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ABSTRACT 

This article presents an approach to enrich the MATLAB1 lan-
guage with aspect-oriented modularity features, enabling develop-
ers to experiment different implementation characteristics and to 
acquire runtime data and traces without polluting their base 
MATLAB code. We propose a language through which pro-
grammers configure the low-level data representation of variables 
and expressions. Examples include specifically-tailored 
fixed-point data representations leading to more efficient support 
for the underlying hardware, e.g., digital signal processors and 
application-specific architectures, without built-in floating point 
units. This approach assists developers in adding handlers and 
monitoring features in a non-invasive way as well as configuring 
MATLAB functions with optimized implementations. Different 
aspect modules can be used to retarget common MATLAB code 
bases for different purposes and implementations. We validate the 
proposed approach with a set of representative examples where 
we attain a simple way to explore a number of properties. Ex-
periment results and collected aspect-oriented software metrics 
lend support to the claims on its usefulness. 
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1. INTRODUCTION 
In MATLAB, features such as configuration of the low-level 
numeric representation of variables, assignment of specific data 
types and dynamic type specialization are directly supported by 
the language. In simulation tasks, such features provide significant 
support for developers that need to explore non-uniform fixed-
point representations, monitor specific variables throughout a 

                                                                 
1 MATLAB is a registered trademark of MathWorks Inc. 

http://www.mathworks.com 

timing window and include handlers to observe specific behav-
iors. However, these features are also extremely cumbersome, 
error-prone and tedious to use. Each time they are used, develop-
ers are forced to perform invasive changes on the base code, 
namely adding “temporary” new code that must subsequently be 
removed before delivering the final version.  

As MATLAB is typically used as a specification rather than an 
implementation language, tools to translate MATLAB code to the 
target programming language are important to achieve high-levels 
of productivity and efficiency. However, in order to attain a given 
desired efficiency level, the high abstraction level provided by 
MATLAB requires that tools be guided by users. In fact, the 
issues described above arise often in relation to automatic synthe-
sis of MATLAB specifications to a software language [1][2] or a 
hardware description language [3]. In the steps for finding effi-
cient implementations, users have to conduct customized profiling 
schemes, monitoring techniques, and data type and word-length 
exploration, mostly through the invasive insertion of new code.  

In the past, multiple research efforts attempted to automate spe-
cific implementation issues. For instance, the transformation from 
floating- to fixed-point data types was conducted with some re-
strictions to MATLAB specifications [3][4]. However, it is usu-
ally claimed that the developer should have full control of the 
development process. Data type conversions are not trivial and 
usually require the intervention of the developers. Devising data 
types and word-lengths requires complex precision and accuracy 
analyses, which tend to become even more complex when consid-
ering customized data types and word-lengths. Typically, devel-
opers of MATLAB models rely on the default MATLAB data 
type (i.e., double precision floating-point) when often the full 
precision is not required. In the implementation stages of an em-
bedded system, developers need to analyze the data type and 
word-length trade-offs in order to produce efficient solutions. 
Furthermore, when using customized word-lengths, developers 



  

may also have to explicitly define type conversions and the result-
ing word-lengths for the operations dealing with those types, as 
the associated type conversion semantic rules are not built-in in 
the programming language2. Even when this process is assisted by 
tools, developers must explore and evaluate different data type 
representations, often by modifying the base MATLAB code and 
by simulating their effects on the precision of the system. In addi-
tion, according to the system being targeted, the same MATLAB 
code base may have different final implementations, forcing the 
developers to maintain different code bases pertaining to the same 
core functionality. 

Since MATLAB is commonly used as a modeling/specification 
language, most MATLAB code aims to maximize its scope of 
applicability and dynamic configurability but at the price of unac-
ceptable overheads for most common embedded computing im-
plementations. In addition, developers often need to evaluate 
multiple algorithm implementations for a specific function, and 
each of those evaluations requires modifications to the MATLAB 
base code. An approach to provide different MATLAB versions 
from the same input MATLAB code would provide an important 
mechanism to avoid cumbersome, error-prone, code conversions 
and the maintenance of different MATLAB versions.   

The root cause of the aforementioned problems is lack of modu-
larity for dealing with secondary concerns. Ideally, core function-
alities would be represented in the MATLAB code while secon-
dary concerns, such as verification of the type and the number of 
the arguments for a given call of a function, should be kept in 
separate aspect modules as proposed in the context of aspect-
oriented programming (AOP) [5][6]. Such concerns are not sup-
posed to be implemented in the target embedded system and the 
developer needs to remove (or unplug) them in the process of 
translating the MATLAB code to the target programming lan-
guage. Modularization of such concerns allows us to keep the core 
MATLAB code ready for translation to the target programming 
language, and thus to be implemented in the target embedded 
system and to automatically generate the generic MATLAB code 
used as a model. The generation of this generic MATLAB code is 
the responsibility of an aspect weaver – a tool or compiler com-
ponent that composes aspect modules to the other parts of the 
system. 

Hence, an approach is needed to generate and maintain a clean 
version of a MATLAB code. By clean (or unpolluted), we mean a 
version of the MATLAB code that includes just the core function-
ality, necessary for the system implementation. Clean code does 
not include configuration code or secondary concerns needed only 
during development, which should be kept in separate aspect 
modules. 

Specialization is important when implementing the MATLAB 
application in the embedded system. This specialization can be 
leveraged by an AOP approach to MATLAB. The removal of the 
aforementioned secondary concerns can be approached as a spe-
cialization. Examples include data type specialization – assigning 
non-default data types to variables – and array size and shape 
specialization – defining statically the size and the shape of an 
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vantage to make possible the exploration of those rules, as for a 
specific implementation, we may prefer to reduce accuracy and 
to use less costly operations and word-lengths. 

array instead of including MATLAB code to get those parameters 
dynamically. 

In this article, we propose aspect-oriented extensions to 
MATLAB to assist developers in system modeling and explora-
tion of specific features related to embedded systems’ implemen-
tations. Our approach, which builds on our previous work [7], 
relies on the principle of separation of concerns [8][9][10] to 
separately handle data types and behaviors. One of the ensuing 
advantages is that a single version of the specification (i.e., a 
MATLAB code base) can be used throughout the entire develop-
ment cycle without the need for maintaining multiple versions – 
as is the case with existing technology. This separation facilitates 
the development, simulation, exploration and implementation 
phases. The extensions we propose can be used in other languages 
as well, namely “MATLAB clones” such as GNU Octave3 [11] 
and Scilab [12]. Furthermore, preliminary studies show that the 
use of aspect modules in the MATLAB context improves the 
quality of MATLAB programs [13]. 

The main contributions of this article are: 

− An aspect-oriented language to extend MATLAB models 
with features for supporting aspect modules that separately 
enclose concerns related to specialization, configuration, and 
monitoring. 

− An aspect-oriented approach to enable programmers to flexi-
bly explore a range of data type specializations, which in-
cludes aspect-oriented rules to specify the semantic rules for 
data type conversions and word-length assignments in opera-
tions using different, possibly customized, data types. 

− An approach designed to tackle the problem of managing 
multiple implementations that depend on the target system, 
without forgoing a “clean” version of the MATLAB high-
level model. 

The rest of the paper is organized as follows. Section 2 provides a 
short introduction to the MATLAB programming language. Sec-
tion 3 describes the main motivation for our work. Section 4 
presents the approach and describes the domain-specific aspect 
language. In Section 5 we present a number of test cases per-
formed. Section 6 compares our approach to related work. Con-
cluding remarks are presented in Section 7. 

2. THE MATLAB PROGRAMMING 
LANGUAGE 
MATLAB is a dynamic, interpreted, imperative programming 
language mainly based on array data types and operations on 
those types. It is widely used in scientific computing, control 
systems, signal processing, image processing, system engineering, 
simulation, etc. Mathworks – the company that developed and 
holds the language’s rights – provides a complete integrated envi-
ronment to develop MATLAB projects. The environment includes 
a number of suitable debugging features. It includes Simulink, a 
visual, component-based environment suitable for simulation of 
discrete and continuous systems. Several toolboxes (packages) are 
available that include special functions and features in a number 
of domains. Such packages make the language one of the pre-
ferred choices to model and simulate complex systems. Over 
1,500 books4 dedicated to MATLAB attest to its wide adoption. 

                                                                 
3 GNU Octave: http://www.gnu.org/software/octave/. 
4 http://www.mathworks.com/support/books/ 



  

Like most interpreted languages (e.g., Perl and Python), 
MATLAB does not require the declaration of variables. By de-
fault, the numeric representation used is the floating-point data 
type with double precision (64 bits, according to the IEEE stan-
dard 754 format). Other supported numeric data types include 
integers (with 8, 16, 32 and 64 bits) and single precision floating-
point numbers. MATLAB supports other numeric representations 
by using specific toolboxes. They enable the assignment of spe-
cific data types and operation properties (e.g., overflow mode) to 
MATLAB variables. Useful features of MATLAB include opera-
tor overloading, function polymorphism and dynamic type spe-
cialization. Function polymorphism enables the same function to 
be called with different number and types of arguments. Dynamic 
type specialization enables variables to represent different data 
types during runtime. For instance, developers can simulate the 
same code by applying stimulus with different data types. 

MATLAB5 provides a number of features suitable for fast model-
ing such as the vast set of supporting packages (toolboxes), the 
Mathworks simulation environment (including also Simulink) and 
the expressiveness of the language as regards specifying opera-
tions on array variables (e.g., matrix manipulations and opera-
tions). 

MATLAB is a dynamic language, i.e., variables are not explicitly 
declared and data types of the elements, size, and shape of array 
variables are dynamically defined based on the runtime context. 
By default, all data types are N-arrays using double precision (64 
bits) data types. Arrays may have different dimensions, forming 
the shape of the array variable. Arrays can store a single element, 
vectors of elements, and matrixes of elements. Additional data 
types supported by MATLAB (see Figure 1) include arrays with 
heterogeneous elements (known as cells), structures, strings, 
booleans, and function-handlers. In addition to the double-
precision floating-point data type, MATLAB also supports single-
precision data types and integer (signed or unsigned) representa-
tions (with 8, 16, 32, and 64 bits). 

 

Figure 1. MATLAB data types (known in MATLAB as 
classes). (source: Mathworks1) 

A MATLAB program comprises functions (known as M-files) 
and scripts. Functions have a name, arguments, and may have 
zero or more return variables. Functions can be called without 
passing all the arguments. Semantically, in MATLAB all function 
arguments are passed by value. To save memory, MATLAB 
execution environments pass by value only those arguments that a 
function modifies and by reference all the others. Scripts corre-
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spond to files with MATLAB code and without specifying in-
puts/outputs. Scripts can be also called in other scripts and in 
functions. 

With the exception of the variables declared as global, MATLAB 
variables have local scope (function or script). A particular name 
(identifier) may refer to a variable or to a script or a function (a 
sub-function, a private function, or a function in the search path). 
In some cases, a MATLAB execution environment or compiler 
may have to postpone name resolution to runtime. 

MATLAB also allows the definition of new classes. MATLAB 
classes can fall either in value classes or in handle classes. Both 
include two sections: properties (where attributes are declared) 
and methods (where functions are located). Handle classes also 
include an additional section named events. In this paper we do 
not consider features relating to classes as most MATLAB code is 
not developed according to the object-oriented paradigm. 

Figure 2 shows a MATLAB function that receives as argument an 
N-array identified as x and returns an N-array identified as y. It 
represents an algorithm to perform the Discrete Fourier Trans-
form (DFT) – a function widely used in signal processing systems. 
The statement in line 3 creates an array identified as y with the 
size of the array x and with all elements equal to 0 – represented 
in double-precision. This statement is not strictly needed as 
MATLAB dynamically reallocates memory space to store the 
elements of y during runtime, i.e., during the assignments in line 
9. The statement in line 6 creates an array named t with N values 
starting with 0 and equally spaced by 1/N. The for loop in lines 8-
9 computes and assigns a value to each k element of y, consider-
ing values of k from 1 to N. The calculations performed in the 
expression serving as the argument to the function sum in the loop 
body (line 9) are matrix-based calculations. 

1. function [y] = dft(x) 
2.  
3.  y=zeros(size(x)); 
4.  N=length(x); 
5.  
6.   t=(0:N-1)/N; 
7.  
8.  for k=1:N 
9.    y(k) = sum(x.*exp(-j*2*pi*(k-1)*t)); 

Figure 2. Simple MATLAB example (function to perform a 
Discrete Fourier Transform, source: [1]) – original code. 

Figure 3 illustrates in a first example a function to add two vari-
ables x, y. Depending on the input variables, the sum operation 
performs an addition of two numbers or additions of the elements 
of two arrays. Thus, the result can be a simple number or an array 
of numbers resulting from the addition of the elements of the x 
and y arrays in equivalent positions. Figure 3 shows two further 
examples to add two variables. Note that the three examples may 
accomplish the same result but that depends on the shapes of the 
variables x and y. 

MATLAB does not distinguish between accesses to variables and 
function invocations, e.g., sin(1) can be an invocation to the sin 
function with 1 as argument or an access to the first element of the 
array variable sin. When there is an assignment to sin, i.e., a 
statement defining sin as a variable (e.g., sin=2;), before the 
access sin(1), a plain reference to sin represents the access to the 
first element of the array variable sin. In some cases, we can 
distinguish between the two by performing static name resolu-
tions. Otherwise, a name can only be resolved dynamically. 



  

1. % first example 
2. function [z] = add(x, y) 
3.   z = x + y; 
_______________________________________________ 
1. % second example: 
2. function [z] = add(x, y) 
3.  for k=1:length(x) 
4.    z(k) = x(k) + y(k); 
5.  end 
________________________________________________ 
1. % third example: 
2. function [z] = add(x, y) 
3.   [nr,nc]=size(x); 
4.    
5.   for k=1:nr 
6.    for j=1:nc 
7.      z(k,j) = x(k,j) + y(k,j); 
8.     end 
9.   end 

Figure 3. Three different possibilities to add two variables. 

Figure 4 illustrates an example that uses function handlers (de-
noted by @) where an argument may refer to a function or to a 
variable. Function handlers can be also used to define functions 
embedded in the MATLAB code as in the following MATLAB 
statement: sqr = @(x) x.^2;. In this case, one can use sqr as the 
function to calculate the square of each element in the array vari-
able passed as argument. 

1. … 
2.  a = @sin; 
3.  z1 = f1(0, a); % “x” argument in function “f1” 
       will refer the “sin” function 
4.  … 
5.  z2 = f1(1); % “x” argument in function “f1”  
       will refer a variable 
6.  … 
7.  function [z] = f1(y, x) 
8.   if(y == 1) 
9.      x = 3; 
10.   end 
11.   z = x(1); 

Figure 4. Example where an identifier refers to an array vari-
able or to a function depending on the path taken. 

3. MOTIVATION 
Uses of MATLAB in embedded systems range from the modeling 
of specific system components to the development of entire appli-
cations. Usually, developers start by modeling the core parts of 
the application in MATLAB, leveraging its high-level matrix-
oriented and data type abstractions. The MATLAB environment is 
next used to simulate those core parts of the applications. The 
simulation may involve the interface of the cores to models of 
other system components or to real data traces previously pro-
vided. When work on the MATLAB model is over, developers 
need to translate the MATLAB code (or the parts to be mapped to 
the target system) to a native programming language (such as C). 
Although many efforts were carried out to automate this process, 
there is usually the need to allow developers to evaluate different 
specializations (e.g., of data types). These evaluations are much 
easier to do by simulation than by hand-coding. For efficiently 
supporting specialization, it is important to monitor variables and 
to evaluate different data type assignments. At the end of this 
process, an optimized MATLAB code version is used for imple-
mentation. Approaches that assist in this process comprise impor-
tant contributions to increases in productivity. 

There are many cases relating to the presence of code associated 
to secondary concerns that needs to be removed before the final 
implementation. This code can be encapsulated in aspect modules 
that can be composed through an aspect weaver. Multiple versions 
of the core, or base, code can be generated, e.g., one with the 
secondary code, another with type specialization for the final 
implementation. Our analysis of crosscutting concerns over 
MATLAB code repositories [14] discusses the intensive use of 
MATLAB built-in functions and variables responsible for acquir-
ing runtime information about the size of arrays, verification of 
arguments of a function, data type conversions, etc. In a previ-
ously study [14] we conclude that the most common MATLAB 
secondary functionalities include: 

• Messages and monitoring: messages to the user, warnings, 
errors, graphics visualization, monitoring, etc.; 

• I/O data: reading data from file, writing data to file, saving 
an image, loading an image, etc.; 

• Verification of function arguments and return values: default 
shapes and values for the arguments that may not be passed 
in certain function calls; 

• Data type verification and specialization: check whether a 
variable is of certain type, configuring the assignment of data 
types to variables, etc.  

• System: code that verifies certain system environment prop-
erties, to pause execution, etc. 

• Memory allocation/deallocation: The use of the 'zeros' func-
tion is most of times used to allocate a specific array size. 
This avoids the reallocation for each new item to be stored in 
an array. Use of the 'clear' instruction that appears in some 
MATLAB functions is another example. 

• Parallelization: use of parallel primitives such as 'parfor'; 
• Design space exploration: code to explore different speciali-

zations, different algorithms to solve the same problem, to 
find the number of iterations needed (e.g., to be above a cer-
tain precision). 

• Dynamic properties: constructing inline function objects 
(inline), executing a string containing MATLAB expressions 
('eval'), etc. 

Secondary functionalities such as monitoring, data type speciali-
zations, and configuration features have an important role when 
developing models and code for embedded systems. Based on 
that, we centered our approach on those secondary functionalities 
without, however, loosing its applicability to other ones. The 
following subsections briefly describe monitoring, data type, and 
configuration concerns.  

3.1 Monitoring 
Monitoring can be used during the analysis phase enabling devel-
opers to acquire additional information to the typical information 
provided by profiling tools. Monitoring specific aspects of a 
MATLAB program can be important to analyze behaviors, value 
ranges of variables, number of accesses to matrix elements, con-
trol-flow paths taken during program execution, to acquire the 
accuracies when using specific data types, etc. Some monitoring 
aspects can be also important to acquire more information when 
dealing with legacy MATLAB code. An analysis of the resulting 
behaviors and execution characteristics can be of paramount 
importance to optimize code, to attain efficient implementations, 
and even to detect coding errors. However, sophisticated tracing, 
logging, and monitoring need some sort of code injection. 



  

The monitoring capabilities assist developers in verifying the 
MATLAB models and to enrich profiling with customized infor-
mation. The two following examples, presented in Figure 5 and 
Figure 6, illustrate monitoring for the two previous contexts.  

Figure 5 presents an example taken from a MATLAB model of a 
PID (Proportional Integral Derivative) controller previously used 
in [15], for monitoring by plotting signal variables (y and ref) and 
displaying parameters (kc, ti, td, ts). This monitoring code was 
used by the developer when designing the model for the PID 
controller. It helped him/her to verify the behavior of the control-
ler. 

1. … 
2.   figure; 
3.   plot(t,y); 
4.   hold on; 
5.   plot(t, ref, '--'); 
6.   xlabel ('time (s)'); 
7.   grid; 
8.   clear all; 
9.   … 
10. disp(['kc = ', num2str(kc_ini)]); 
11. disp(['ti = ', num2str(ti_ini)]); 
12. disp(['td = ', num2str(td_ini)]); 
13. disp(['ts = ', num2str(ts_ini)]); 
14. … 

Figure 5. Example of MATLAB code for monitoring. 

For example, computing the range (minimum and maximum 
values) of variables in MATLAB code can be important to acquire 
information that can be used to define the word-lengths of vari-
ables. Figure 6 shows an example for monitoring the range for 
variables top and bottom in the MATLAB code in Figure 6(a). As 
illustrated in Figure 6(b), a call to the range_find function is 
inserted after each assignment to the target variable. 

(a) 
... 
top = coef(j-1)*left-coef(j)*right; 
bottom = coef(j-1)*right+coef(j)*left; 
... 

(b) 

... 
top = coef(j-1)*left-coef(j)*right; 
range_find(top,'latnrm.top'); 
bottom = coef(j-1)*right+coef(j)*left; 
range_find(bottom, ’latnrm.bottom'); 
... 

Figure 6. Monitoring range values: (a) original MATLAB 
code; (b) MATLAB code after code insertion for monitoring 
value ranges (inserted code in italic). 

3.2 Data Types and Shapes 
As a default, MATLAB uses a matrix-oriented floating-point 
number representation with double precision. Thus, we need to 
specialize data types and shapes to avoid the runtime overhead of 
generic implementations. MATLAB does not support the notion 
of a scalar variable, just arrays of a single element. Representing 
this information in aspect modules may be important to comple-
ment techniques for type and shape inference, allowing a flexible, 
developer-guided, translation to native programming languages as 
well as yielding more efficient solutions – both in terms of code 
size and execution time. 

Some implementation requirements entail the use of case-specific 
bit-widths to represent numeric data (integer and real numbers) so 
as to obtain the required accuracy. Non-standard bit-widths can be 
exploited, e.g., to save resources and to speedup performance 
through specialized and lower latency arithmetic operators [16] or 

through sub-word level parallelism [17]. In several digital signal-
processing systems, the use of fixed-point arithmetic is common 
practice, due to the resulting efficient support, e.g., when targeting 
Digital Signal Processors (DSPs) devoid of hardware floating-
point units or specific hardware. Examples include implementa-
tions based on Field-Programmable Gate Arrays (FPGA). Spe-
cific architectures may also use specialized data types (e.g., float-
ing point arithmetic over data types not defined by the IEEE 754 
standard). Such implementations require multiple tests to identify 
the bit-widths that yield the required accuracy (acceptable quanti-
zation errors) and behavior. Several authors proposed methods to 
automatically translate floating- to fixed-point representations 
(see, e.g., [3-4], [18-21]). Some methods rely on profiling, while 
others rely on static schemes. Although this is an important topic, 
the translation usually serves just to assist the designer, since no 
method is fully automatic and none can be applied without restric-
tions. In certain cases, designer experience and knowledge of the 
system requirements (which may go beyond accuracy, e.g., relat-
ing to dynamic range or precision) is the key factor to the success 
of the final implementation. Therefore, refinement of simulation 
and specification play an important role at both the data and the 
behavioral levels. 

The MATLAB environment includes special packages to manage 
fixed-point representations. MATLAB provides two toolboxes for 
fixed-point computations: Filter Design Toolbox and Fixed-Point 
Toolbox. Filter Design provides functions (quantizer and quan-
tize) to quantize values represented as, e.g., doubles in fixed-point 
representations. Fixed-Point provides fixed-point data types and 
functions. Fi objects can be defined to represent a number of 
fixed-point properties and can be associated to variables and to 
arithmetic operations. 

Certain exploration features require specific changes in the code 
to be implemented. Such changes are error-prone, tedious, and 
difficult to maintain. In many cases, producing each new instance 
of the space being explored requires manual adaptations of large 
sections of code. Typical changes include insertion of statements, 
addition of function arguments, configuration of different data 
types, and definitions of global variables. Often, the developer 
must manage multiple versions of the same core specification. 

To illustrate, consider as an example the MATLAB code from 
Figure 2. A simple MATLAB script to test it is shown in Figure 
7(a). To use uniform fixed-point data types in the test, we merely 
add a line of MATLAB to the test program - see Figure 7(b). In 
this test, we use fi(x, 1, 9, 5), which constructs a numeric fixed-
point object with value x, signed representation, 9-bit word length, 
and 5-bit fraction length. However, to test the function using 
fixed-point representations with specialization of every variable 
and operation, we need to modify the original function, as shown 
in Figure 8. Note that the fixed-point representations used in the 
example are included here as a general example and have not been 
necessarily exploited to fulfill a specific accuracy or behavior.  



  

(a) 
x=[1 2 3 4 5 6 7 8]; % input values 
dft(x); 
... 

(b) 

x=[1 2 3 4 5 6 7 8]; 
 
% fi(v,s,w,f) returns a fixed-point object  
% with value v, signed property value s,  
% word length w, and fraction length f 
x=fi(x, 1, 9, 5); % new statement. 
 
dft(x); 
... 

Figure 7. Example of a MATLAB script – Test of dft function: 
(a) with double-precision data types; (b) with a uniform fixed-
point representation. 

During the design phase, we usually need models that closely 
resemble implementation details. As an example, it may be neces-
sary for computation results to be with fixed-point numeric repre-
sentations, to validate the final implementation using a compari-
son between Hardware Description Language (HDL) and 
MATLAB simulations. Modeling with specialized fixed-point 
representations is important because such implementations are 
usually needed to satisfy requirements such as low power dissipa-
tion, low energy consumption, better performance and fewer 
hardware resources. 

Note that this kind of data type specialization is also needed when 
object-oriented programming is used. Even if specific built-in 
class support for fixed-point data types is used, there is always the 
need to directly specify the required data type specializations. 
Though we do not focus on the object-oriented case, we believe 
our approach can be used in that context as well. Testing that 
hypothesis is left for future work. 

function [y] = dft_specialized(x) 
 
 y=zeros(size(x)); 
 N=length(x); 
 t=(0:N-1)/N; 
 
 quant1=quantizer('fixed','floor','wrap', [18 16]);
 t=quantize(quant1, t); 
 quant2=quantizer('fixed','floor','wrap', [23 20]);
 pi_fix = quantize(quant2, pi); 
 quant3=quantizer('fixed','floor','wrap', [20 8]); 
 quant4=quantizer('fixed','floor','wrap', [23 10]);
 quant5=quantizer('fixed','floor','wrap', [24 10]);
 quant6=quantizer('fixed','floor','wrap', [26 12]);
 quant7=quantizer('fixed','floor','wrap', [28 14]);
 quant8=quantizer('fixed','floor','wrap', [32 16]);
 
 for k=1:N 
  v1 = quantize(quant3, (k-1)*t); 
  v2 = quantize(quant4, pi_fix*v1); 
  v3 = quantize(quant5, -j*2*v2); 
  v4 = quantize(quant6, exp(v3)); 
  v5 = quantize(quant7, x.*v4); 
  y(k) = quantize(quant8, sum(v5)); 
 end 

Figure 8. Simple MATLAB example – code needed to model 
specialized fixed-point bit-widths. 

3.3 Configuration Features 
The configuration features targeted by our approach often arises 
when multiple, different implementations of a given function must 
be stored and managed. As an example, consider arithmetic divi-
sion that can be implemented with look-up tables, iterative algo-
rithms, or a combinatorial divisor. Each implementation may 

affect the overall system accuracy differently. Such systems re-
quire modeling prior to implementation, which entails changes in 
the original code giving rise to multiple versions of the code. 
Configuration features ameliorate the management problem. For 
instance, it would be helpful if developers could specify the im-
plementation used by a simulation in a given development phase 
without changing the base MATLAB code. Using the modularity 
provided by an AOP approach, at a specific development stage, 
developers can opt to the use of a certain algorithm implementa-
tion by specifying that option through an aspect. 

4. ASPECT-ORIENTED APPROACH 
Our approach envisages the usage of two separate groups of 
source files to model a given system: (1) MATLAB code repre-
senting the primary behavior and (2) rules written in our aspect-
oriented language. Aspect-oriented rules are mainly used to 
(a) reassign data types to variables in the MATLAB code, 
(b) introduce handlers and monitoring features, and (c) configure 
a function with a given implementation. A rule aims to facilitate 
development of embedded systems that require refinement of 
specific features required for implementation of the original speci-
fication. The proposed rules have declarative semantics as op-
posed to the imperative semantics of MATLAB. In our language, 
an aspect encloses one or several such rules, i.e., one rule is part 
of an aspect module. The proposed rules can be divided in the 
following groups according to their semantics: 

• Monitor/logging rules help users observe the runtime char-
acteristics of MATLAB variables. They include special be-
havior related to monitoring, such as returning the maximum 
value of a specific variable during the simulation period. 

• Handler rules are a kind of assertions that ensure certain 
conditions hold during the simulation period. 

• Type assignment rules are used to bind different types to 
the variables of the MATLAB specification, to specify type 
semantic rules in expressions, and to deal with name resolu-
tion. 

• Configuration rules are used to statically bind a different 
implementation to a given function or operator. 

The above rules are proposed based on observed needs while 
developing and implementing real embedded systems. The rules 
are represented by new specific constructs, e.g., to specify type 
assignments and to insert MATLAB code segments in specific 
locations. Usually, these segments add behavior rather than modi-
fying existing functionality and can be, e.g., instructions for data 
allocation or display. Concerns from other categories may be 
proposed, but are out of scope of the present article. Note, how-
ever, that although we focused our current approach on the sup-
port to the rules previously described, the approach can be used to 
represent other concerns that can be expressed through insertion 
of sections of code. 

Figure 9 presents the outline of the proposed system. As referred 
previously, aspect-oriented rules and MATLAB code are specified 
in different, separate files. A transformation engine – the aspect 
weaver – is responsible for generating new MATLAB code that 
includes the features composed according to the rules added to the 
system. The current implementation of the weaver uses the 
MATLAB compiler framework previously presented in [2]. The 
framework makes use of a strategic programming approach – 
Tom [22][23] in this case – to transform the intermediate repre-
sentation (IR) of the input MATLAB code. The weaving process 



  

presented in this paper is static, i.e., applied at compile time and 
consists of three stages. A first stage, named mat2tir, is responsi-
ble for transforming MATLAB input code into a Tom-based IR 
(tir) [22][23]. A middle stage named tir2tir modifies the input tir 
into according to the aspect rules fed into the system at this stage. 
Finally, a stage named tir2mat produces a MATLAB representa-
tion of the modified tir. 

A library of MATLAB functions is fed into the system, compris-
ing custom MATLAB functions that may be used in aspect rules. 
Although we consider here a MATLAB to MATLAB weaver, our 
approach can also be used to control the translation of MATLAB 
to other programming languages such as C, or hardware descrip-
tion languages such as VHDL or Verilog. An example is the 
current C code generation support provided by a stage, named as 
tir2c [2]. 

Front-End

MATLAB to IR 

(mat2tir)

weaver 

(tir2tir)

Back-End 

IR to MATLAB

(tir2mat)

MATLAB 

Code

MATLAB 

Aspects

MATLAB 

Code

MATLAB 

Weaver

TIR

TIR

 
Figure 9: Outline of the MATLAB-based system enhanced 
with aspect-oriented rules. 

4.1 The Aspect-Oriented Language 
The aspect-oriented language supports the specification of join 
points by means of specific patterns of code, code locations and 
specific events traceable to specific code constructions, such as 
function calls and accesses to array elements. An excerpt of the 
grammar of the language is presented as an appendix to this arti-
cle. According to the classification proposed by Stein et al. [24], 
the conceptual model for join point selections is based on control 
flows. 

The pattern language includes a number of keywords to identify 
some properties (see Table I). Some of those keywords just re-
quire simple pattern matching at the source code level. However, 
to identify calls to functions in the MATLAB code, a dynamic 
analysis must be performed to distinguish between function calls 
and array accesses. We use a set of simple rules and delegate such 
distinctions to the runtime identification ([25] uses a similar ap-
proach). The resolution is based on the following rules: 

• Assignments to identifiers require those identifiers to refer to 
array variables or functions if the identifier in the right hand 
side is preceded by ‘@’; 

• Use of identifiers is considered to refer to variables if there 
are only definitions (assignments to the variable, declaration 
of that variable as global) of that identifier reaching that par-
ticular use. In the case of multiple definitions without name 
resolution reaching an use, the identifier may refer to a func-
tion or a variable depending on the specific branches taken. 

• Uses of identifiers followed by ‘(‘ … ‘)’, where non-integer 
constants and strings are used as arguments, always refer a 
function call. 

Figure 10 illustrates the use of the property key to identify specific 
MATLAB keywords in the code. They are specified as a set of 
keywords: {for, while, if, end, else}. The aspect rule presented in 
Figure 10 drives the weaver to insert fprintf statements for each 
keyword of the set in the code being analyzed. Those fprintf 
statements will trace blocks of MATLAB code during runtime. 

Table I. The properties currently considered. 

Property Description 
<var> Identify variables in the MATLAB code 
<call> Identify function calls in the MATLAB code 

<function> Identify functions in the MATLAB code 
<tag> Identify tags (e.g., @label) in the MATLAB code 

using MATLAB line comments (they start with %) 
<program> Identify all the MATLAB files of a given program 

<key> Identify MATLAB reserved keywords in the code 
 

The join point model supported by the language was designed 
with the aforementioned tasks in view (e.g., monitoring, logging, 
handling, type-assignment and configuration). Its constructs – 
call, function, key, program, type and var – are static in nature. 
Nevertheless that does not preclude future work extending them 
so that they can be used as clauses constraining the set of join 
points captured the other part of a pointcut expression. This would 
be similar to what happens to, e.g., the args clause of AspectJ, 
which can be used both to specify argument types and to constrain 
the join points to just those whose number of arguments match the 
args clause. In this paper, the clauses are used in “static mode” 
only. 

Our aspect-oriented language uses the identifier (id) attribute to 
pinpoint where each join point occurred. Figure 10 shows an 
example of an aspect rule using indexing. This rule allows the 
weaver to insert code to trace the code blocks where each program 
execution passes (this can be helpful for debugging purposes and 
for detecting and localizing faults). The statement in line 2 of 
Figure 10 produces as many key elements as the number of join 
point shadows related to the elements in the join point selectors in 
the set {for, while, if, end, else, elsif}. The use of the 
attribute id (line 3) allows the weaver to insert a distinct number 
corresponding to each occurred join point shadow. This is helpful 
to represent the particular join point. For instance, Figure 11(a) 
shows an aspect rule which results in the insertion of MATLAB 
code to count the number of times the execution of the program 
passes in the body of each FOR-type loop in the code. The attrib-
ute id (lines 3 and 4) is used in this aspect to allow the inclusion 
of a different variable for each join point of type for (line 2). 
Figure 11(b) shows a simple example highlighting the code result-
ing from the weaving process when this aspect rule is applied. 



  

Other attributes being currently used are the get and set attributes 
of the var join point selector. They can be used to select uses 
(reads) or definitions (writes) of variables, respectively. Extending 
the support of other attributes will increase the potential of the 
language to express customized monitoring rules.  

1. rule trace_blocks 
2.  foreach key in {for, while, if, end, else,  
3.    elsif} do 
4.   insert.before: 
      fprintf(1,’block %d\n’,<key.id>); 
5.  end 
6. end % trace_blocks 

Figure 10. Aspect rule to insert code to trace executed code 
blocks. 

1. rule count_passes_in_each_for 
2.  foreach key in {for} do 
3.   insert.before:  
4.       count_<key.id> = 0; 
5.   insert.after: 
      count_<key.id> = count_<key.id>+1; 
6.  end 
7. end % count_passes_in_each_for 

(a) 

1. count_738 = 0; 
2. for k=1:nr 
3.   count_738 = count_738+1; 
4.   count_654 = 0; 
5.   for j=1:nc 
6.     count_654 = count_654+1; 
7.     z(k,j) = x(k,j) + y(k,j); 
8.   end 
9. end 

(b) 

Figure 11. (a) aspect rule to insert code to count executed code 
blocks; (b) example of MATLAB code showing (in italic) the 
code statements inserted according to the aspect rule. 

Figure 12(a) shows an aspect rule that results in the insertion of 
MATLAB code to count the number of times the execution of the 
program passes in two specific locations defined with the tags 
“@lab1” and “@lab2” in the code. As the counting must take into 
account the initialization of each variable, the rule uses the de-
pendent constructions to specify the locations of each initializa-
tion (“@lab3” and “@lab4”). This example also includes the 
insertion of two statements to print the information related to the 
values stored in each counter variable. These two print statements 
are placed after the tags “@lab5” and “@lab6”.  

1. rule count_passes 
2.  foreach tag t1 in {@lab1, @lab2} do 
3.   insert.after: 
4.    count_<t1> = count_<t1>+1; 
5.   dependent: 
6.    foreach tag t2 in {@lab3, @lab4} 
7.     insert.after: 
8.      count_<t1> = 0; 
9.    end 
10.    foreach tag t3 in {@lab5, @lab6} 
11.     insert.after: 
12.      fprintf(1,’count: %d\n’,count_<t1>); 
13.    end 
14.   end 
15.  end 
16. end % count_passes 

(a) 

1. %@lab2 
2. count_lab1 = 0; 
3.  
4. for k=1:nr 
5.   %@lab1 
6.   for j=1:nc 
7.     count_lab1 = count_lab1+1; 
8.     z(k,j) = x(k,j) + y(k,j); 
9.   end 
10. end 
11. %@lab5 
12. fprintf(1,’count: %d\n’,count_lab1); 

(b) 

Figure 12. (a) aspect rule to insert code to count the number of 
times the execution passes in two different locations; (b) ex-
ample of MATLAB code (with tags) showing in italic the code 
statements inserted according to the aspect rule. 

As illustrated in the example of Figure 12(b), a different variable 
is used for each count and each variable is initialized, incre-
mented, and reported in three different locations. To preserve the 
names of the variables in each of these locations, we need to use 
the dependent construction and tag identifiers (Figure 12(a)). 
Note, however, that this aspect rule can be replaced by two differ-
ent aspect rules (each one similar to the aspect rule illustrated in 
Figure 11(a)), one per counter variable. However, the expressive-
ness of the synthetic mechanism proposed by the aspect rule in 
Figure 12(b) would be lost. 

4.2 Aspect-Oriented Rules 
Type assignment and configuration comprise one of the most 
important categories of functionality for the aspect modules from 
the proposed approach. Using MATLAB, users start with a speci-
fication using double precision floating-point data types (the 
default MATLAB numeric data type). 

To illustrate, the following MATLAB code represents a multipli-
cation of two variables, previously assigned to constants. All the 
assigned and calculated values of this example are represented as 
doubles. 

a = ...; 
b = ...; 
... 
c = a*b; 

Note that in MATLAB an operation using two int16 type oper-
ands produces a result represented by a int16 type. If we wish to 
test the code with integer data types, e.g. of 16 bits, the original 
code must be changed to the following: 

a = int16(...); 
b = int16(...); 



  

... 
c = a*b; 

Using our approach the original code is kept as it is and we only 
need to add an assignment rule in an aspect file: 

foreach var in program do set type=int16; end 

This rule provides the transformation engine with the code needed 
to assign the type int16 for each variable from the original code. 
In case we need to simulate the original code using different data 
types for each variable, we just need to use the rules below. 

foreach var in program:{a,b} do set type=int16; end  
foreach var in program:{c} do set type=int32; end 

In this case we are specifying the following MATLAB code: 
a = int16(...); 
b = int16(...); 
... 
c = int32(a)* int32(b); 

In such cases, applying aspect-oriented rules may entail the de-
composition of arithmetic expressions into sub-expressions in 
order to apply different rules to each sub-expression. Suppose we 
have the following statement in a MATLAB specification: 

a = b*c+d; 

To bind different specialized fixed-point representations to the 
sub-expressions computed by this statement, we need to change 
the original code to: 

v1 = b*c; 
a = v1+d; 

Then, each variable in the above assignments can be bound to a 
specific fixed-point data representation. Although this step is 
relatively straightforward, it requires changes in the original code, 
making it significantly less legible – and possibly less general. To 
address this problem, we provide a decomposition rule telling the 
transformation engine to decompose a given expression into the 
specified sub-expressions. An example of this kind of rule is: 

with statement="a = b*c + d;" do 
 decompose { v1=b*c; v2=v1+d; a=v2;}; 
end 

This way, we can now provide type assignment rules to each 
variable (a, b, c, d, v1 and v2). Note that the statements within 
brackets in the decompose command must be correct MATLAB 
code with the same behavior as the original expression. 

Monitor type rules may help developers by including observing 
behavior without changing the original MATLAB code. Examples 
range from monitors to the data sent to a file during a write to the 
values of specific variables during simulations. For instance: 

foreach var in program do  
  insert.after: print(file:’<var>.dat’, <var>); 
end 

In some cases, we may want to register the maximum and mini-
mum values assigned to a variable, e.g., when exploring bit-width 
analysis. This exposes the number of bits needed to represent 
certain values. Adding this behavior to the original code may 
require the use of global variables and the insertion of specific 
code to compute the maximum and minimum values for each 
assignment. This behavior is usually needed only during the de-
velopment stages and must be latter removed. With our aspect-
oriented rules, such behavior is kept separate from the original 
MATLAB code and rendered (un)pluggable. For instance: 

foreach var in program do 
  insert.after: print(screen, <var>:’max’); 
end 

Handler rules can also help developers to expose the occurrence 
of specific values in variables. Example: 

if func1:a>100 
  print(screen, ‘warning: value of func1:a exceeds: 
‘,100); 
end 

Note that handler rules are similar to assertions. 

Finally, configuration rules are used to assign a different imple-
mentation to an (arithmetic or logical) operator or a function. For 
instance: 

with func1=f1 use configuration my_f1; end 

Using the example from Figure 2 as a basis, Figure 13 illustrates a 
rule to bind all variables of the original “dft” function to a fixed-
point uniform representation of <1, 10, 5> (10-bit signed fixed-
point representation, using 5 bits in the fractional part). Figure 14 
shows an example of a rule to bind each operand of the “dft” 
function with a specialized fixed-point representation according to 
the result shown in Figure 8. Note that expressions already de-
composed in the original code do not need decomposition com-
mands in the aspect-oriented rules. 

rule assignment1 
 typedef fixed1 = fixed<1, 10, 5>; 
 
 foreach var in function=dft do 
  set type=fixed1; 
 end 
end 

Figure 13. Quantification rule applied to the function pre-
sented in Figure 2 for uniform fixed-point representation. 

Variables can be identified by their name preceded by the name of 
the function as in func1:a for variable a or as func1:{a,b} for 
variables a and b. The with construct obviates the use of the func-
tion name. It is illustrated in the example with function=dft do in 
Figure 14. 



  

rule assignment2 
 set fixed = {overflow=wrap; round=floor}; 
 typedef fixed1 = fixed<1, 18, 16>; 
 typedef fixed2 = fixed<1, 23, 20>; 
 typedef fixed3 = fixed<1, 20,  8>; 
 typedef fixed4 = fixed<1, 23, 10>; 
 typedef fixed5 = fixed<1, 24, 10>; 
 typedef fixed6 = fixed<1, 26, 12>; 
 typedef fixed7 = fixed<1, 28, 14>; 
 typedef fixed8 = fixed<1, 32, 16>; 
 typedef fixed9 = fixed<1, 32, 16>; 
 
 with function=dft do 
  with statement= 
     “y(k)=sum(x.*exp(-j*2*pi*(k-1)*t));” do 
  decompose %{ 
   v1=(k-1)*t; 
   v2=pi*v1; 
   v3=-j*2*v2; 
   v4=exp(v3); 
   v5= x.*v4; 
   y(k)=sum(v5); 
  }%; 
   end 
 
  foreach var in {t}  do set type=fixed1; end 
  // or: with var=t do set type=fixed1; end 
  foreach var in {pi} do set type=fixed2; end 
  foreach var in {v1} do set type=fixed3; end 
  foreach var in {v2} do set type=fixed4; end 
  foreach var in {v3} do set type=fixed5; end 
  foreach var in {v4} do set type=fixed6; end 
  foreach var in {v5} do set type=fixed7; end 
  foreach var in {x}  do set type=fixed8; end 
  foreach var in {y}  do set type=fixed9; end 
 end 
end 

Figure 14. Quantification rule applied to the function from 
Figure 2 for variable (specialized) fixed-point representa-
tion. 

Each rule may have one or more commands. The commands for 
each aspect rule are executed in the sequential order in which they 
appear in the aspect. In the case of conflicts due to overlapping 
commands, the last command prevails. Figure 15 shows some 
examples of the proposed rules. To modify the ordering by which 
the rules are evaluated, one can use an apply statement (Figure 15, 
line 1), which allows a particular order to be specified. 

The Monitor1 rule in lines 3-20 of Figure 15 illustrates the moni-
toring. The rule starts by defining a set consisting of variables a, 
b, and c (line 4). The first foreach (lines 5-7) specifies the inser-
tion of a print to the screen of the value of each variable in the set 
each time there is a write (attribute set in line 5) to that variable. 
The second foreach (lines 8-10) expresses an insertion of a print 
to the file “data.txt” of the value of each variable, each time there 
is a write to the variable. The last two foreach constructs (lines 
14-16 and lines 17-19) specify the insertion of a print to the screen 
of the maximum and minimum values, respectively, of the vari-
ables, each time there is a read (attribute get in line 14 and line 
17) of the variable. 

Rule assignment3 (lines 21-30) starts by defining the data type 
fixed1 (line 22) which represents signed fixed-point values with 
10 bits of word-length and having 4 bits of fraction. Line 23 de-
fines the real data type as a single precision floating-point data 
type. The three foreach constructs of the rule express the assign-
ment of all variables in the program as real (lines 24-25), all vars 

in the module2 function as fixed1 (lines 26-27), and all variables 
in module3 function as fixed1 (lines 28-29). 

1. apply Monitor1; //several rules may be applied: 
2.              // apply Rule1:Rule2:Rule3; 
3.  
4. rule Monitor1  
5.  set myVars1 = {a, b, c}; 
6.  foreach var.set in program do 
7.   insert.after: print(screen, <var>:  
8.             ‘value for each change’); 
9.  end 
10.  foreach var.set in myVars1 do 
11.   insert.after: print(file:’data.txt’, <var>); 
12.  end 
13.  foreach var.set in program do 
14.   insert.after: print(screen,  
15.                  <var>:’max’);//mean, abs, etc. 
16.  end 
17.  foreach var.get in myVars1 do 
18.   insert.after: print(screen, <var>:’min’); 
19.  end 
20.  foreach var.get in module1 do 
21.   insert.after: print(screen, <var>:’max’); 
22.  end 
23. end 
24.  
25. rule assignment3 
26.  typedef fixed1 = fixed<1, 10, 4>; 
27.  set real=single; 
28.  foreach var in program do 
29.   set type=real;end 
30.  foreach var in function=module2 do 
31.   set type=fixed1; end 
32.  foreach var in function=module3 do 
33.   set type=fixed1; end 
34. end 
35.  
36. rule handler1 
37.  if func1:A > 100 
38.   warning(‘value of A exceeds 100’); 
39.  end 
40. end 
41.  
42. rule configuration1  
43.  with function=f1, call=f2 use 
44.   configuration f3; end 
45.  with function=f2, operation=”/” use 
46.   configuration myDIV; end 
47. end 

Figure 15. Examples of aspect-oriented rules. 

Rule handler1 (lines 31-35) monitors variable A in function func1 
and specifies the output of a warning in case the value of A ex-
ceeds 100 (lines 32-34). Note that in the current version of the 
weaving, it is up to the user to apply this rule to MATLAB vari-
ables representing scalars (i.e., matrices of 1×1). 

Rule configuration1 (lines 36-41) shows two configuration ac-
tions. The first action (lines 37-38) specifies the use of function f3 
for the calls to f2 from function f1.  The second action (lines 39-
40) specifies calling function myDIV for the division operators 
(“/”) from f2. Although the current accepted configuration rules 
are simple, they are helpful when one needs to evaluate different 
implementations of specific functionalities, be they represented as 
functions or operators. 

4.3 Type Conversion Rules for Expressions 
Usually, when using customized data types, it is the responsibility 
of the user to express the data types resulting from operations 
involving customized data types. This burden can be avoided by 



  

using built-in data type conversion rules. However, it is important 
to allow subexpressions to specify specific data types, which gives 
users the option of using lower accuracy types when maximum 
accuracy is not needed. This is common when using fixed-point 
customized data types as the word-lenghts needed to preserve 
accuracy may impose a large software and/or hardware overhead. 

In the presence of expressions with more than one operation, one 
way to specify specific data types for the results of the subexpres-
sions is to resort to expression decomposition and assign a spe-
cific data type to each subexpression that results from the decom-
position. This is illustrated in Figure 14. This achieves the in-
tended effect but entails modifying the expressions and references 
to auxiliary variables. It is, however, the scheme to apply when 
for some expressions one needs to specify particular data type 
assignments, not possible to address with the considered generic 
data type conversion rules. 

An additional option is the specification of generic data type 
conversion rules. This is by default the preferable option. Our 
proposed aspect language includes a scheme to specify the seman-
tic rules to be applied to each operation in expressions based on 
the data types presented in Table II. Note that the floating point 
data types only consider the single and the double precision repre-
sentations specified by the IEEE Standard for Floating-Point 
Arithmetic (IEEE 754). The semantic rules expressions consid-
ered are of the following type: 

“<operation> “<op>” <type> <id> ::= (<type> <id>) 
[<type> <id>, <type> <id>] 

The following statement is an example of the header of a semantic 
conversion rule to be associated to “+” operations involving a 
float and a fixed operand. It specifies that the resultant data type 
should be represented as a float: 

operation “+” float f1 ::= (float f2) [float i1, 
fixed f3] 

The identifiers in the expressions are used in the semantic rules 
and the parameters (illustrated in Table II) can be used as fields of 
a given identifier as in the examples: f3.w, i1.max, and f1.e. 

Table II. Data types and the corresponding parameters. 

Types Parameters Description 

int w 
s 

wordlength 
signed or unsigned 

fixed s 
w 
f 

signed or unsigned 
wordlength 
fraction length 

float s 
m 
e 

signed or unsigned 
mantissa length 
exponent length 

all max 
min 

maximum value represented 
minimum value represented 

 

Figure 16 illustrates a simple set of semantic rules to deal with a 
number of arithmetic operations. The main idea is to allow the 
developer to use semantic rules defined in the library of an aspect 
or to define and evaluate custom semantic rules. The rules include 
the possibility to specify commutative operations. This avoids the 
specification of all possible combinations having two different 
data types as operands. Figure 17(b) shows an example of apply-
ing the semantic rules presented in Figure 16 to the expression 
and data types shown in Figure 17(a). 

rule semantic1 
 

 commutative operation “*” float lhs ::=  
             (float ir) [float op1, float op2]: 
  if(lhs >= max(op1, op2)) 
    ir = max(op1, op2);//e.g., double if         
                      //double ← double, single 
  else 
    ir = lhs; //e.g., single if  
              //single ← double, single 
  end 
 end 
 
 commutative operation “*” float lhs ::=  
            (float ir) [int op1, float op2]: 
   if (op2.max >= op1.max) 
     if(lhs >= op2) 
       ir = op2; 
     else 
       ir = lhs; 
     end 
   else 
     if(lhs >= op1) 
       ir = op1; 
     else 
       ir = lhs; 
     end 
   end 
 end 
 
 commutative operation “*” fixed f4 ::=  
            (fixed f3) [fixed f1, fixed f2]: 
  f3.s = f1.s OR f2.s; 
  f3.w = max(f1.w, f2.w); 
  f3.f = max(f1.f, f2.f); 
 end 
 
 % semantic rules for other operations  
 % are omitted 
end 

Figure 16. Examples of semantic rules for data type conver-
sions. 

Figure 18 shows two different semantic rules for multiplications 
involving fixed-point data types. In the first case (Figure 18(a)) 
the multiplication of two operands in fixed-point representation 
does not loose precision because the resulting value is represented 
by a fixed-point representation with integer and fraction bit-
widths given by the sums of the respectively bit-widths used in 
the input operands.  In the second case (Figure 18(b)) the preci-
sion used to store intermediate results (i.e., results of the sub-
expressions in an expression) is the same as the precision used to 
store the result of the expression. With this approach, the devel-
oper can explore different semantic rules involving operations and 
data types. Note, however, that this approach assumes all arrays 
involved are homogeneous as regards element types. 

Figure 19 illustrates the assignment of fixed-point data types to 
variables of the dft function presented in Figure 2 considering the 
use specific semantic rules (sentence use semantic1;) defined with 
our aspect-oriented language. In this case, the semantic rules are 
the ones partially specified in Figure 16. Note this is a distinct 
case from that presented in Figure 14, where a decomposition of 
the expressions “y(k)=sum(…);” is carried out to assign custom-
ized data types to each subexpression. 



  

// types specified 
// by aspect rules 
a: single; 
b: int16; 
c: single; 
d: double; 
 
// expression 
a=b*c*d; 

 
// resulting expression 
// with data types 
// defined by applying 
// semantic rules 
a = single(single(b*c)*d); 

(a) (b) 

Figure 17.  Semantic rules example: (a) MATLAB code with 
an expression; (b) resulting code after applying semantic 
rules. 

(a) ... 
commutative operation “*” fixed f4 ::=  
            (fixed f3) [fixed f1, fixed f2]: 
  f3.s = f1.s OR f2.s; 
  f3.w = f1.w + f2.w; 
  f3.f = f1.f + f2.f; 
end 
... 

(b) ... 
commutative operation “*” fixed f4 ::=  
            (fixed f3) [fixed f1, fixed f2]: 
  f3 = f4; 
end 
... 

Figure 18. Two examples of different semantic rules for fixed-
point multiplications: (a) intermediate results with the preci-
sion required to store the result of the multiplication; (b) 
intermediate results using the precision used to store the re-
sult of the expression. 

rule assignment7 
   use semantic1; 
 
 % “y(k)=sum(x.*exp(-j*2*pi*(k-1)*t));” 
   
 set fixed = {overflow=wrap; round=floor}; 
 typedef fixed1 = fixed<1, 18, 16>; 
 typedef fixed2 = fixed<1, 23, 20>; 
 typedef fixed8 = fixed<1, 32, 16>; 
 typedef fixed9 = fixed<1, 32, 16>; 
 
 with function=dft do 
  with var=t  do set type=fixed1; end 
  with var=pi do set type=fixed2; end 
  with var=x  do set type=fixed8; end 
  with var=y  do set type=fixed9; end 
 end 
end 

Figure 19. Quantification rule applied to the function from 
Figure 2 for variable (specialized) fixed-point representation 
using semantic rules defined with the aspect-oriented lan-
guage. 

The aspect-oriented extensions we propose also allow to “clean” 
MATLAB code by migrating code related to non-functional con-
cerns (e.g., code to make a function more generic, code for moni-
toring, code to print results) to aspect rules. This yields less “pol-
luted” MATLAB code and adds functionality required when 
using, e.g., a MATLAB to C compiler for mapping to an embed-
ded system. 

5. VALIDATING EXAMPLES 
To validate our approach, we applied it to a number of MATLAB 
programs. We focused on the following five aspects: 

• Monitoring for range value computation. This can be used to 
acquire the minimum word length of variables, e.g., the word 
length of the integer part of fixed-point representations; 

• Tracing function calls, executed code blocks, number of 
iterations in loops, etc. This can be used to identify and lo-
cate software faults; 

• Counting occurrences of specific operations, calls to a given 
function, number of times a variable is read or written, ac-
counts of floating/point multiplication executions, etc.  

• Data type conversion, e.g., to convert double precision to 
single precision or to fixed-point representation. 

• Exploration of different configurations for a function. This 
can be used to evaluate trade-offs between implementation 
characteristics (e.g., precision vs. execution time). 

In the following sections, we illustrate our approach with the 
following MATLAB codes: a program (pid) [15], three functions 
(latnrm, fft, dft) translated to MATLAB from codes taken from 
[26] and [27] and a repository with 26 MATLAB functions – 
mat2c6. 

5.1 Monitoring and Instrumenting 
Profiling is an important task for optimizing applications. In 
addition to the computation of the percentage of overall execution 
time spent per function in the application (obtained by current 
profiling tools such as gprof or profiling), there are many other 
situations in which profiling is useful. For instance, finding the 
range for each variable in the program, as used by tools previously 
proposed [18]. Here, we use our MATLAB aspect-oriented ap-
proach to insert monitoring points that compute the range (mini-
mum and maximum values) of variables in MATLAB code. 

With a simple aspect description such as that shown in Figure 20, 
it is possible to specify the monitoring of the range of each vari-
able in a program run. Applying this rule to the code of latnrm 
(32nd-order Normalized Lattice filter processing 64 points) – see 
Figure 6(a) – yields the code shown in Figure 6(b). Figure 21 
shows the trace obtained after weaving and running the function 
latnrm. 

rule range_finder 
 foreach var in program do 
  insert.after: range_find(<var>, 
               '<function>.<var>'); 
 end 
 with function=main do 
  insert.before.end: report_range_find(); 
 end 
end % range_finder 

Figure 20. Aspect rule to insert code for determining in run-
time the range values for each variable in the code. 

                                                                 
6 A copy of the MAT2C benchmarks, previously existent at 

http://www.ece.northwestern.edu/cpdc/pjoisha/MAT2C/, can be 
downloaded from: https://svn.strategoxt.org/repos/octave/octave-
xmpl/mat2c-benchmark/ 



  

==== report range values of 13 variables: 
var latnrm.data [min, max]: [1.136, 6.322] 
var latnrm.coefficient [min, max]: [-0.81, 0.93] 
var latnrm.internal_state [min, max]: [-1.12162, 
3.35092] 
var latnrm.NPOINTS [min, max]: [64, 64] 
var latnrm.ORDER [min, max]: [32, 32] 
var latnrm.bottom [min, max]: [-1.12162, 3.35092] 
var latnrm.i [min, max]: [1, 64] 
var latnrm.top [min, max]: [-2.04024, 6.322] 
var latnrm.j [min, max]: [1, 32] 
var latnrm.left [min, max]: [-2.04024, 6.322] 
var latnrm.right [min, max]: [-1.12162, 3.35092] 
var latnrm.sum [min, max]: [-0.101099, 3.87368] 
var latnrm.outa [min, max]: [0.184243, 3.74967] 

Figure 21. Report results of range values obtained for each 
variable in function latnrm after executing the woven code. 

Table III presents the metrics of a number of examples in which 
the proposed approach was applied. It includes (1.) the number of 
join point shadows [28] – points in the source code that relate to a 
join point during program execution – when considering the as-
pect related to the insertion of code for “range finder”, (2.) and 
(3.) the number of lines of MATLAB code (LOC), respectively, 
before and after the weaving, and (4.) the number of variables 
monitored in each of the examples. Line (6.) in Table III shows 
the reduction in bloat due to tangling – a metric proposed by 
Kiczales et al. [28] and called aspectual bloat in this paper. It 
compares the AOP and non-AOP versions of a system, using 
equation (1). It measures the degree to which the aspects are more 
concisely coded in the AOP-based implementation than in a non-
AOP based implementation. Any number greater than 1 indicates 
a positive outcome of applying AOP. Aspect code is the code 
inserted due to aspects. 

 code)LOC(aspect

de) riginal cong) -LOC(ofter weaviLOC(code a
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The Tangling ratio metric (7.) was proposed by Lopes [29] and is 
based on the idea that the parts of the code associated to crosscut-
ting concerns are “shadowed”7. The metric counts the transition 
points, i.e. the points in the source code where there is a transition 
from a shadowed area to a non-shadowed area and vice-versa. 
Tangling ratio is calculated using equation (2). 

code) alLOC(origin

code original and
 code aspect between points transition#

ratio tangling ×=
 (2) 

Tangling ratio gives an idea of both the relative efforts a devel-
oper may need to add the code to the application and of the “code 
pollution” degree. Values for this metric start from 0 (no tangling) 
and have no theoretical upper bound. A value above 1 means there 
are more than one transition point per LOC on average. 

The aspect module used for this experiment is the one presented 
in Figure 20, which has 8 lines of code. The results are presented 
in the “range finder aspect” section of Table III. For these experi-
ments we have an increase of about 74% of lines of MATLAB 
code on average. With individual increases from 19 to 31, 24 to 
43, 56 to 100, 506 to 892 for latnrm, dft, fft, and for mat2c reposi-
tory, respectively. These experiments show an average of 24.5 
join point shadows per MATLAB function. This is a clear indica-
tor of the pollution degree and work effort that a simple instru-
                                                                 
7 Note there is no relation between this code “shadowing” and the 

notion of joint point shadow. 

menting concern may originate. In our approach, this is achieved 
by automatic aspect weaving that avoids invasive changes on the 
original, core MATLAB code which is kept as it was.  

Table III also shows the aspectual bloat (1), which ranges from 
1.50 to 48.25 for these examples. These values also support claim 
that our approach brings benefits. The aspectual bloat is high 
when considering the MATLAB code of mat2c and pid. The 
reason is that one aspect is applied to more extensive MATLAB 
code. In fact, the aspectual bloat of the mat2c represents the effect 
of reusing the same code over multiple MATLAB functions. 

Finally, the tangling ratio (2) ranges from 1.50 to 2.05 for these 
examples and aspects and once again strongly suggests there are 
benefits from using our approach. Note that tangling ratio values 
near or above 1 indicate the insertion of almost one secondary 
concern in each line of MATLAB code. 

In a second monitoring example, we consider the report of the 
number of accesses to each variable. Figure 22 shows the result-
ing output after executing the latnrm MATLAB code woven with 
aspect code to determine the number of accesses (read or write) to 
each variable in the original latnrm code. In this case, the weaver 
identified 36 join point shadows (1.8× more than for the previous 
range find example to which 20 join point shadows were identi-
fied), which result in an even more “polluted” MATLAB code. 

In a third example, we consider the report of the class of identifi-
ers used in the MATLAB code. The analysis needs to deal with 
the case of MATLAB identifiers corresponding to multiple classes 
(e.g., an array and a function). This report can be important in 
MATLAB applications to acquire the identifiers corresponding to 
functions, classes, structs, and their types. For instance, this dy-
namic analysis may guide compilers or additional weaving with 
respect to name resolution. We show in Figure 23 the report out-
put after executing the woven code of the latnrm example. 

Table III. Results of applying aspects for a number of bench-
marks (#LOC represents the number of lines of effective code 
statements). 
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3. #LOC after weav. 31 43 100 892 33 519 

4. #vars monitored 13 13 30 254 n/a n/a 

5. #functions affected 1 1 1 26 1 13 

6 #transition points 39 37 86 760 56 119 

7. aspectual bloat 1.50 2.38 5.50 48.25 2.33 5.98 

8. tangling ratio 2.05 1.54 1.55 1.50 2.95 0.44 

 



  

==== report accesses of 11 variables: 
var latnrm.bottom : 4033 accesses 
var latnrm.i : 128 accesses 
var latnrm.data : 64 accesses 
var latnrm.top : 4096 accesses 
var latnrm.j : 8064 accesses 
var latnrm.left : 5952 accesses 
var latnrm.right : 5952 accesses 
var latnrm.internal_state : 6144 accesses 
var latnrm.coefficient : 9984 accesses 
var latnrm.sum : 4224 accesses 
var latnrm.outa : 64 accesses 

Figure 22. Report results of variable accesses obtained for 
each variable in function latnrm after executing the woven 
code. 

==== report classes of 13 variables: 
var latnrm.data : class char 
var latnrm.internal_state : class double 
var latnrm.NPOINTS : class double 
var latnrm.ORDER : class double 
var latnrm.bottom : class double 
var latnrm.i : class double 
var latnrm.top : class double 
var latnrm.j : class double 
var latnrm.left : class double 
var latnrm.right : class double 
var latnrm.coefficient : class double 
var latnrm.sum : class double 
var latnrm.outa : class double 

Figure 23. Report results of classes obtained for each variable 
in function latnrm after executing the woven code. 

5.2 Data Type Specialization 
Regarding data type conversions, we show two examples where 
we have explored the fixed-point representations, specialized or 
uniform. The “data type assignment” section of Table III presents 
the results. The examples include the previous latnmr function 
and a MATLAB model of a PID (Proportional Integral Deriva-
tive) controller previously used in [15]. 

For the latnrm example, an aspectual boat of 2.33 and a tangling 
ratio of 2.95 confirm a positive outcome of our approach. In this 
example, there are transition points in almost every line of code. 
By coincidence, the number of join point shadows and the number 
of LOCs before weaving is the same (19). This is indicative of a 
highly polluted and difficult to read code. 

The original MATLAB code of the pid has 268 lines of code. 
After weaving with the aspect rules defining fixed-point special-
ized data types a MATLAB code with 519 lines has been pro-
duced (1.93× more lines of code). The aspectual bloat is 5.98 and 
the tangling ratio is 0.44. The tangling ratio in this example is 
lower than 1 as most MATLAB code related to data type assign-
ments is relatively well localized and thus yields a much lower 
ratio of transition points per line of code. Nevertheless the number 
of code modifications again suggests there are benefits in using 
the aspect-oriented approach. 

5.3 Discussion 
The previous examples illustrate some of the uses of the aspect-
oriented language to extend MATLAB code with specific features 
as monitoring calls or data type specializations. In addition to the 
timing savings, the use of automatic features reduces the likeli-
hood of manual code insertion errors. Thus, the proposed aspect 
features seem to provide valuable help to MATLAB programmers 
and system developers. 

It is worth noting that even in the presence of some statements 
that appear just once in a function with many lines of code, there 
is justification for using the proposed approach in some cases. 
Through the aspect rules and aspect weaving, we acquire the 
option to generate multiple, case-specific configurations of a core 
code base. The verification of the number of arguments passed to 
a function is an example. These options are not implemented 
when translating the function to C code for the embedded target 
system. There are also cases where the code output by the aspect 
weaver has fewer lines of code but is “polluted” with calls to type 
conversions. 

Although MATLAB was extended to support classes and objects, 
the use of these features remains almost totally absent from typi-
cal MATLAB systems. That is what can be concluded from the 
code repositories we have analyzed [14] and from the MATLAB 
industrial applications to which we had access. 

Although our approach provides users with helpful mechanisms 
for monitoring, type assignment and configuration, it can be fur-
ther extended in a number of ways: 

• Providing extensions to deal with control-flow aware moni-
toring schemes. For example, one may need to specify moni-
toring actions dependent on particular sequences of function 
calls; 

• Providing analysis of aspect rules in terms of conflicts that 
may exist between rules. For example, there might be more 
than one type assignment to the same variables and this reas-
signment may be intentional or accidental. Identifying those 
reassignments can help users; 

• Extending the current simple statements accepted for code 
insertion, and thus avoiding in most cases the use of explicit 
target language code and the %{ and }% tags as in the ap-
proach in [42]. This will provide a more neutral approach as 
the code to be inserted can be specified in a language that is 
then translated to the target language by the weaving process. 

Although our approach has been used in the context of MATLAB, 
it is also applicable to “MATLAB clones” such as Octave [11] 
and Scilab [12]. However, further analysis on this topic is required 
to assess how adequate to those “MATLAB clones” is our ap-
proach. This may call for more target-independent constructs to 
deal with possible mismatches between the various languages – 
possibly by using mapping rules. 

We also believe that the approach can be also used in the context 
of other imperative programming languages. In future, we intend 
to perform further studies to assess the applicability of this ap-
proach as regards monitoring and type assignment so that it can be 
used on top of the LARA approach [42]. 

6. RELATED WORK 
Most aspect-oriented approaches target general-purpose software 
programming languages, such as Java and C/C++, often in the 
context of general-purpose applications [9]. However, the specif-
ics of embedded systems, regarding specific implementation 
properties and programming models, provide new use cases for 
aspect-oriented programming. Previous uses of AOP for debug-
ging, instrumentation and monitoring retain their importance in 
the development for embedded systems. Other uses of AOP – 
such as type specialization – acquire greater importance in em-
bedded systems. Below we describe the approaches related to that 
proposed in this paper. 



  

In [6], Irwin et al. present AML, a system for sparse matrix com-
putation that deals with crosscutting concerns (such as execution 
time and data representation) using AOP principles [28]. In AML, 
the primary behavior is written with a MATLAB-like language. 
AML allows the programmer to write annotations that represent 
properties of sparse matrices, in a completely separated way from 
the main functionality. Thus, readability and maintainability of the 
behavioral code is not negatively affected by non-functional 
concerns. The AML system seems to have brought satisfactory 
results, as the authors report that their code in AML has similar 
speed as a standard version, yet it is smaller and less complex. 
They propose a “data representation” aspect module that is rele-
vant for our work. This aspect module defines 5 dimensions for 
representing data: element type, dimension, representation, order-
ing, and orientation. AML was first described as an aspect-
oriented system but some authors do not consider it as such [30]. 

Mück et al. [31] present a design methodology, based in SystemC 
and aspects, which allows components of operating system to be 
implement in hardware platforms. To validate the methodology, 
the authors discuss the implementation of a task scheduler and an 
aspect program. Aspects are used for on-chip debugging and 
define the following debugging features: (1) Watched dumps the 
state of a component whenever it is modified; (2) Traced signal-
izes every operation execution; and (3) Profiled counts the num-
ber of clock cycles needed by the component for a given opera-
tion. This approach also adopts the idea of having two different 
specification parts (main functionality and aspects), but differs 
from ours in several issues, namely in the adopted language (Sys-
temC vs. MATLAB) and the focus (debugging vs. development). 

Other researchers also propose the combined use of model-driven 
and aspect-oriented principles, concepts and techniques targeted 
for the embedded field. One common theme found in several 
research works is the use of the model-driven approach com-
pounded with aspect-oriented techniques to improve separation of 
concerns at earlier phases in the software life cycle – modeling in 
the case of the works by Linehan et al. [32][33], Gray et al. [34] 
and Oliveira et al. [35]. In the case of Oliveira et al., requirements 
as well as modeling are subject to this approach. 

Linehan et al. [32][33] propose an approach specially targeted for 
generating verification purposes, permitting the development of 
hardware verification testbenches, which the authors claim is 
easier to maintain, adapt and reuse. Gray et al [34] discuss the use 
of the model-driven approach for generating quality-of-service 
(QoS) adaptation rules within the simulation and implementation 
of distributed real-time embedded systems. This approach creates 
high-level graphical models representing QoS adaptation policies. 
The models are specified in a domain-specific modeling language 
(AQML) that helps in the separation of common concerns of an 
embedded system through different modeling views. Their pri-
mary contribution is an aspect-oriented weaver that performs 
model transformations across higher level abstractions to separate 
policy decisions that were previously scattered and tangled across 
the model. Oliveira et al. [35] also present a method for design 
space exploration of embedded systems that uses model-driven 
engineering and aspect-oriented concepts. The authors claim that 
their method provides better reusability, complexity management, 
and design automation by exploiting both MDE and AOD ap-
proaches in the earliest stages of the life cycle, including require-
ments. 

To the best of our knowledge, our approach – initially proposed in 
[7] – is one of the first approaches to consider aspect-oriented 

extensions to MATLAB, especially aspect-oriented rules to spec-
ify code injection and assignment of numeric data types to a 
MATLAB specification. Our proposal differs from [6] in that 
although type refinement may help compilers to produce opti-
mized code, the aspects we present are intended to help develop-
ers to model and to explore multiple possible implementations of a 
given core MATLAB specification. It does that without changing 
the original code and without the need to manage multiple ver-
sions of the same underlying specification. Moreover, most of the 
proposed aspect modules would be unsuitable to embed in the 
original specification in the form of annotations. There are various 
reasons for that. First, that would result in less legible code and 
would be cause of various kinds of hurdles whenever the original 
code needs to evolve. Second, it would still entail managing more 
than one version of the MATLAB specification when different 
data types for a given variable need be explored. Third, some of 
the rules are intended to be applied globally, not just to specific 
functions. With our approach, explorations can be performed with 
the same base MATLAB specifications by simply employing 
different aspect-oriented rules. Our approach uses a declarative 
type of aspect semantics suitable to be applied both locally and 
globally. 

More recently, AspectMatlab was proposed [25] as an approach to 
extend MATLAB with aspects. AspectMatlab does not consider 
type assignments. The design of AspectMatlab is instead geared to 
the support of scientific computing, which is typically computa-
tion-intensive. For this reason, the join points supported cover 
elements that play important roles in computing-intensive applica-
tions, namely array accesses and loops. Though our proposed 
language also supports advices over loop constructs, its focus is 
on simulation, monitoring, and data type exploration. 

Hendren [36] proposed the addition of typing aspects to 
MATLAB. The approach is based on a new kind of uses statement 
– atype – that captures runtime type information of variables and 
verifies their types. This is a specific case of monitoring and 
instrumentation that can be controlled by a weaver as the one 
proposed in AspectMatlab [25] or the one proposed in this paper. 
As with AspectMatlab, the primary motivation for proposing 
typing aspects is performance: modern MATLAB systems support 
JIT compilers, which require type information to produce efficient 
code. 

Complementing the work presented in this paper, we have re-
cently proposed a domain specific aspect language to enrich 
MATLAB with code transformations [37]. Those code transfor-
mations can be used to implement the aspect rules given in the 
approach presented in this paper. However, that approach ad-
dresses additional code transformations that can be used to opti-
mize the MATLAB applications while our approach provides 
specific support to the exploration of data types and configura-
tions and to the monitoring of specific program artifacts. 

Approaches to code transformations have been extensively pro-
posed in recent years. Pattern matching transformations have been 
proposed by some authors. An example was given by Bodin et al. 
[38] as a way to allow the user to specify specific code transfor-
mations. 

It can be argued that the aspect rules presented in our approach 
could be specified using code transformation tools such as TXL 
[39]. That approach would also need the specification of the 
MATLAB grammar as well as the rules presented here. Note, 
however, that by using a strategic programming approach at the 



  

intermediate representation (we use Tom [22][23]), we isolate the 
compiler front-end and back-ends from the weaver and contribute 
to an extensible compiler framework in terms of compiler optimi-
zations, code transformations and code generation. Nevertheless 
we believe there is no additional reason not to use TXL as the 
transformer and code insertion engine, e.g., by translating our 
aspect rules to TXL rules. 

Our approach to data type specializations also promotes the use of 
active libraries [40] in the context of MATLAB. In this approach, 
MATLAB libraries can be delivered to a specific implementation 
by using aspect rules that automatically produce woven MATLAB 
code with the required specializations. 

Our approach to data type specialization is also being used in the 
compiler framework to generate C code from MATLAB specifi-
cations [2]. Thus, the approach presented in this paper not only 
assists in the early development phases but the implementation 
phases as well, by providing data type and shape information for 
the subsequent code generation steps. As our kind analysis stage 
is not so powerful than recent analysis techniques applied to 
MATLAB [41], it may need more intervention from the user to 
resolve some MATLAB names. Future work is expected to inte-
grate more advanced kind analysis techniques. 

The development of LARA [42], a domain-specific aspect-
oriented language, has been also inspired by some of our ideas 
proposed in the context of extending MATLAB with aspects. 
LARA has been designed to be as agnostic to the target language 
as possible – though its main application has been to C programs 
– and is a more complex language as it addresses many concerns, 
such as code instrumentation, compiler optimizations, mapping 
decisions, type and code specialization and design space explora-
tion strategies. The AOP language proposed in this paper is dis-
tinct from LARA in a number of ways. It is focused on a narrower 
set of concerns than LARA, uses an imperative semantic while 
LARA uses both declarative and imperative semantics and it is 
focused on MATLAB, while LARA has been proposed for multi-
ple languages. Being specially focused to a particular set of con-
cerns makes the language easy to use and easy to support by tools. 
We have plans to generate LARA aspects from the aspect rules 
proposed in this paper. 

7. CONCLUSIONS 
This paper presents an approach to add aspect-oriented rules to 
MATLAB specifications to assist developers of embedded sys-
tems in the exploration of implementation features – namely 
numeric data type configurations. MATLAB core behavior and 
aspect-oriented rules (e.g., numeric data type assignments) are 
specified and maintained in separate modules. Our approach 
allows developers to insert MATLAB code that is helpful for 
debugging, monitoring, and exploring numeric data type represen-
tations without changing the original MATLAB code. With this 
approach, the core MATLAB specifications are kept free from 
code dependent on the implementation and target sys-
tem/architecture. 

Our approach allows users to explore multiple, different imple-
mentations of embedded systems based on MATLAB specifica-
tions. We are able to maintain a base MATLAB code and to 
achieve different specializations, code insertions to trace and to 
acquire dynamic properties, through the use of aspects. This cer-
tainly contributes to modularity and code maintenance. In addi-
tion, our approach can be used as a support to some advanced 

MATLAB type and shape inference analysis systems as the re-
sults of those analyses can be represented by aspect-oriented rules.  

One of the difficulties we found is the lack of MATLAB code 
considering some of the secondary concerns such as the ones 
including customized data types and monitoring. Most MATLAB 
code found in repositories represent generic, target independent, 
models. The use of MATLAB models considering custom data 
types is more related to subsequent stages of the design cycle, 
e.g., for embedded systems products. It is understandable that 
those models may not be public. The monitoring concerns occur 
during the entire design cycle and most of them are concerns that 
typically are not present in the end.   

Although the current version of our approach provides useful 
mechanisms to express monitoring and data type assignments, it 
can be enhanced by considering other types of aspect rules and 
more sophisticated patterns to express join point selections. Ex-
tensions to the support of parameters would make rules more 
reusable. 

From the derived results, it is advantageous for our approach if 
other metrics are also considered. In future, other metrics that 
have no correlation (see the aspectual bloat and the tangling ratio 
values presented for latnrm and pid in the previous section) 
should be used as well. 

Complementary work in progress includes studies about other 
aspect-oriented rules, a more powerful pattern language, and a 
tool to manage strategies (the possibility to apply different se-
quences of aspect rules). In addition, we expect that our ongoing 
work on aspects related to complementary information can help a 
MATLAB compiler to map more efficiently MATLAB computa-
tions and data structures to the target architecture. One interesting 
research avenue is the automatic extraction of secondary concerns 
from MATLAB code to aspect modules. 
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10. APPENDIX 
Below is an excerpt of the LL(1) grammar of the aspect-oriented language. 

Start ::= (<APPLY> <IDENTIFIER> ( ":" <IDENTIFIER> )* ";" )* ( Rule )* 

Rule ::= <RULE> <IDENTIFIER> ( Use )* ( Statement | InjectCode | TypeDef )* ( DataTypeConvRules )* <END> 

InjectCode ::= <IF> IfRule (TargetCode)+ <END> 

Set ::= <SET> ( ( <IDENTIFIER> "=" ( ( "{" <IDENTIFIER> ( "," <IDENTIFIER> )* "}" ) | Types | <IDENTIFIER> ) ) 
| … | ( <FIXED> "=" "{" FixedPointProperties "=" ValuesFixedPointProperties ( "," FixedPointProperties "=" 
ValuesFixedPointProperties )* "}" ) ) ";" 

FixedPointProperties ::= <OVERFLOW> | <ROUND> 

ValuesFixedPointProperties ::= <WRAP> | … | <FLOOR> 

TypeDef ::= <TYPEDEF> <IDENTIFIER> "=" Types ";" 

Use ::= <USE> <IDENTIFIER> ";" 

Types ::= <INT8> | <INT16> |…| <DOUBLE> | <SINGLE> | Fixed | Float | Int 

Fixed ::= <FIXED> ( "<" <NUMBER> "," <NUMBER> "," <NUMBER> ">" )? 

Float ::= <FLOAT>  ( "<" <NUMBER> "," <NUMBER> "," <NUMBER> ">" )? 

Int ::= <INT> ( "<" <NUMBER> "," <NUMBER>)? 

Statement ::= ForEachStatement | Insert | Set | WithStatement 

ForEachStatement ::= ( <FOREACH> ( <KEY> | <TAG> | Var ) ( <IDENTIFIER> )? <IN> ( ( <IDENTIFIER> | ( ( <PROGRAM> | 
<FUNCTION> ) ( "=" SetOfJPs )? ) ( ":" SetOfJPs )? )? ( "{" JPList "}" )? ) <DO> ( ( Insert | Set ) ( 
<DEPENDENT> ":" ( DependentStmt )+ <END> )? )+ <END> ) 

Var ::= <VAR> (“.” (<SET> | <GET>))? 

SetOfJPs ::= <IDENTIFIER> | ( "{" ( <IDENTIFIER> ( "," <IDENTIFIER> )* ) "}" ) 

WithStatement ::= <WITH> ( ( ( ( <FUNCTION> | <MODULE> ) "=" <IDENTIFIER> ) ( ( <DO> ( Statement ( <DEPENDENT> 
":" ( DependentStmt )+ <END> )? )+ <END> ) | ( ( "," ( ( <CALL> "=" <IDENTIFIER> ) | ( <OPERATION> "=" 
OpsForConfigRules ) ) )? ( <USE> ( <CONFIGURATION> <IDENTIFIER> ";" )+ <END> ) ) ) ) | ( <STMT> "=" 
<STRING> <DO> Decompose <END> ) | ( Var "=" SetOfJPs <DO> ( Statement )+ <END> ) ) 

DependentStmt ::= <FOREACH> ( <KEY> | <TAG> | Var ) ( <IDENTIFIER> )? <IN> ( ( <IDENTIFIER> | ( ( <PROGRAM> | 
<FUNCTION> ) ( ":" <IDENTIFIER> )? ) ) | "{" JPList "}" ) <DO> ( ( Insert | Set )+ ) <END> 

JPList ::= ( ( ( "@" )? <IDENTIFIER> ) | Keys) ( "," ( ( ( "@" )? <IDENTIFIER> ) | Keys ) )* 

Insert ::= <INSERT> "." ( <BEFORE> | <AFTER> | <AROUND> ) ( "." ( <END> | <BEGIN> ) )? ":" ( TargetCode )+ 

Keys ::= <END> | <IF> | <ELSE> | <FOR> 

TargetCode ::= <TARGETCODE> 

 | <FPRINTF> "(" Arg ( "," Arg )* ")" ";" 

 | <IDENTIFIER> ( ( Param "=" ( ( <IDENTIFIER> Param Op <NUMBER> ) ";" | ( <NUMBER> ) ";" ) ) | ( "(" ( 
Arg ( "," Arg )* )? ")" ";" ) ) 

 | <PRINT> "(" ( <SCREEN> | ( <FILE> ":" ( ( <IDENTIFIER> "." <IDENTIFIER> ) | ( <QUOTED> ) ) ) ) "," Arg 
( "," Arg )* ")" ";" 

 | <WARNING> "(" <QUOTED> ")" ";" 

Decompose ::= <DECOMPOSE> <TARGETCODE> ";" 

Op ::= "+" | ”-“ | … | “*“ 

Arg ::= <NUMBER> 

 | <IDENTIFIER> ( Param )? 

 | <QUOTED> ( Param ":" <QUOTED> )? 

 | Param ( ":" <QUOTED> )? 

 | "\'" Param ( ":" <QUOTED> )? "\'" 



  

Param ::= "<" ( <KEY> | <IDENTIFIER> | <VAR> ) ( "." <IDENTIFIER> )? ">" 

DataTypeConvRules ::= ( <COMMUTATIVE> )? <OPERATION> OpsForConvRules TypesOnCOnvRules ( <LHS> | <IDENTIFIER> ) 
"::=" "(" TypesOnCOnvRules ( <IR> | <IDENTIFIER> ) ")" "[" TypesOnCOnvRules <IDENTIFIER> ( "," 
TypesOnCOnvRules <IDENTIFIER> )? "]" ":" ( IfConvRule | SimpleStatement )+ <END> 

IfConvRule ::= <IF> "(" ( <LHS> | CompleteIdentifier ) ( ">=" | "<=" | ">" | "<" | "==" | "!=" ) ( CompleteIdentifier | 
BuiltInFunctions "(" ( CompleteIdentifier ( "," CompleteIdentifier )* )? ")" ) ")" ( SimpleStatement | IfConvRule )+ 
( <ELSE> ( SimpleStatement | IfConvRule )+ )? <END> 

SimpleStatement ::= ( <IR> "=" ( <LHS> | BuiltInFunctions "(" ( CompleteIdentifier ( "," CompleteIdentifier )* )? ")" | 
CompleteIdentifier ) ";" ) 

 | ( CompleteIdentifier "=" ( CompleteIdentifier | BuiltInFunctions "(" ( CompleteIdentifier ( "," CompleteIdentifier 
)* )? ")" ) (Op ( CompleteIdentifier | BuiltInFunctions "(" ( CompleteIdentifier ( "," CompleteIdentifier )* )? ")" ) 
)? ";" ) 

BuiltInFunctions ::= <MAX> | … | <MIN> 

OpsForConvRules ::= <STRING> 

OpsForConfigRules ::= <STRING> 

CompleteIdentifier ::= <IDENTIFIER> ( "." ( <IDENTIFIER> | BuiltInFunctions) )? 

TypesOnCOnvRules ::= ( Types | <FLOAT> | <INT> ) 

 


