects. The environment includes
a number of suitable debugging features. It includes Simulink, a
visual, component-based environment suitable for simulation of
discrete and continuous systems. Several toolboxes (packages) are
available that include special functions and features in a number
of domains. Such packages make the language one of the pre-
ferred choices to model and simulate complex systems. Over
1,500 books4 dedicated to MATLAB attest to its wide adoption.

3 GNU Octave: http://www.gnu.org/software/octave/.
4 http://www.mathworks.com/support/books/

Like most interpreted languages (e.g., Perl and Python),
MATLAB does not require the declaration of variables. By de-
fault, the numeric representation used is the floating-point data
type with double precision (64 bits, according to the IEEE stan-
dard 754 format). Other supported numeric data types include
integers (with 8, 16, 32 and 64 bits) and single precision floating-
point numbers. MATLAB supports other numeric representations
by using specific toolboxes. They enable the assignment of spe-
cific data types and operation properties (e.g., overflow mode) to
MATLAB variables. Useful features of MATLAB include opera-
tor overloading, function polymorphism and dynamic type spe-
cialization. Function polymorphism enables the same function to
be called with different number and types of arguments. Dynamic
type specialization enables variables to represent different data
types during runtime. For instance, developers can simulate the
same code by applying stimulus with different data types.

MATLAB5 provides a number of features suitable for fast model-
ing such as the vast set of supporting packages (toolboxes), the
Mathworks simulation environment (including also Simulink) and
the expressiveness of the language as regards specifying opera-
tions on array variables (e.g., matrix manipulations and opera-
tions).

MATLAB is a dynamic language, i.e., variables are not explicitly
declared and data types of the elements, size, and shape of array
variables are dynamically defined based on the runtime context.
By default, all data types are N-arrays using double precision (64
bits) data types. Arrays may have different dimensions, forming
the shape of the array variable. Arrays can store a single element,
vectors of elements, and matrixes of elements. Additional data
types supported by MATLAB (see Figure 1) include arrays with
heterogeneous elements (known as cells), structures, strings,
booleans, and function-handlers. In addition to the double-
precision floating-point data type, MATLAB also supports single-
precision data types and integer (signed or unsigned) representa-
tions (with 8, 16, 32, and 64 bits).

Figure 1. MATLAB data types (known in MATLAB as
classes). (source: Mathworks1)

A MATLAB program comprises functions (known as M-files)
and scripts. Functions have a name, arguments, and may have
zero or more return variables. Functions can be called without
passing all the arguments. Semantically, in MATLAB all function
arguments are passed by value. To save memory, MATLAB
execution environments pass by value only those arguments that a
function modifies and by reference all the others. Scripts corre-

5 http://www.mathworks.com/products/matlab/

spond to files with MATLAB code and without specifying in-
puts/outputs. Scripts can be also called in other scripts and in
functions.

With the exception of the variables declared as global, MATLAB
variables have local scope (function or script). A particular name
(identifier) may refer to a variable or to a script or a function (a
sub-function, a private function, or a function in the search path).
In some cases, a MATLAB execution environment or compiler
may have to postpone name resolution to runtime.

MATLAB also allows the definition of new classes. MATLAB
classes can fall either in value classes or in handle classes. Both
include two sections: properties (where attributes are declared)
and methods (where functions are located). Handle classes also
include an additional section named events. In this paper we do
not consider features relating to classes as most MATLAB code is
not developed according to the object-oriented paradigm.

Figure 2 shows a MATLAB function that receives as argument an
N-array identified as x and returns an N-array identified as y. It
represents an algorithm to perform the Discrete Fourier Trans-
form (DFT) – a function widely used in signal processing systems.
The statement in line 3 creates an array identified as y with the
size of the array x and with all elements equal to 0 – represented
in double-precision. This statement is not strictly needed as
MATLAB dynamically reallocates memory space to store the
elements of y during runtime, i.e., during the assignments in line
9. The statement in line 6 creates an array named t with N values
starting with 0 and equally spaced by 1/N. The for loop in lines 8-
9 computes and assigns a value to each k element of y, consider-
ing values of k from 1 to N. The calculations performed in the
expression serving as the argument to the function sum in the loop
body (line 9) are matrix-based calculations.

1. function [y] = dft(x)
2.
3. y=zeros(size(x));
4. N=length(x);
5.
6. t=(0:N-1)/N;
7.
8. for k=1:N
9. y(k) = sum(x.*exp(-j*2*pi*(k-1)*t));

Figure 2. Simple MATLAB example (function to perform a
Discrete Fourier Transform, source: [1]) – original code.

Figure 3 illustrates in a first example a function to add two vari-
ables x, y. Depending on the input variables, the sum operation
performs an addition of two numbers or additions of the elements
of two arrays. Thus, the result can be a simple number or an array
of numbers resulting from the addition of the elements of the x
and y arrays in equivalent positions. Figure 3 shows two further
examples to add two variables. Note that the three examples may
accomplish the same result but that depends on the shapes of the
variables x and y.

MATLAB does not distinguish between accesses to variables and
function invocations, e.g., sin(1) can be an invocation to the sin
function with 1 as argument or an access to the first element of the
array variable sin. When there is an assignment to sin, i.e., a
statement defining sin as a variable (e.g., sin=2;), before the
access sin(1), a plain reference to sin represents the access to the
first element of the array variable sin. In some cases, we can
distinguish between the two by performing static name resolu-
tions. Otherwise, a name can only be resolved dynamically.

1. % first example
2. function [z] = add(x, y)
3. z = x + y;

1. % second example:
2. function [z] = add(x, y)
3. for k=1:length(x)
4. z(k) = x(k) + y(k);
5. end
__
1. % third example:
2. function [z] = add(x, y)
3. [nr,nc]=size(x);
4.
5. for k=1:nr
6. for j=1:nc
7. z(k,j) = x(k,j) + y(k,j);
8. end
9. end

Figure 3. Three different possibilities to add two variables.

Figure 4 illustrates an example that uses function handlers (de-
noted by @) where an argument may refer to a function or to a
variable. Function handlers can be also used to define functions
embedded in the MATLAB code as in the following MATLAB
statement: sqr = @(x) x.^2;. In this case, one can use sqr as the
function to calculate the square of each element in the array vari-
able passed as argument.

1. …
2. a = @sin;
3. z1 = f1(0, a); % “x” argument in function “f1”
 will refer the “sin” function
4. …
5. z2 = f1(1); % “x” argument in function “f1”
 will refer a variable
6. …
7. function [z] = f1(y, x)
8. if(y == 1)
9. x = 3;
10. end
11. z = x(1);

Figure 4. Example where an identifier refers to an array vari-
able or to a function depending on the path taken.

3. MOTIVATION
Uses of MATLAB in embedded systems range from the modeling
of specific system components to the development of entire appli-
cations. Usually, developers start by modeling the core parts of
the application in MATLAB, leveraging its high-level matrix-
oriented and data type abstractions. The MATLAB environment is
next used to simulate those core parts of the applications. The
simulation may involve the interface of the cores to models of
other system components or to real data traces previously pro-
vided. When work on the MATLAB model is over, developers
need to translate the MATLAB code (or the parts to be mapped to
the target system) to a native programming language (such as C).
Although many efforts were carried out to automate this process,
there is usually the need to allow developers to evaluate different
specializations (e.g., of data types). These evaluations are much
easier to do by simulation than by hand-coding. For efficiently
supporting specialization, it is important to monitor variables and
to evaluate different data type assignments. At the end of this
process, an optimized MATLAB code version is used for imple-
mentation. Approaches that assist in this process comprise impor-
tant contributions to increases in productivity.

There are many cases relating to the presence of code associated
to secondary concerns that needs to be removed before the final
implementation. This code can be encapsulated in aspect modules
that can be composed through an aspect weaver. Multiple versions
of the core, or base, code can be generated, e.g., one with the
secondary code, another with type specialization for the final
implementation. Our analysis of crosscutting concerns over
MATLAB code repositories [14] discusses the intensive use of
MATLAB built-in functions and variables responsible for acquir-
ing runtime information about the size of arrays, verification of
arguments of a function, data type conversions, etc. In a previ-
ously study [14] we conclude that the most common MATLAB
secondary functionalities include:

• Messages and monitoring: messages to the user, warnings,
errors, graphics visualization, monitoring, etc.;

• I/O data: reading data from file, writing data to file, saving
an image, loading an image, etc.;

• Verification of function arguments and return values: default
shapes and values for the arguments that may not be passed
in certain function calls;

• Data type verification and specialization: check whether a
variable is of certain type, configuring the assignment of data
types to variables, etc.

• System: code that verifies certain system environment prop-
erties, to pause execution, etc.

• Memory allocation/deallocation: The use of the 'zeros' func-
tion is most of times used to allocate a specific array size.
This avoids the reallocation for each new item to be stored in
an array. Use of the 'clear' instruction that appears in some
MATLAB functions is another example.

• Parallelization: use of parallel primitives such as 'parfor';
• Design space exploration: code to explore different speciali-

zations, different algorithms to solve the same problem, to
find the number of iterations needed (e.g., to be above a cer-
tain precision).

• Dynamic properties: constructing inline function objects
(inline), executing a string containing MATLAB expressions
('eval'), etc.

Secondary functionalities such as monitoring, data type speciali-
zations, and configuration features have an important role when
developing models and code for embedded systems. Based on
that, we centered our approach on those secondary functionalities
without, however, loosing its applicability to other ones. The
following subsections briefly describe monitoring, data type, and
configuration concerns.

3.1 Monitoring
Monitoring can be used during the analysis phase enabling devel-
opers to acquire additional information to the typical information
provided by profiling tools. Monitoring specific aspects of a
MATLAB program can be important to analyze behaviors, value
ranges of variables, number of accesses to matrix elements, con-
trol-flow paths taken during program execution, to acquire the
accuracies when using specific data types, etc. Some monitoring
aspects can be also important to acquire more information when
dealing with legacy MATLAB code. An analysis of the resulting
behaviors and execution characteristics can be of paramount
importance to optimize code, to attain efficient implementations,
and even to detect coding errors. However, sophisticated tracing,
logging, and monitoring need some sort of code injection.

The monitoring capabilities assist developers in verifying the
MATLAB models and to enrich profiling with customized infor-
mation. The two following examples, presented in Figure 5 and
Figure 6, illustrate monitoring for the two previous contexts.

Figure 5 presents an example taken from a MATLAB model of a
PID (Proportional Integral Derivative) controller previously used
in [15], for monitoring by plotting signal variables (y and ref) and
displaying parameters (kc, ti, td, ts). This monitoring code was
used by the developer when designing the model for the PID
controller. It helped him/her to verify the behavior of the control-
ler.

1. …
2. figure;
3. plot(t,y);
4. hold on;
5. plot(t, ref, '--');
6. xlabel ('time (s)');
7. grid;
8. clear all;
9. …
10. disp(['kc = ', num2str(kc_ini)]);
11. disp(['ti = ', num2str(ti_ini)]);
12. disp(['td = ', num2str(td_ini)]);
13. disp(['ts = ', num2str(ts_ini)]);
14. …

Figure 5. Example of MATLAB code for monitoring.

For example, computing the range (minimum and maximum
values) of variables in MATLAB code can be important to acquire
information that can be used to define the word-lengths of vari-
ables. Figure 6 shows an example for monitoring the range for
variables top and bottom in the MATLAB code in Figure 6(a). As
illustrated in Figure 6(b), a call to the range_find function is
inserted after each assignment to the target variable.

(a)
...
top = coef(j-1)*left-coef(j)*right;
bottom = coef(j-1)*right+coef(j)*left;
...

(b)

...
top = coef(j-1)*left-coef(j)*right;
range_find(top,'latnrm.top');
bottom = coef(j-1)*right+coef(j)*left;
range_find(bottom, ’latnrm.bottom');
...

Figure 6. Monitoring range values: (a) original MATLAB
code; (b) MATLAB code after code insertion for monitoring
value ranges (inserted code in italic).

3.2 Data Types and Shapes
As a default, MATLAB uses a matrix-oriented floating-point
number representation with double precision. Thus, we need to
specialize data types and shapes to avoid the runtime overhead of
generic implementations. MATLAB does not support the notion
of a scalar variable, just arrays of a single element. Representing
this information in aspect modules may be important to comple-
ment techniques for type and shape inference, allowing a flexible,
developer-guided, translation to native programming languages as
well as yielding more efficient solutions – both in terms of code
size and execution time.

Some implementation requirements entail the use of case-specific
bit-widths to represent numeric data (integer and real numbers) so
as to obtain the required accuracy. Non-standard bit-widths can be
exploited, e.g., to save resources and to speedup performance
through specialized and lower latency arithmetic operators [16] or

through sub-word level parallelism [17]. In several digital signal-
processing systems, the use of fixed-point arithmetic is common
practice, due to the resulting efficient support, e.g., when targeting
Digital Signal Processors (DSPs) devoid of hardware floating-
point units or specific hardware. Examples include implementa-
tions based on Field-Programmable Gate Arrays (FPGA). Spe-
cific architectures may also use specialized data types (e.g., float-
ing point arithmetic over data types not defined by the IEEE 754
standard). Such implementations require multiple tests to identify
the bit-widths that yield the required accuracy (acceptable quanti-
zation errors) and behavior. Several authors proposed methods to
automatically translate floating- to fixed-point representations
(see, e.g., [3-4], [18-21]). Some methods rely on profiling, while
others rely on static schemes. Although this is an important topic,
the translation usually serves just to assist the designer, since no
method is fully automatic and none can be applied without restric-
tions. In certain cases, designer experience and knowledge of the
system requirements (which may go beyond accuracy, e.g., relat-
ing to dynamic range or precision) is the key factor to the success
of the final implementation. Therefore, refinement of simulation
and specification play an important role at both the data and the
behavioral levels.

The MATLAB environment includes special packages to manage
fixed-point representations. MATLAB provides two toolboxes for
fixed-point computations: Filter Design Toolbox and Fixed-Point
Toolbox. Filter Design provides functions (quantizer and quan-
tize) to quantize values represented as, e.g., doubles in fixed-point
representations. Fixed-Point provides fixed-point data types and
functions. Fi objects can be defined to represent a number of
fixed-point properties and can be associated to variables and to
arithmetic operations.

Certain exploration features require specific changes in the code
to be implemented. Such changes are error-prone, tedious, and
difficult to maintain. In many cases, producing each new instance
of the space being explored requires manual adaptations of large
sections of code. Typical changes include insertion of statements,
addition of function arguments, configuration of different data
types, and definitions of global variables. Often, the developer
must manage multiple versions of the same core specification.

To illustrate, consider as an example the MATLAB code from
Figure 2. A simple MATLAB script to test it is shown in Figure
7(a). To use uniform fixed-point data types in the test, we merely
add a line of MATLAB to the test program - see Figure 7(b). In
this test, we use fi(x, 1, 9, 5), which constructs a numeric fixed-
point object with value x, signed representation, 9-bit word length,
and 5-bit fraction length. However, to test the function using
fixed-point representations with specialization of every variable
and operation, we need to modify the original function, as shown
in Figure 8. Note that the fixed-point representations used in the
example are included here as a general example and have not been
necessarily exploited to fulfill a specific accuracy or behavior.

(a)
x=[1 2 3 4 5 6 7 8]; % input values
dft(x);
...

(b)

x=[1 2 3 4 5 6 7 8];

% fi(v,s,w,f) returns a fixed-point object
% with value v, signed property value s,
% word length w, and fraction length f
x=fi(x, 1, 9, 5); % new statement.

dft(x);
...

Figure 7. Example of a MATLAB script – Test of dft function:
(a) with double-precision data types; (b) with a uniform fixed-
point representation.

During the design phase, we usually need models that closely
resemble implementation details. As an example, it may be neces-
sary for computation results to be with fixed-point numeric repre-
sentations, to validate the final implementation using a compari-
son between Hardware Description Language (HDL) and
MATLAB simulations. Modeling with specialized fixed-point
representations is important because such implementations are
usually needed to satisfy requirements such as low power dissipa-
tion, low energy consumption, better performance and fewer
hardware resources.

Note that this kind of data type specialization is also needed when
object-oriented programming is used. Even if specific built-in
class support for fixed-point data types is used, there is always the
need to directly specify the required data type specializations.
Though we do not focus on the object-oriented case, we believe
our approach can be used in that context as well. Testing that
hypothesis is left for future work.

function [y] = dft_specialized(x)

 y=zeros(size(x));
 N=length(x);
 t=(0:N-1)/N;

 quant1=quantizer('fixed','floor','wrap', [18 16]);
 t=quantize(quant1, t);
 quant2=quantizer('fixed','floor','wrap', [23 20]);
 pi_fix = quantize(quant2, pi);
 quant3=quantizer('fixed','floor','wrap', [20 8]);
 quant4=quantizer('fixed','floor','wrap', [23 10]);
 quant5=quantizer('fixed','floor','wrap', [24 10]);
 quant6=quantizer('fixed','floor','wrap', [26 12]);
 quant7=quantizer('fixed','floor','wrap', [28 14]);
 quant8=quantizer('fixed','floor','wrap', [32 16]);

 for k=1:N
 v1 = quantize(quant3, (k-1)*t);
 v2 = quantize(quant4, pi_fix*v1);
 v3 = quantize(quant5, -j*2*v2);
 v4 = quantize(quant6, exp(v3));
 v5 = quantize(quant7, x.*v4);
 y(k) = quantize(quant8, sum(v5));
 end

Figure 8. Simple MATLAB example – code needed to model
specialized fixed-point bit-widths.

3.3 Configuration Features
The configuration features targeted by our approach often arises
when multiple, different implementations of a given function must
be stored and managed. As an example, consider arithmetic divi-
sion that can be implemented with look-up tables, iterative algo-
rithms, or a combinatorial divisor. Each implementation may

affect the overall system accuracy differently. Such systems re-
quire modeling prior to implementation, which entails changes in
the original code giving rise to multiple versions of the code.
Configuration features ameliorate the management problem. For
instance, it would be helpful if developers could specify the im-
plementation used by a simulation in a given development phase
without changing the base MATLAB code. Using the modularity
provided by an AOP approach, at a specific development stage,
developers can opt to the use of a certain algorithm implementa-
tion by specifying that option through an aspect.

4. ASPECT-ORIENTED APPROACH
Our approach envisages the usage of two separate groups of
source files to model a given system: (1) MATLAB code repre-
senting the primary behavior and (2) rules written in our aspect-
oriented language. Aspect-oriented rules are mainly used to
(a) reassign data types to variables in the MATLAB code,
(b) introduce handlers and monitoring features, and (c) configure
a function with a given implementation. A rule aims to facilitate
development of embedded systems that require refinement of
specific features required for implementation of the original speci-
fication. The proposed rules have declarative semantics as op-
posed to the imperative semantics of MATLAB. In our language,
an aspect encloses one or several such rules, i.e., one rule is part
of an aspect module. The proposed rules can be divided in the
following groups according to their semantics:

• Monitor/logging rules help users observe the runtime char-
acteristics of MATLAB variables. They include special be-
havior related to monitoring, such as returning the maximum
value of a specific variable during the simulation period.

• Handler rules are a kind of assertions that ensure certain
conditions hold during the simulation period.

• Type assignment rules are used to bind different types to
the variables of the MATLAB specification, to specify type
semantic rules in expressions, and to deal with name resolu-
tion.

• Configuration rules are used to statically bind a different
implementation to a given function or operator.

The above rules are proposed based on observed needs while
developing and implementing real embedded systems. The rules
are represented by new specific constructs, e.g., to specify type
assignments and to insert MATLAB code segments in specific
locations. Usually, these segments add behavior rather than modi-
fying existing functionality and can be, e.g., instructions for data
allocation or display. Concerns from other categories may be
proposed, but are out of scope of the present article. Note, how-
ever, that although we focused our current approach on the sup-
port to the rules previously described, the approach can be used to
represent other concerns that can be expressed through insertion
of sections of code.

Figure 9 presents the outline of the proposed system. As referred
previously, aspect-oriented rules and MATLAB code are specified
in different, separate files. A transformation engine – the aspect
weaver – is responsible for generating new MATLAB code that
includes the features composed according to the rules added to the
system. The current implementation of the weaver uses the
MATLAB compiler framework previously presented in [2]. The
framework makes use of a strategic programming approach –
Tom [22][23] in this case – to transform the intermediate repre-
sentation (IR) of the input MATLAB code. The weaving process

presented in this paper is static, i.e., applied at compile time and
consists of three stages. A first stage, named mat2tir, is responsi-
ble for transforming MATLAB input code into a Tom-based IR
(tir) [22][23]. A middle stage named tir2tir modifies the input tir
into according to the aspect rules fed into the system at this stage.
Finally, a stage named tir2mat produces a MATLAB representa-
tion of the modified tir.

A library of MATLAB functions is fed into the system, compris-
ing custom MATLAB functions that may be used in aspect rules.
Although we consider here a MATLAB to MATLAB weaver, our
approach can also be used to control the translation of MATLAB
to other programming languages such as C, or hardware descrip-
tion languages such as VHDL or Verilog. An example is the
current C code generation support provided by a stage, named as
tir2c [2].

Front-End

MATLAB to IR

(mat2tir)

weaver

(tir2tir)

Back-End

IR to MATLAB

(tir2mat)

MATLAB

Code

MATLAB

Aspects

MATLAB

Code

MATLAB

Weaver

TIR

TIR

Figure 9: Outline of the MATLAB-based system enhanced
with aspect-oriented rules.

4.1 The Aspect-Oriented Language
The aspect-oriented language supports the specification of join
points by means of specific patterns of code, code locations and
specific events traceable to specific code constructions, such as
function calls and accesses to array elements. An excerpt of the
grammar of the language is presented as an appendix to this arti-
cle. According to the classification proposed by Stein et al. [24],
the conceptual model for join point selections is based on control
flows.

The pattern language includes a number of keywords to identify
some properties (see Table I). Some of those keywords just re-
quire simple pattern matching at the source code level. However,
to identify calls to functions in the MATLAB code, a dynamic
analysis must be performed to distinguish between function calls
and array accesses. We use a set of simple rules and delegate such
distinctions to the runtime identification ([25] uses a similar ap-
proach). The resolution is based on the following rules:

• Assignments to identifiers require those identifiers to refer to
array variables or functions if the identifier in the right hand
side is preceded by ‘@’;

• Use of identifiers is considered to refer to variables if there
are only definitions (assignments to the variable, declaration
of that variable as global) of that identifier reaching that par-
ticular use. In the case of multiple definitions without name
resolution reaching an use, the identifier may refer to a func-
tion or a variable depending on the specific branches taken.

• Uses of identifiers followed by ‘(‘ … ‘)’, where non-integer
constants and strings are used as arguments, always refer a
function call.

Figure 10 illustrates the use of the property key to identify specific
MATLAB keywords in the code. They are specified as a set of
keywords: {for, while, if, end, else}. The aspect rule presented in
Figure 10 drives the weaver to insert fprintf statements for each
keyword of the set in the code being analyzed. Those fprintf
statements will trace blocks of MATLAB code during runtime.

Table I. The properties currently considered.

Property Description
<var> Identify variables in the MATLAB code
<call> Identify function calls in the MATLAB code

<function> Identify functions in the MATLAB code
<tag> Identify tags (e.g., @label) in the MATLAB code

using MATLAB line comments (they start with %)
<program> Identify all the MATLAB files of a given program

<key> Identify MATLAB reserved keywords in the code

The join point model supported by the language was designed
with the aforementioned tasks in view (e.g., monitoring, logging,
handling, type-assignment and configuration). Its constructs –
call, function, key, program, type and var – are static in nature.
Nevertheless that does not preclude future work extending them
so that they can be used as clauses constraining the set of join
points captured the other part of a pointcut expression. This would
be similar to what happens to, e.g., the args clause of AspectJ,
which can be used both to specify argument types and to constrain
the join points to just those whose number of arguments match the
args clause. In this paper, the clauses are used in “static mode”
only.

Our aspect-oriented language uses the identifier (id) attribute to
pinpoint where each join point occurred. Figure 10 shows an
example of an aspect rule using indexing. This rule allows the
weaver to insert code to trace the code blocks where each program
execution passes (this can be helpful for debugging purposes and
for detecting and localizing faults). The statement in line 2 of
Figure 10 produces as many key elements as the number of join
point shadows related to the elements in the join point selectors in
the set {for, while, if, end, else, elsif}. The use of the
attribute id (line 3) allows the weaver to insert a distinct number
corresponding to each occurred join point shadow. This is helpful
to represent the particular join point. For instance, Figure 11(a)
shows an aspect rule which results in the insertion of MATLAB
code to count the number of times the execution of the program
passes in the body of each FOR-type loop in the code. The attrib-
ute id (lines 3 and 4) is used in this aspect to allow the inclusion
of a different variable for each join point of type for (line 2).
Figure 11(b) shows a simple example highlighting the code result-
ing from the weaving process when this aspect rule is applied.

Other attributes being currently used are the get and set attributes
of the var join point selector. They can be used to select uses
(reads) or definitions (writes) of variables, respectively. Extending
the support of other attributes will increase the potential of the
language to express customized monitoring rules.

1. rule trace_blocks
2. foreach key in {for, while, if, end, else,
3. elsif} do
4. insert.before:
 fprintf(1,’block %d\n’,<key.id>);
5. end
6. end % trace_blocks

Figure 10. Aspect rule to insert code to trace executed code
blocks.

1. rule count_passes_in_each_for
2. foreach key in {for} do
3. insert.before:
4. count_<key.id> = 0;
5. insert.after:
 count_<key.id> = count_<key.id>+1;
6. end
7. end % count_passes_in_each_for

(a)

1. count_738 = 0;
2. for k=1:nr
3. count_738 = count_738+1;
4. count_654 = 0;
5. for j=1:nc
6. count_654 = count_654+1;
7. z(k,j) = x(k,j) + y(k,j);
8. end
9. end

(b)

Figure 11. (a) aspect rule to insert code to count executed code
blocks; (b) example of MATLAB code showing (in italic) the
code statements inserted according to the aspect rule.

Figure 12(a) shows an aspect rule that results in the insertion of
MATLAB code to count the number of times the execution of the
program passes in two specific locations defined with the tags
“@lab1” and “@lab2” in the code. As the counting must take into
account the initialization of each variable, the rule uses the de-
pendent constructions to specify the locations of each initializa-
tion (“@lab3” and “@lab4”). This example also includes the
insertion of two statements to print the information related to the
values stored in each counter variable. These two print statements
are placed after the tags “@lab5” and “@lab6”.

1. rule count_passes
2. foreach tag t1 in {@lab1, @lab2} do
3. insert.after:
4. count_<t1> = count_<t1>+1;
5. dependent:
6. foreach tag t2 in {@lab3, @lab4}
7. insert.after:
8. count_<t1> = 0;
9. end
10. foreach tag t3 in {@lab5, @lab6}
11. insert.after:
12. fprintf(1,’count: %d\n’,count_<t1>);
13. end
14. end
15. end
16. end % count_passes

(a)

1. %@lab2
2. count_lab1 = 0;
3.
4. for k=1:nr
5. %@lab1
6. for j=1:nc
7. count_lab1 = count_lab1+1;
8. z(k,j) = x(k,j) + y(k,j);
9. end
10. end
11. %@lab5
12. fprintf(1,’count: %d\n’,count_lab1);

(b)

Figure 12. (a) aspect rule to insert code to count the number of
times the execution passes in two different locations; (b) ex-
ample of MATLAB code (with tags) showing in italic the code
statements inserted according to the aspect rule.

As illustrated in the example of Figure 12(b), a different variable
is used for each count and each variable is initialized, incre-
mented, and reported in three different locations. To preserve the
names of the variables in each of these locations, we need to use
the dependent construction and tag identifiers (Figure 12(a)).
Note, however, that this aspect rule can be replaced by two differ-
ent aspect rules (each one similar to the aspect rule illustrated in
Figure 11(a)), one per counter variable. However, the expressive-
ness of the synthetic mechanism proposed by the aspect rule in
Figure 12(b) would be lost.

4.2 Aspect-Oriented Rules
Type assignment and configuration comprise one of the most
important categories of functionality for the aspect modules from
the proposed approach. Using MATLAB, users start with a speci-
fication using double precision floating-point data types (the
default MATLAB numeric data type).

To illustrate, the following MATLAB code represents a multipli-
cation of two variables, previously assigned to constants. All the
assigned and calculated values of this example are represented as
doubles.

a = ...;
b = ...;
...
c = a*b;

Note that in MATLAB an operation using two int16 type oper-
ands produces a result represented by a int16 type. If we wish to
test the code with integer data types, e.g. of 16 bits, the original
code must be changed to the following:

a = int16(...);
b = int16(...);

...
c = a*b;

Using our approach the original code is kept as it is and we only
need to add an assignment rule in an aspect file:

foreach var in program do set type=int16; end

This rule provides the transformation engine with the code needed
to assign the type int16 for each variable from the original code.
In case we need to simulate the original code using different data
types for each variable, we just need to use the rules below.

foreach var in program:{a,b} do set type=int16; end
foreach var in program:{c} do set type=int32; end

In this case we are specifying the following MATLAB code:
a = int16(...);
b = int16(...);
...
c = int32(a)* int32(b);

In such cases, applying aspect-oriented rules may entail the de-
composition of arithmetic expressions into sub-expressions in
order to apply different rules to each sub-expression. Suppose we
have the following statement in a MATLAB specification:

a = b*c+d;

To bind different specialized fixed-point representations to the
sub-expressions computed by this statement, we need to change
the original code to:

v1 = b*c;
a = v1+d;

Then, each variable in the above assignments can be bound to a
specific fixed-point data representation. Although this step is
relatively straightforward, it requires changes in the original code,
making it significantly less legible – and possibly less general. To
address this problem, we provide a decomposition rule telling the
transformation engine to decompose a given expression into the
specified sub-expressions. An example of this kind of rule is:

with statement="a = b*c + d;" do
 decompose { v1=b*c; v2=v1+d; a=v2;};
end

This way, we can now provide type assignment rules to each
variable (a, b, c, d, v1 and v2). Note that the statements within
brackets in the decompose command must be correct MATLAB
code with the same behavior as the original expression.

Monitor type rules may help developers by including observing
behavior without changing the original MATLAB code. Examples
range from monitors to the data sent to a file during a write to the
values of specific variables during simulations. For instance:

foreach var in program do
 insert.after: print(file:’<var>.dat’, <var>);
end

In some cases, we may want to register the maximum and mini-
mum values assigned to a variable, e.g., when exploring bit-width
analysis. This exposes the number of bits needed to represent
certain values. Adding this behavior to the original code may
require the use of global variables and the insertion of specific
code to compute the maximum and minimum values for each
assignment. This behavior is usually needed only during the de-
velopment stages and must be latter removed. With our aspect-
oriented rules, such behavior is kept separate from the original
MATLAB code and rendered (un)pluggable. For instance:

foreach var in program do
 insert.after: print(screen, <var>:’max’);
end

Handler rules can also help developers to expose the occurrence
of specific values in variables. Example:

if func1:a>100
 print(screen, ‘warning: value of func1:a exceeds:
‘,100);
end

Note that handler rules are similar to assertions.

Finally, configuration rules are used to assign a different imple-
mentation to an (arithmetic or logical) operator or a function. For
instance:

with func1=f1 use configuration my_f1; end

Using the example from Figure 2 as a basis, Figure 13 illustrates a
rule to bind all variables of the original “dft” function to a fixed-
point uniform representation of <1, 10, 5> (10-bit signed fixed-
point representation, using 5 bits in the fractional part). Figure 14
shows an example of a rule to bind each operand of the “dft”
function with a specialized fixed-point representation according to
the result shown in Figure 8. Note that expressions already de-
composed in the original code do not need decomposition com-
mands in the aspect-oriented rules.

rule assignment1
 typedef fixed1 = fixed<1, 10, 5>;

 foreach var in function=dft do
 set type=fixed1;
 end
end

Figure 13. Quantification rule applied to the function pre-
sented in Figure 2 for uniform fixed-point representation.

Variables can be identified by their name preceded by the name of
the function as in func1:a for variable a or as func1:{a,b} for
variables a and b. The with construct obviates the use of the func-
tion name. It is illustrated in the example with function=dft do in
Figure 14.

rule assignment2
 set fixed = {overflow=wrap; round=floor};
 typedef fixed1 = fixed<1, 18, 16>;
 typedef fixed2 = fixed<1, 23, 20>;
 typedef fixed3 = fixed<1, 20, 8>;
 typedef fixed4 = fixed<1, 23, 10>;
 typedef fixed5 = fixed<1, 24, 10>;
 typedef fixed6 = fixed<1, 26, 12>;
 typedef fixed7 = fixed<1, 28, 14>;
 typedef fixed8 = fixed<1, 32, 16>;
 typedef fixed9 = fixed<1, 32, 16>;

 with function=dft do
 with statement=
 “y(k)=sum(x.*exp(-j*2*pi*(k-1)*t));” do
 decompose %{
 v1=(k-1)*t;
 v2=pi*v1;
 v3=-j*2*v2;
 v4=exp(v3);
 v5= x.*v4;
 y(k)=sum(v5);
 }%;
 end

 foreach var in {t} do set type=fixed1; end
 // or: with var=t do set type=fixed1; end
 foreach var in {pi} do set type=fixed2; end
 foreach var in {v1} do set type=fixed3; end
 foreach var in {v2} do set type=fixed4; end
 foreach var in {v3} do set type=fixed5; end
 foreach var in {v4} do set type=fixed6; end
 foreach var in {v5} do set type=fixed7; end
 foreach var in {x} do set type=fixed8; end
 foreach var in {y} do set type=fixed9; end
 end
end

Figure 14. Quantification rule applied to the function from
Figure 2 for variable (specialized) fixed-point representa-
tion.

Each rule may have one or more commands. The commands for
each aspect rule are executed in the sequential order in which they
appear in the aspect. In the case of conflicts due to overlapping
commands, the last command prevails. Figure 15 shows some
examples of the proposed rules. To modify the ordering by which
the rules are evaluated, one can use an apply statement (Figure 15,
line 1), which allows a particular order to be specified.

The Monitor1 rule in lines 3-20 of Figure 15 illustrates the moni-
toring. The rule starts by defining a set consisting of variables a,
b, and c (line 4). The first foreach (lines 5-7) specifies the inser-
tion of a print to the screen of the value of each variable in the set
each time there is a write (attribute set in line 5) to that variable.
The second foreach (lines 8-10) expresses an insertion of a print
to the file “data.txt” of the value of each variable, each time there
is a write to the variable. The last two foreach constructs (lines
14-16 and lines 17-19) specify the insertion of a print to the screen
of the maximum and minimum values, respectively, of the vari-
ables, each time there is a read (attribute get in line 14 and line
17) of the variable.

Rule assignment3 (lines 21-30) starts by defining the data type
fixed1 (line 22) which represents signed fixed-point values with
10 bits of word-length and having 4 bits of fraction. Line 23 de-
fines the real data type as a single precision floating-point data
type. The three foreach constructs of the rule express the assign-
ment of all variables in the program as real (lines 24-25), all vars

in the module2 function as fixed1 (lines 26-27), and all variables
in module3 function as fixed1 (lines 28-29).

1. apply Monitor1; //several rules may be applied:
2. // apply Rule1:Rule2:Rule3;
3.
4. rule Monitor1
5. set myVars1 = {a, b, c};
6. foreach var.set in program do
7. insert.after: print(screen, <var>:
8. ‘value for each change’);
9. end
10. foreach var.set in myVars1 do
11. insert.after: print(file:’data.txt’, <var>);
12. end
13. foreach var.set in program do
14. insert.after: print(screen,
15. <var>:’max’);//mean, abs, etc.
16. end
17. foreach var.get in myVars1 do
18. insert.after: print(screen, <var>:’min’);
19. end
20. foreach var.get in module1 do
21. insert.after: print(screen, <var>:’max’);
22. end
23. end
24.
25. rule assignment3
26. typedef fixed1 = fixed<1, 10, 4>;
27. set real=single;
28. foreach var in program do
29. set type=real;end
30. foreach var in function=module2 do
31. set type=fixed1; end
32. foreach var in function=module3 do
33. set type=fixed1; end
34. end
35.
36. rule handler1
37. if func1:A > 100
38. warning(‘value of A exceeds 100’);
39. end
40. end
41.
42. rule configuration1
43. with function=f1, call=f2 use
44. configuration f3; end
45. with function=f2, operation=”/” use
46. configuration myDIV; end
47. end

Figure 15. Examples of aspect-oriented rules.

Rule handler1 (lines 31-35) monitors variable A in function func1
and specifies the output of a warning in case the value of A ex-
ceeds 100 (lines 32-34). Note that in the current version of the
weaving, it is up to the user to apply this rule to MATLAB vari-
ables representing scalars (i.e., matrices of 1×1).

Rule configuration1 (lines 36-41) shows two configuration ac-
tions. The first action (lines 37-38) specifies the use of function f3
for the calls to f2 from function f1. The second action (lines 39-
40) specifies calling function myDIV for the division operators
(“/”) from f2. Although the current accepted configuration rules
are simple, they are helpful when one needs to evaluate different
implementations of specific functionalities, be they represented as
functions or operators.

4.3 Type Conversion Rules for Expressions
Usually, when using customized data types, it is the responsibility
of the user to express the data types resulting from operations
involving customized data types. This burden can be avoided by

using built-in data type conversion rules. However, it is important
to allow subexpressions to specify specific data types, which gives
users the option of using lower accuracy types when maximum
accuracy is not needed. This is common when using fixed-point
customized data types as the word-lenghts needed to preserve
accuracy may impose a large software and/or hardware overhead.

In the presence of expressions with more than one operation, one
way to specify specific data types for the results of the subexpres-
sions is to resort to expression decomposition and assign a spe-
cific data type to each subexpression that results from the decom-
position. This is illustrated in Figure 14. This achieves the in-
tended effect but entails modifying the expressions and references
to auxiliary variables. It is, however, the scheme to apply when
for some expressions one needs to specify particular data type
assignments, not possible to address with the considered generic
data type conversion rules.

An additional option is the specification of generic data type
conversion rules. This is by default the preferable option. Our
proposed aspect language includes a scheme to specify the seman-
tic rules to be applied to each operation in expressions based on
the data types presented in Table II. Note that the floating point
data types only consider the single and the double precision repre-
sentations specified by the IEEE Standard for Floating-Point
Arithmetic (IEEE 754). The semantic rules expressions consid-
ered are of the following type:

“<operation> “<op>” <type> <id> ::= (<type> <id>)
[<type> <id>, <type> <id>]

The following statement is an example of the header of a semantic
conversion rule to be associated to “+” operations involving a
float and a fixed operand. It specifies that the resultant data type
should be represented as a float:

operation “+” float f1 ::= (float f2) [float i1,
fixed f3]

The identifiers in the expressions are used in the semantic rules
and the parameters (illustrated in Table II) can be used as fields of
a given identifier as in the examples: f3.w, i1.max, and f1.e.

Table II. Data types and the corresponding parameters.

Types Parameters Description

int w
s

wordlength
signed or unsigned

fixed s
w
f

signed or unsigned
wordlength
fraction length

float s
m
e

signed or unsigned
mantissa length
exponent length

all max
min

maximum value represented
minimum value represented

Figure 16 illustrates a simple set of semantic rules to deal with a
number of arithmetic operations. The main idea is to allow the
developer to use semantic rules defined in the library of an aspect
or to define and evaluate custom semantic rules. The rules include
the possibility to specify commutative operations. This avoids the
specification of all possible combinations having two different
data types as operands. Figure 17(b) shows an example of apply-
ing the semantic rules presented in Figure 16 to the expression
and data types shown in Figure 17(a).

rule semantic1

 commutative operation “*” float lhs ::=
 (float ir) [float op1, float op2]:
 if(lhs >= max(op1, op2))
 ir = max(op1, op2);//e.g., double if
 //double ← double, single
 else
 ir = lhs; //e.g., single if
 //single ← double, single
 end
 end

 commutative operation “*” float lhs ::=
 (float ir) [int op1, float op2]:
 if (op2.max >= op1.max)
 if(lhs >= op2)
 ir = op2;
 else
 ir = lhs;
 end
 else
 if(lhs >= op1)
 ir = op1;
 else
 ir = lhs;
 end
 end
 end

 commutative operation “*” fixed f4 ::=
 (fixed f3) [fixed f1, fixed f2]:
 f3.s = f1.s OR f2.s;
 f3.w = max(f1.w, f2.w);
 f3.f = max(f1.f, f2.f);
 end

 % semantic rules for other operations
 % are omitted
end

Figure 16. Examples of semantic rules for data type conver-
sions.

Figure 18 shows two different semantic rules for multiplications
involving fixed-point data types. In the first case (Figure 18(a))
the multiplication of two operands in fixed-point representation
does not loose precision because the resulting value is represented
by a fixed-point representation with integer and fraction bit-
widths given by the sums of the respectively bit-widths used in
the input operands. In the second case (Figure 18(b)) the preci-
sion used to store intermediate results (i.e., results of the sub-
expressions in an expression) is the same as the precision used to
store the result of the expression. With this approach, the devel-
oper can explore different semantic rules involving operations and
data types. Note, however, that this approach assumes all arrays
involved are homogeneous as regards element types.

Figure 19 illustrates the assignment of fixed-point data types to
variables of the dft function presented in Figure 2 considering the
use specific semantic rules (sentence use semantic1;) defined with
our aspect-oriented language. In this case, the semantic rules are
the ones partially specified in Figure 16. Note this is a distinct
case from that presented in Figure 14, where a decomposition of
the expressions “y(k)=sum(…);” is carried out to assign custom-
ized data types to each subexpression.

// types specified
// by aspect rules
a: single;
b: int16;
c: single;
d: double;

// expression
a=b*c*d;

// resulting expression
// with data types
// defined by applying
// semantic rules
a = single(single(b*c)*d);

(a) (b)

Figure 17. Semantic rules example: (a) MATLAB code with
an expression; (b) resulting code after applying semantic
rules.

(a) ...
commutative operation “*” fixed f4 ::=
 (fixed f3) [fixed f1, fixed f2]:
 f3.s = f1.s OR f2.s;
 f3.w = f1.w + f2.w;
 f3.f = f1.f + f2.f;
end
...

(b) ...
commutative operation “*” fixed f4 ::=
 (fixed f3) [fixed f1, fixed f2]:
 f3 = f4;
end
...

Figure 18. Two examples of different semantic rules for fixed-
point multiplications: (a) intermediate results with the preci-
sion required to store the result of the multiplication; (b)
intermediate results using the precision used to store the re-
sult of the expression.

rule assignment7
 use semantic1;

 % “y(k)=sum(x.*exp(-j*2*pi*(k-1)*t));”

 set fixed = {overflow=wrap; round=floor};
 typedef fixed1 = fixed<1, 18, 16>;
 typedef fixed2 = fixed<1, 23, 20>;
 typedef fixed8 = fixed<1, 32, 16>;
 typedef fixed9 = fixed<1, 32, 16>;

 with function=dft do
 with var=t do set type=fixed1; end
 with var=pi do set type=fixed2; end
 with var=x do set type=fixed8; end
 with var=y do set type=fixed9; end
 end
end

Figure 19. Quantification rule applied to the function from
Figure 2 for variable (specialized) fixed-point representation
using semantic rules defined with the aspect-oriented lan-
guage.

The aspect-oriented extensions we propose also allow to “clean”
MATLAB code by migrating code related to non-functional con-
cerns (e.g., code to make a function more generic, code for moni-
toring, code to print results) to aspect rules. This yields less “pol-
luted” MATLAB code and adds functionality required when
using, e.g., a MATLAB to C compiler for mapping to an embed-
ded system.

5. VALIDATING EXAMPLES
To validate our approach, we applied it to a number of MATLAB
programs. We focused on the following five aspects:

• Monitoring for range value computation. This can be used to
acquire the minimum word length of variables, e.g., the word
length of the integer part of fixed-point representations;

• Tracing function calls, executed code blocks, number of
iterations in loops, etc. This can be used to identify and lo-
cate software faults;

• Counting occurrences of specific operations, calls to a given
function, number of times a variable is read or written, ac-
counts of floating/point multiplication executions, etc.

• Data type conversion, e.g., to convert double precision to
single precision or to fixed-point representation.

• Exploration of different configurations for a function. This
can be used to evaluate trade-offs between implementation
characteristics (e.g., precision vs. execution time).

In the following sections, we illustrate our approach with the
following MATLAB codes: a program (pid) [15], three functions
(latnrm, fft, dft) translated to MATLAB from codes taken from
[26] and [27] and a repository with 26 MATLAB functions –
mat2c6.

5.1 Monitoring and Instrumenting
Profiling is an important task for optimizing applications. In
addition to the computation of the percentage of overall execution
time spent per function in the application (obtained by current
profiling tools such as gprof or profiling), there are many other
situations in which profiling is useful. For instance, finding the
range for each variable in the program, as used by tools previously
proposed [18]. Here, we use our MATLAB aspect-oriented ap-
proach to insert monitoring points that compute the range (mini-
mum and maximum values) of variables in MATLAB code.

With a simple aspect description such as that shown in Figure 20,
it is possible to specify the monitoring of the range of each vari-
able in a program run. Applying this rule to the code of latnrm
(32nd-order Normalized Lattice filter processing 64 points) – see
Figure 6(a) – yields the code shown in Figure 6(b). Figure 21
shows the trace obtained after weaving and running the function
latnrm.

rule range_finder
 foreach var in program do
 insert.after: range_find(<var>,
 '<function>.<var>');
 end
 with function=main do
 insert.before.end: report_range_find();
 end
end % range_finder

Figure 20. Aspect rule to insert code for determining in run-
time the range values for each variable in the code.

6 A copy of the MAT2C benchmarks, previously existent at

http://www.ece.northwestern.edu/cpdc/pjoisha/MAT2C/, can be
downloaded from: https://svn.strategoxt.org/repos/octave/octave-
xmpl/mat2c-benchmark/

==== report range values of 13 variables:
var latnrm.data [min, max]: [1.136, 6.322]
var latnrm.coefficient [min, max]: [-0.81, 0.93]
var latnrm.internal_state [min, max]: [-1.12162,
3.35092]
var latnrm.NPOINTS [min, max]: [64, 64]
var latnrm.ORDER [min, max]: [32, 32]
var latnrm.bottom [min, max]: [-1.12162, 3.35092]
var latnrm.i [min, max]: [1, 64]
var latnrm.top [min, max]: [-2.04024, 6.322]
var latnrm.j [min, max]: [1, 32]
var latnrm.left [min, max]: [-2.04024, 6.322]
var latnrm.right [min, max]: [-1.12162, 3.35092]
var latnrm.sum [min, max]: [-0.101099, 3.87368]
var latnrm.outa [min, max]: [0.184243, 3.74967]

Figure 21. Report results of range values obtained for each
variable in function latnrm after executing the woven code.

Table III presents the metrics of a number of examples in which
the proposed approach was applied. It includes (1.) the number of
join point shadows [28] – points in the source code that relate to a
join point during program execution – when considering the as-
pect related to the insertion of code for “range finder”, (2.) and
(3.) the number of lines of MATLAB code (LOC), respectively,
before and after the weaving, and (4.) the number of variables
monitored in each of the examples. Line (6.) in Table III shows
the reduction in bloat due to tangling – a metric proposed by
Kiczales et al. [28] and called aspectual bloat in this paper. It
compares the AOP and non-AOP versions of a system, using
equation (1). It measures the degree to which the aspects are more
concisely coded in the AOP-based implementation than in a non-
AOP based implementation. Any number greater than 1 indicates
a positive outcome of applying AOP. Aspect code is the code
inserted due to aspects.

 code)LOC(aspect

de) riginal cong) -LOC(ofter weaviLOC(code a
bloataspectual =

 (1)

The Tangling ratio metric (7.) was proposed by Lopes [29] and is
based on the idea that the parts of the code associated to crosscut-
ting concerns are “shadowed”7. The metric counts the transition
points, i.e. the points in the source code where there is a transition
from a shadowed area to a non-shadowed area and vice-versa.
Tangling ratio is calculated using equation (2).

code) alLOC(origin

code original and
 code aspect between points transition#

ratio tangling ×=
 (2)

Tangling ratio gives an idea of both the relative efforts a devel-
oper may need to add the code to the application and of the “code
pollution” degree. Values for this metric start from 0 (no tangling)
and have no theoretical upper bound. A value above 1 means there
are more than one transition point per LOC on average.

The aspect module used for this experiment is the one presented
in Figure 20, which has 8 lines of code. The results are presented
in the “range finder aspect” section of Table III. For these experi-
ments we have an increase of about 74% of lines of MATLAB
code on average. With individual increases from 19 to 31, 24 to
43, 56 to 100, 506 to 892 for latnrm, dft, fft, and for mat2c reposi-
tory, respectively. These experiments show an average of 24.5
join point shadows per MATLAB function. This is a clear indica-
tor of the pollution degree and work effort that a simple instru-

7 Note there is no relation between this code “shadowing” and the

notion of joint point shadow.

menting concern may originate. In our approach, this is achieved
by automatic aspect weaving that avoids invasive changes on the
original, core MATLAB code which is kept as it was.

Table III also shows the aspectual bloat (1), which ranges from
1.50 to 48.25 for these examples. These values also support claim
that our approach brings benefits. The aspectual bloat is high
when considering the MATLAB code of mat2c and pid. The
reason is that one aspect is applied to more extensive MATLAB
code. In fact, the aspectual bloat of the mat2c represents the effect
of reusing the same code over multiple MATLAB functions.

Finally, the tangling ratio (2) ranges from 1.50 to 2.05 for these
examples and aspects and once again strongly suggests there are
benefits from using our approach. Note that tangling ratio values
near or above 1 indicate the insertion of almost one secondary
concern in each line of MATLAB code.

In a second monitoring example, we consider the report of the
number of accesses to each variable. Figure 22 shows the result-
ing output after executing the latnrm MATLAB code woven with
aspect code to determine the number of accesses (read or write) to
each variable in the original latnrm code. In this case, the weaver
identified 36 join point shadows (1.8× more than for the previous
range find example to which 20 join point shadows were identi-
fied), which result in an even more “polluted” MATLAB code.

In a third example, we consider the report of the class of identifi-
ers used in the MATLAB code. The analysis needs to deal with
the case of MATLAB identifiers corresponding to multiple classes
(e.g., an array and a function). This report can be important in
MATLAB applications to acquire the identifiers corresponding to
functions, classes, structs, and their types. For instance, this dy-
namic analysis may guide compilers or additional weaving with
respect to name resolution. We show in Figure 23 the report out-
put after executing the woven code of the latnrm example.

Table III. Results of applying aspects for a number of bench-
marks (#LOC represents the number of lines of effective code
statements).

 range finder data type
assignment

 MATLAB
 code

Metric

 l
at

nr
m

 d
ft

 f
ft

 m
at

2c
 r

ep
os

it
.

 l
at

nr
m

 p
id

1. #join point shad-
ows

20 19 44 386 19 89

2. #LOC before
weav.

19 24 56 506 19 268

3. #LOC after weav. 31 43 100 892 33 519

4. #vars monitored 13 13 30 254 n/a n/a

5. #functions affected 1 1 1 26 1 13

6 #transition points 39 37 86 760 56 119

7. aspectual bloat 1.50 2.38 5.50 48.25 2.33 5.98

8. tangling ratio 2.05 1.54 1.55 1.50 2.95 0.44

==== report accesses of 11 variables:
var latnrm.bottom : 4033 accesses
var latnrm.i : 128 accesses
var latnrm.data : 64 accesses
var latnrm.top : 4096 accesses
var latnrm.j : 8064 accesses
var latnrm.left : 5952 accesses
var latnrm.right : 5952 accesses
var latnrm.internal_state : 6144 accesses
var latnrm.coefficient : 9984 accesses
var latnrm.sum : 4224 accesses
var latnrm.outa : 64 accesses

Figure 22. Report results of variable accesses obtained for
each variable in function latnrm after executing the woven
code.

==== report classes of 13 variables:
var latnrm.data : class char
var latnrm.internal_state : class double
var latnrm.NPOINTS : class double
var latnrm.ORDER : class double
var latnrm.bottom : class double
var latnrm.i : class double
var latnrm.top : class double
var latnrm.j : class double
var latnrm.left : class double
var latnrm.right : class double
var latnrm.coefficient : class double
var latnrm.sum : class double
var latnrm.outa : class double

Figure 23. Report results of classes obtained for each variable
in function latnrm after executing the woven code.

5.2 Data Type Specialization
Regarding data type conversions, we show two examples where
we have explored the fixed-point representations, specialized or
uniform. The “data type assignment” section of Table III presents
the results. The examples include the previous latnmr function
and a MATLAB model of a PID (Proportional Integral Deriva-
tive) controller previously used in [15].

For the latnrm example, an aspectual boat of 2.33 and a tangling
ratio of 2.95 confirm a positive outcome of our approach. In this
example, there are transition points in almost every line of code.
By coincidence, the number of join point shadows and the number
of LOCs before weaving is the same (19). This is indicative of a
highly polluted and difficult to read code.

The original MATLAB code of the pid has 268 lines of code.
After weaving with the aspect rules defining fixed-point special-
ized data types a MATLAB code with 519 lines has been pro-
duced (1.93× more lines of code). The aspectual bloat is 5.98 and
the tangling ratio is 0.44. The tangling ratio in this example is
lower than 1 as most MATLAB code related to data type assign-
ments is relatively well localized and thus yields a much lower
ratio of transition points per line of code. Nevertheless the number
of code modifications again suggests there are benefits in using
the aspect-oriented approach.

5.3 Discussion
The previous examples illustrate some of the uses of the aspect-
oriented language to extend MATLAB code with specific features
as monitoring calls or data type specializations. In addition to the
timing savings, the use of automatic features reduces the likeli-
hood of manual code insertion errors. Thus, the proposed aspect
features seem to provide valuable help to MATLAB programmers
and system developers.

It is worth noting that even in the presence of some statements
that appear just once in a function with many lines of code, there
is justification for using the proposed approach in some cases.
Through the aspect rules and aspect weaving, we acquire the
option to generate multiple, case-specific configurations of a core
code base. The verification of the number of arguments passed to
a function is an example. These options are not implemented
when translating the function to C code for the embedded target
system. There are also cases where the code output by the aspect
weaver has fewer lines of code but is “polluted” with calls to type
conversions.

Although MATLAB was extended to support classes and objects,
the use of these features remains almost totally absent from typi-
cal MATLAB systems. That is what can be concluded from the
code repositories we have analyzed [14] and from the MATLAB
industrial applications to which we had access.

Although our approach provides users with helpful mechanisms
for monitoring, type assignment and configuration, it can be fur-
ther extended in a number of ways:

• Providing extensions to deal with control-flow aware moni-
toring schemes. For example, one may need to specify moni-
toring actions dependent on particular sequences of function
calls;

• Providing analysis of aspect rules in terms of conflicts that
may exist between rules. For example, there might be more
than one type assignment to the same variables and this reas-
signment may be intentional or accidental. Identifying those
reassignments can help users;

• Extending the current simple statements accepted for code
insertion, and thus avoiding in most cases the use of explicit
target language code and the %{ and }% tags as in the ap-
proach in [42]. This will provide a more neutral approach as
the code to be inserted can be specified in a language that is
then translated to the target language by the weaving process.

Although our approach has been used in the context of MATLAB,
it is also applicable to “MATLAB clones” such as Octave [11]
and Scilab [12]. However, further analysis on this topic is required
to assess how adequate to those “MATLAB clones” is our ap-
proach. This may call for more target-independent constructs to
deal with possible mismatches between the various languages –
possibly by using mapping rules.

We also believe that the approach can be also used in the context
of other imperative programming languages. In future, we intend
to perform further studies to assess the applicability of this ap-
proach as regards monitoring and type assignment so that it can be
used on top of the LARA approach [42].

6. RELATED WORK
Most aspect-oriented approaches target general-purpose software
programming languages, such as Java and C/C++, often in the
context of general-purpose applications [9]. However, the specif-
ics of embedded systems, regarding specific implementation
properties and programming models, provide new use cases for
aspect-oriented programming. Previous uses of AOP for debug-
ging, instrumentation and monitoring retain their importance in
the development for embedded systems. Other uses of AOP –
such as type specialization – acquire greater importance in em-
bedded systems. Below we describe the approaches related to that
proposed in this paper.

In [6], Irwin et al. present AML, a system for sparse matrix com-
putation that deals with crosscutting concerns (such as execution
time and data representation) using AOP principles [28]. In AML,
the primary behavior is written with a MATLAB-like language.
AML allows the programmer to write annotations that represent
properties of sparse matrices, in a completely separated way from
the main functionality. Thus, readability and maintainability of the
behavioral code is not negatively affected by non-functional
concerns. The AML system seems to have brought satisfactory
results, as the authors report that their code in AML has similar
speed as a standard version, yet it is smaller and less complex.
They propose a “data representation” aspect module that is rele-
vant for our work. This aspect module defines 5 dimensions for
representing data: element type, dimension, representation, order-
ing, and orientation. AML was first described as an aspect-
oriented system but some authors do not consider it as such [30].

Mück et al. [31] present a design methodology, based in SystemC
and aspects, which allows components of operating system to be
implement in hardware platforms. To validate the methodology,
the authors discuss the implementation of a task scheduler and an
aspect program. Aspects are used for on-chip debugging and
define the following debugging features: (1) Watched dumps the
state of a component whenever it is modified; (2) Traced signal-
izes every operation execution; and (3) Profiled counts the num-
ber of clock cycles needed by the component for a given opera-
tion. This approach also adopts the idea of having two different
specification parts (main functionality and aspects), but differs
from ours in several issues, namely in the adopted language (Sys-
temC vs. MATLAB) and the focus (debugging vs. development).

Other researchers also propose the combined use of model-driven
and aspect-oriented principles, concepts and techniques targeted
for the embedded field. One common theme found in several
research works is the use of the model-driven approach com-
pounded with aspect-oriented techniques to improve separation of
concerns at earlier phases in the software life cycle – modeling in
the case of the works by Linehan et al. [32][33], Gray et al. [34]
and Oliveira et al. [35]. In the case of Oliveira et al., requirements
as well as modeling are subject to this approach.

Linehan et al. [32][33] propose an approach specially targeted for
generating verification purposes, permitting the development of
hardware verification testbenches, which the authors claim is
easier to maintain, adapt and reuse. Gray et al [34] discuss the use
of the model-driven approach for generating quality-of-service
(QoS) adaptation rules within the simulation and implementation
of distributed real-time embedded systems. This approach creates
high-level graphical models representing QoS adaptation policies.
The models are specified in a domain-specific modeling language
(AQML) that helps in the separation of common concerns of an
embedded system through different modeling views. Their pri-
mary contribution is an aspect-oriented weaver that performs
model transformations across higher level abstractions to separate
policy decisions that were previously scattered and tangled across
the model. Oliveira et al. [35] also present a method for design
space exploration of embedded systems that uses model-driven
engineering and aspect-oriented concepts. The authors claim that
their method provides better reusability, complexity management,
and design automation by exploiting both MDE and AOD ap-
proaches in the earliest stages of the life cycle, including require-
ments.

To the best of our knowledge, our approach – initially proposed in
[7] – is one of the first approaches to consider aspect-oriented

extensions to MATLAB, especially aspect-oriented rules to spec-
ify code injection and assignment of numeric data types to a
MATLAB specification. Our proposal differs from [6] in that
although type refinement may help compilers to produce opti-
mized code, the aspects we present are intended to help develop-
ers to model and to explore multiple possible implementations of a
given core MATLAB specification. It does that without changing
the original code and without the need to manage multiple ver-
sions of the same underlying specification. Moreover, most of the
proposed aspect modules would be unsuitable to embed in the
original specification in the form of annotations. There are various
reasons for that. First, that would result in less legible code and
would be cause of various kinds of hurdles whenever the original
code needs to evolve. Second, it would still entail managing more
than one version of the MATLAB specification when different
data types for a given variable need be explored. Third, some of
the rules are intended to be applied globally, not just to specific
functions. With our approach, explorations can be performed with
the same base MATLAB specifications by simply employing
different aspect-oriented rules. Our approach uses a declarative
type of aspect semantics suitable to be applied both locally and
globally.

More recently, AspectMatlab was proposed [25] as an approach to
extend MATLAB with aspects. AspectMatlab does not consider
type assignments. The design of AspectMatlab is instead geared to
the support of scientific computing, which is typically computa-
tion-intensive. For this reason, the join points supported cover
elements that play important roles in computing-intensive applica-
tions, namely array accesses and loops. Though our proposed
language also supports advices over loop constructs, its focus is
on simulation, monitoring, and data type exploration.

Hendren [36] proposed the addition of typing aspects to
MATLAB. The approach is based on a new kind of uses statement
– atype – that captures runtime type information of variables and
verifies their types. This is a specific case of monitoring and
instrumentation that can be controlled by a weaver as the one
proposed in AspectMatlab [25] or the one proposed in this paper.
As with AspectMatlab, the primary motivation for proposing
typing aspects is performance: modern MATLAB systems support
JIT compilers, which require type information to produce efficient
code.

Complementing the work presented in this paper, we have re-
cently proposed a domain specific aspect language to enrich
MATLAB with code transformations [37]. Those code transfor-
mations can be used to implement the aspect rules given in the
approach presented in this paper. However, that approach ad-
dresses additional code transformations that can be used to opti-
mize the MATLAB applications while our approach provides
specific support to the exploration of data types and configura-
tions and to the monitoring of specific program artifacts.

Approaches to code transformations have been extensively pro-
posed in recent years. Pattern matching transformations have been
proposed by some authors. An example was given by Bodin et al.
[38] as a way to allow the user to specify specific code transfor-
mations.

It can be argued that the aspect rules presented in our approach
could be specified using code transformation tools such as TXL
[39]. That approach would also need the specification of the
MATLAB grammar as well as the rules presented here. Note,
however, that by using a strategic programming approach at the

intermediate representation (we use Tom [22][23]), we isolate the
compiler front-end and back-ends from the weaver and contribute
to an extensible compiler framework in terms of compiler optimi-
zations, code transformations and code generation. Nevertheless
we believe there is no additional reason not to use TXL as the
transformer and code insertion engine, e.g., by translating our
aspect rules to TXL rules.

Our approach to data type specializations also promotes the use of
active libraries [40] in the context of MATLAB. In this approach,
MATLAB libraries can be delivered to a specific implementation
by using aspect rules that automatically produce woven MATLAB
code with the required specializations.

Our approach to data type specialization is also being used in the
compiler framework to generate C code from MATLAB specifi-
cations [2]. Thus, the approach presented in this paper not only
assists in the early development phases but the implementation
phases as well, by providing data type and shape information for
the subsequent code generation steps. As our kind analysis stage
is not so powerful than recent analysis techniques applied to
MATLAB [41], it may need more intervention from the user to
resolve some MATLAB names. Future work is expected to inte-
grate more advanced kind analysis techniques.

The development of LARA [42], a domain-specific aspect-
oriented language, has been also inspired by some of our ideas
proposed in the context of extending MATLAB with aspects.
LARA has been designed to be as agnostic to the target language
as possible – though its main application has been to C programs
– and is a more complex language as it addresses many concerns,
such as code instrumentation, compiler optimizations, mapping
decisions, type and code specialization and design space explora-
tion strategies. The AOP language proposed in this paper is dis-
tinct from LARA in a number of ways. It is focused on a narrower
set of concerns than LARA, uses an imperative semantic while
LARA uses both declarative and imperative semantics and it is
focused on MATLAB, while LARA has been proposed for multi-
ple languages. Being specially focused to a particular set of con-
cerns makes the language easy to use and easy to support by tools.
We have plans to generate LARA aspects from the aspect rules
proposed in this paper.

7. CONCLUSIONS
This paper presents an approach to add aspect-oriented rules to
MATLAB specifications to assist developers of embedded sys-
tems in the exploration of implementation features – namely
numeric data type configurations. MATLAB core behavior and
aspect-oriented rules (e.g., numeric data type assignments) are
specified and maintained in separate modules. Our approach
allows developers to insert MATLAB code that is helpful for
debugging, monitoring, and exploring numeric data type represen-
tations without changing the original MATLAB code. With this
approach, the core MATLAB specifications are kept free from
code dependent on the implementation and target sys-
tem/architecture.

Our approach allows users to explore multiple, different imple-
mentations of embedded systems based on MATLAB specifica-
tions. We are able to maintain a base MATLAB code and to
achieve different specializations, code insertions to trace and to
acquire dynamic properties, through the use of aspects. This cer-
tainly contributes to modularity and code maintenance. In addi-
tion, our approach can be used as a support to some advanced

MATLAB type and shape inference analysis systems as the re-
sults of those analyses can be represented by aspect-oriented rules.

One of the difficulties we found is the lack of MATLAB code
considering some of the secondary concerns such as the ones
including customized data types and monitoring. Most MATLAB
code found in repositories represent generic, target independent,
models. The use of MATLAB models considering custom data
types is more related to subsequent stages of the design cycle,
e.g., for embedded systems products. It is understandable that
those models may not be public. The monitoring concerns occur
during the entire design cycle and most of them are concerns that
typically are not present in the end.

Although the current version of our approach provides useful
mechanisms to express monitoring and data type assignments, it
can be enhanced by considering other types of aspect rules and
more sophisticated patterns to express join point selections. Ex-
tensions to the support of parameters would make rules more
reusable.

From the derived results, it is advantageous for our approach if
other metrics are also considered. In future, other metrics that
have no correlation (see the aspectual bloat and the tangling ratio
values presented for latnrm and pid in the previous section)
should be used as well.

Complementary work in progress includes studies about other
aspect-oriented rules, a more powerful pattern language, and a
tool to manage strategies (the possibility to apply different se-
quences of aspect rules). In addition, we expect that our ongoing
work on aspects related to complementary information can help a
MATLAB compiler to map more efficiently MATLAB computa-
tions and data structures to the target architecture. One interesting
research avenue is the automatic extraction of secondary concerns
from MATLAB code to aspect modules.

8. ACKNOWLEDGMENTS
This work was partially supported by FCT (Portuguese Science
Foundation) under the project AMADEUS (POCTI,
PTDC/EIA/70271/2006).

9. REFERENCES
[1] R. Allen, Compiling high-level languages to DSPs, IEEE

Signal Processing Magazine 22, 3 (2005) 47-56.
[2] R. Nobre, J.M.P. Cardoso, P.C. Diniz, Leveraging type

knowledge for efficient MATLAB to C translation, 15th
Workshop on Compilers for Parallel Computing (CPC'10),
Vienna, Austria, 2010.

[3] S. Roy, P. Banerjee, An algorithm for converting floating-
point computations to fixed-point in MATLAB based FPGA
design, 41st Annual Design Automation Conference
(DAC’04), 2004, pp. 484-487.

[4] S. Roy, P. Banerjee, An algorithm for trading off quantiza-
tion error with hardware resources for MATLAB-based
FPGA design, IEEE Transactions on Computers 54, 7 (2005)
886-896.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V.
Lopes, J.-M. Loingtier, J. Irwin, Aspect oriented program-
ming, European Conference on Object-Oriented Program-
ming (ECOOP’97), LNCS 1241, 1997, pp. 220-242.

[6] J. Irwin, J.-M. Loingtier, J. Gilbert, G. Kiczales, J. Lamping,
A. Mendhekar, T. Shpeisman, Aspect-oriented programming
of sparse matrix code, Int. Scientific Computing in Object-

Oriented Parallel Environments (ISCOPE’97), LNCS 1343,
1997, pp. 249-256.

[7] J. M. P. Cardoso, J. M. Fernandes, and M. Monteiro, Adding
Aspect-Oriented Features to MATLAB, in SPLAT! 2006,
Software Engineering Properties of Languages and Aspect
Technologies, workshop affiliated with AOSD 2006, March
21, 2006. Bonn, Germany.

[8] D.L. Parnas, On the criteria to be used in decomposing sys-
tems into modules, Comm. ACM 15, 12 (1972) pp.
1053-1059.

[9] R. Filman, T. Elrad, S. Clarke, M. Aksit (eds), Aspect-
Oriented Software Development, Addison-Wesley 2005.

[10] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr., N
degrees of separation: multi-dimensional separation of con-
cerns, 21st International Conference on Software Engineer-
ing (ICSE’99), ACM, New York, NY, USA, pp. 107-119.

[11] J.W. Eaton, D. Bateman, S. Hauberg, GNU Octave Manual
Version 3, 2009.

[12] C. Bunks, J.P. Chancelier, F. Delebecque, C. Gomez,
M. Goursat, R. Nikoukhah, S. Steer, Engineering and Scien-
tific Computing with Scilab, Birkhäuser, 1999.

[13] P. Martins, P. Lopes, J.P. Fernandes, J. Saraiva, J.M.P. Car-
doso, Program and aspect metrics for MATLAB, 12th Inter-
national Conference on Computational Science and Applica-
tions (ICCSA 2012), LNCS 7336, 2012, Part IV, pp. 217–
233.

[14] M. Monteiro, J.M.P. Cardoso, S. Posea, Identification and
characterization of crosscutting concerns in MATLAB sys-
tems, Conference on Compilers, Programming Languages,
Related Technologies and Applications (CoRTA 2010),
Braga, Portugal, 9-10 September 2010..

[15] J. Lima, R. Menotti, J.M.P. Cardoso, E. Marques, A method-
ology to design FPGA-based PID controllers, IEEE Interna-
tional Conference on Systems, Man, and Cybernetics
(SMC’06), 2006, pp. 2577-2583.

[16] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and
T. Sherwood, Bitwidth cognizant architecture synthesis of
custom hardware accelerators, IEEE Transactions on Com-
puter-Aided Design of Integrated Circuits and Synthesis 20,
11 (2001):1355-1371.

[17] K. Scott, J. Davidson, Exploring the limits of sub-word level
parallelism, 9th Int. Conference on Parallel Architectures and
Compilation Techniques (PACT'00), 2000, pp. 81-91.

[18] M. L. Chang, S. Hauck, Précis: A user centric word-length
optimization tool, IEEE Design and Test of Computers 22, 4
(2005):349-361.

[19] D-U. Lee, A. A. Gaffar, R. C. C. Cheung, O. Mencer, W.
Luk, G. A. Constantinides, Accuracy guaranteed bit-width
optimization, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 25, 10 (2006):1990-2000.

[20] A. Nayak, M. Haldar, A. Choudhary, P. Banerjee, Precision
and error analysis of MATLAB applications during auto-
mated hardware synthesis for FPGAs, Conference on Design,
Automation and Test in Europe (DATE’01), 2001, pp. 722-
728.

[21] P. Banerjee, D. Bagchi, M. Haldar, A. Nayak, V. Kim,
R. Uribe, Automatic conversion of floating-point MATLAB
programs into fixed-point FPGA based hardware design,
11th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM’03), pp. 263-264, 2003.

[22] J.-C. Bach, É. Balland, P. Brauner, R. Kopetz, P.-E. Moreau,
A. Reilles, TOM Manual, Version 2.7, May, 2009
(http://tom.loria.fr)

[23] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, A. Reilles,
Tom: Piggybacking rewriting on Java, 18th International
Conference on Term Rewriting and Applications (RTA’07),
Paris, France, LNCS 4533, 2007, pp. 36-47.

[24] D. Stein, S. Hanenberg, R. Unland. Expressing different
conceptual models of join point selections in aspect-oriented
design, 5th International Conference on Aspect-Oriented
Software Development (AOSD '06), 2006, pp. 15-26.

[25] T. Aslam, J. Doherty, A. Dubrau, L. Hendren, AspectMatlab:
An aspect-oriented scientific programming language, 9th In-
ternational Conference on Aspect-Oriented Software Devel-
opment (AOSD'10), 2010, pp. 181-192.

[26] UTDSP Benchmark Suite,
http://www.eecg.toronto.edu/~corinna/DSP/infrastructure/UT
DSP.html.

[27] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd
ed., Cambridge University Press, New York, 2007.

[28] H. Masuhara, G. Kiczales, C. Dutchyn, A Compilation and
optimization model for aspect-oriented programs, Compiler
Construction (CC2003), LNCS 2622, 2003, pp. 46-60.

[29] C. V. Lopes, D: A language framework for distributed pro-
gramming, PhD Thesis, College of Computer Science,
Northeastern University, USA, 1997.

[30] C. V. Lopes, AOP: A historical perspective (what’s in a
name?), in: R.E. Filman, T. Elrad, S. Clarke, M. Akşit (Eds.),
Aspect-Oriented Software Development, Addison-Wesley,
2005, pp. 97–122.

[31] T.R. Mück, A.A. Fröhlich, M. Gernoth, W. Schröder-
Preikschat, Implementing OS components in hardware using
AOP, SIGOPS Oper. Syst. Rev. 46, 1 (2012) 64-72.

[32] É. Linehan, E. O’Toole, S. Clarke, Model-driven automation
for simulation-based functional verification, ACM Trans.
Des. Autom. Electron. Syst. 17, 3 (2012) 31.

[33] É. Linehan, S. Clarke An aspect-oriented, model-driven
approach to functional hardware verification, J. Syst. Archit.
58, 5 (2012), 195-208.

[34] J. Gray, S. Neema, T. Bapty, A. Gokhale, D.C. Schmidt, J.
Zhang, Y. Lin, Concern separation for adaptive QoS model-
ing in distributed real-time embedded systems, in: L. Gomes,
J.M. Fernandes (Eds.), Behavioral Modeling for Embedded
Systems and Technologies: Applications for Design and Im-
plementation, IGI Global, 2010, pp. 85-113.

[35] M.F.S. Oliveira, M.A. Wehrmeister, F.A. Nascimento, C.E.
Pereira, F.R. Wagner, High-level design space exploration of
embedded systems using the model-driven engineering and
aspect-oriented design approaches, in: L. Gomes, J.M. Fer-
nandes (Eds.), Behavioral Modeling for Embedded Systems
and Technologies: Applications for Design and Implementa-
tion, IGI Global, 2010, pp.114-146.

[36] L. Hendren, Typing aspects for MATLAB, 6th Annual
Workshop on Domain-Specific Aspect Languages
(DSAL’11), 2011, pp. 13-18.

[37] J.M.P. Cardoso, P. Diniz, M.P. Monteiro, J.M. Fernandes, J.
Saraiva, A domain-specific aspect language for transforming
MATLAB programs, Domain-Specific Aspect Language
Workshop (DSAL’2010), 2010.

[38] F. Bodin, Y. Mével, R. Quiniou, A user level program trans-
formation tool, International Conference on Supercomputing,
1998, pp. 180-187.

[39] J.R. Cordy, The TXL source transformation language, Sci-
ence of Computer Programming 61, 3 (2006) 190-210.

[40] K. Czarnecki, U. W. Eisenecker, R. Glück, D. Vandevoorde,
T. L. Veldhuizen, Generative programming and active librar-
ies, in: M. Jazayeri, R. Loos, D. R. Musser (Eds.), Selected
Papers from the International Seminar on Generic Program-
ming, Springer, London, 1998, pp. 25-39.

[41] J. Doherty, L. Hendren, S. Radpour, Kind analysis for
MATLAB, ACM International Conference on Object Ori-
ented Programming Systems Languages and Applications
(OOPSLA '11), 2011, pp. 99-118.

[42] J.M.P. Cardoso, T. Carvalho, J.G.F. Coutinho, W. Luk, R.
Nobre, P.C. Diniz, Z. Petrov, LARA: An aspect-oriented
programming language for embedded systems, International
Conference on Aspect-Oriented Software Development
(AOSD’12), 2012, pp. 179-190.

10. APPENDIX
Below is an excerpt of the LL(1) grammar of the aspect-oriented language.

Start ::= (<APPLY> <IDENTIFIER> (":" <IDENTIFIER>)* ";")* (Rule)*

Rule ::= <RULE> <IDENTIFIER> (Use)* (Statement | InjectCode | TypeDef)* (DataTypeConvRules)* <END>

InjectCode ::= <IF> IfRule (TargetCode)+ <END>

Set ::= <SET> ((<IDENTIFIER> "=" (("{" <IDENTIFIER> ("," <IDENTIFIER>)* "}") | Types | <IDENTIFIER>))
| … | (<FIXED> "=" "{" FixedPointProperties "=" ValuesFixedPointProperties ("," FixedPointProperties "="
ValuesFixedPointProperties)* "}")) ";"

FixedPointProperties ::= <OVERFLOW> | <ROUND>

ValuesFixedPointProperties ::= <WRAP> | … | <FLOOR>

TypeDef ::= <TYPEDEF> <IDENTIFIER> "=" Types ";"

Use ::= <USE> <IDENTIFIER> ";"

Types ::= <INT8> | <INT16> |…| <DOUBLE> | <SINGLE> | Fixed | Float | Int

Fixed ::= <FIXED> ("<" <NUMBER> "," <NUMBER> "," <NUMBER> ">")?

Float ::= <FLOAT> ("<" <NUMBER> "," <NUMBER> "," <NUMBER> ">")?

Int ::= <INT> ("<" <NUMBER> "," <NUMBER>)?

Statement ::= ForEachStatement | Insert | Set | WithStatement

ForEachStatement ::= (<FOREACH> (<KEY> | <TAG> | Var) (<IDENTIFIER>)? <IN> ((<IDENTIFIER> | ((<PROGRAM> |
<FUNCTION>) ("=" SetOfJPs)?) (":" SetOfJPs)?)? ("{" JPList "}")?) <DO> ((Insert | Set) (
<DEPENDENT> ":" (DependentStmt)+ <END>)?)+ <END>)

Var ::= <VAR> (“.” (<SET> | <GET>))?

SetOfJPs ::= <IDENTIFIER> | ("{" (<IDENTIFIER> ("," <IDENTIFIER>)*) "}")

WithStatement ::= <WITH> ((((<FUNCTION> | <MODULE>) "=" <IDENTIFIER>) ((<DO> (Statement (<DEPENDENT>
":" (DependentStmt)+ <END>)?)+ <END>) | (("," ((<CALL> "=" <IDENTIFIER>) | (<OPERATION> "="
OpsForConfigRules)))? (<USE> (<CONFIGURATION> <IDENTIFIER> ";")+ <END>)))) | (<STMT> "="
<STRING> <DO> Decompose <END>) | (Var "=" SetOfJPs <DO> (Statement)+ <END>))

DependentStmt ::= <FOREACH> (<KEY> | <TAG> | Var) (<IDENTIFIER>)? <IN> ((<IDENTIFIER> | ((<PROGRAM> |
<FUNCTION>) (":" <IDENTIFIER>)?)) | "{" JPList "}") <DO> ((Insert | Set)+) <END>

JPList ::= ((("@")? <IDENTIFIER>) | Keys) ("," ((("@")? <IDENTIFIER>) | Keys))*

Insert ::= <INSERT> "." (<BEFORE> | <AFTER> | <AROUND>) ("." (<END> | <BEGIN>))? ":" (TargetCode)+

Keys ::= <END> | <IF> | <ELSE> | <FOR>

TargetCode ::= <TARGETCODE>

 | <FPRINTF> "(" Arg ("," Arg)* ")" ";"

 | <IDENTIFIER> ((Param "=" ((<IDENTIFIER> Param Op <NUMBER>) ";" | (<NUMBER>) ";")) | ("(" (
Arg ("," Arg)*)? ")" ";"))

 | <PRINT> "(" (<SCREEN> | (<FILE> ":" ((<IDENTIFIER> "." <IDENTIFIER>) | (<QUOTED>)))) "," Arg
("," Arg)* ")" ";"

 | <WARNING> "(" <QUOTED> ")" ";"

Decompose ::= <DECOMPOSE> <TARGETCODE> ";"

Op ::= "+" | ”-“ | … | “*“

Arg ::= <NUMBER>

 | <IDENTIFIER> (Param)?

 | <QUOTED> (Param ":" <QUOTED>)?

 | Param (":" <QUOTED>)?

 | "\'" Param (":" <QUOTED>)? "\'"

Param ::= "<" (<KEY> | <IDENTIFIER> | <VAR>) ("." <IDENTIFIER>)? ">"

DataTypeConvRules ::= (<COMMUTATIVE>)? <OPERATION> OpsForConvRules TypesOnCOnvRules (<LHS> | <IDENTIFIER>)
"::=" "(" TypesOnCOnvRules (<IR> | <IDENTIFIER>) ")" "[" TypesOnCOnvRules <IDENTIFIER> (","
TypesOnCOnvRules <IDENTIFIER>)? "]" ":" (IfConvRule | SimpleStatement)+ <END>

IfConvRule ::= <IF> "(" (<LHS> | CompleteIdentifier) (">=" | "<=" | ">" | "<" | "==" | "!=") (CompleteIdentifier |
BuiltInFunctions "(" (CompleteIdentifier ("," CompleteIdentifier)*)? ")") ")" (SimpleStatement | IfConvRule)+
(<ELSE> (SimpleStatement | IfConvRule)+)? <END>

SimpleStatement ::= (<IR> "=" (<LHS> | BuiltInFunctions "(" (CompleteIdentifier ("," CompleteIdentifier)*)? ")" |
CompleteIdentifier) ";")

 | (CompleteIdentifier "=" (CompleteIdentifier | BuiltInFunctions "(" (CompleteIdentifier ("," CompleteIdentifier
)*)? ")") (Op (CompleteIdentifier | BuiltInFunctions "(" (CompleteIdentifier ("," CompleteIdentifier)*)? ")")
)? ";")

BuiltInFunctions ::= <MAX> | … | <MIN>

OpsForConvRules ::= <STRING>

OpsForConfigRules ::= <STRING>

CompleteIdentifier ::= <IDENTIFIER> ("." (<IDENTIFIER> | BuiltInFunctions))?

TypesOnCOnvRules ::= (Types | <FLOAT> | <INT>)

