
 1-4244-0840-7/07/$20.00 ©2007 IEEE.

Translating Synchronous Petri Nets into PROMELA
for Verifying Behavioural Properties

Óscar R. Ribeiro, João M. Fernandes
Dept. Informática / CCTC, Universidade do Minho

Braga, Portugal
{oscar.rafael, jmf}@di.uminho.pt

Abstract— For developing embedded systems, the design pro-
cess may benefit in some contexts from the usage of formal
methods, namely to find critical errors and flaws, before final
design and implementation decisions are taken. The Synchronous
and Interpreted Petri Net (SIP-net) modelling language is con-
sidered in this article to model embedded systems. This model of
computation is based on safe Petri nets with guarded transitions
and synchronous transitions firing, and also includes enabling
and inhibitor arcs. The Spin tool, whose input language is
PROMELA, is a verification system based on model checking
techniques. This article presents a program to translate SIP-net
models into PROMELA code and discusses in detail the adequacy
of the created PROMELA specification for verification through
model checking techniques.

I. INTRODUCTION

Concurrency is considered one of the essential features of
reactive systems [1], a class where embedded systems can
be included. Development of this kind of systems requires
models of computation that explicitly support concurrency.
A concurrent system is a collection of sequential processes
that in abstract are executed in parallel, i.e., it is not required
that a separate physical processor is used to execute each
process. A process is a set of instructions in a programming
language which are executed sequentially. Thus, the semantics
of concurrent systems is usually based on the notion of a
global state, where the instructions of each process define a
set of events denoting transitions between states. However,
in a concurrent system an event affects and is affected by
a limited number of other events (event scope). Events with
disjoint scopes are free to occur independently.

Petri Nets (PNs) [2] constitute a suitable model of computa-
tion for expressing concurrent systems, due to their extensive
body of results, both theoretical and practical. PNs have shown
to be a powerful technique to specify and model the be-
haviour of systems, where concurrency, resource sharing, and
synchronisation are important issues to take into account. In
particular, PNs have already proven to be a suitable language
for embedded systems [3], [4].

Synchronous and Interpreted Petri Nets (SIP-nets) were ob-
tained by the enrichment of safe PNs with guarded transitions,
synchronous firing, and also enabling and inhibitor arcs [5].
With these characteristics, the models that can be obtained are
easier to synthesize [6]. In fact, synchronous circuits represent

Work supported by Fundação para a Ciência e a Tecnologia (FCT) under
grant SFRH/BD/19718/2004

the largest portion of circuit designs and the state of the art in
synthesising synchronous systems is more advanced and stable
than the corresponding one for asynchronous circuits [7].

When a formal model of a given system is created, it can
be analysed with respect to some desired properties, thus
allowing the detection of design errors prior to the system
implementation. In general, the major weakness of PNs is
the complexity problem; PN-based models tend to become
too large for analysis even for a small real system [8]. In [5]
reachability graph analysis of the SIP-net description is used
to investigate the properties of the modeled system.

Model checking [9] is a verification technique that is based
on the idea of exhaustively exploring the reachable state space
of a system. The model checker Spin [10], [11] is a verifi-
cation system, which accepts a specification language called
PROMELA (Process Meta Language) [11], [12], [13]. Spin
has two main modes of operation: simulation and verification.
Verification requires exhaustive search, whereas simulation
does not and thus can deal with bigger state spaces. Simulation
is a testing technique that can only indicate errors and never
their absence. It is quite useful in practical terms, but in
some situations verification is the only solution, especially
whenever one needs to formally guarantee that a system
is free of errors, an essential condition for safety-critical
systems. Spin uses the linear temporal logic (TL) to specify
the properties to be verified. We choice Spin tool over other
model checkers because we have done some previous works
on the formalization of SIP-net models’ properties in TL.

The main motivation of this work is to study how SIP-net
models can be verified using the Spin tool. We present a model
checking approach, that uses the Spin tool to verify critical
properties of embedded systems such as liveness, deadlock-
freedom, and the absence of structural and behavioural con-
flicts among transitions.

The suggested design flow of our approach is presented in
fig. 1. As tool support, we have created a computer application,
written in the Haskell language, to automatically translate
SIP-net models into corresponding PROMELA specification.
With the assistance of the Spin tool, the generated PROMELA
specification can be either simulated or verified with respect
to some TL properties. This is possible, since the computer
application can generate two different types of PROMELA
specifications, one more adequate to be simulated and the other
more adequate to the verification of some properties.

266

SIP-net Model

Haskell Program

PROMELA spec.
to be Simulated

PROMELA spec.
to be Verified

Properties
in TL

Spin tool
as Simulator

Spin tool
as Verifier of TL formulas

Fig. 1. Design flow of the approach.

We already reported in [14] the application of this approach
in a case study. This article focus on the presentation of the
issues related to the translation process (from SIP-nets models
to PROMELA specifications) and its tool support, using a
small, but illustrative, example.

This article is structured as follows. Sect. 2 describes the
SIP-net modelling language and some of its properties. In
sect. 3 we show how some small examples of SIP-net models
can be translated into PROMELA specifications. In sect. 4
some general rules to obtain a PROMELA specification for
a given SIP-net model are defined. In sect. 5 we present
the computer application, written in Haskell, that supports
the automatic translation from SIP-net models to PROMELA
specifications. Sect. 6 shows how the properties of SIP-net
models can be described in terms of temporal logic. We
conclude the article with its conclusions, and some directions
to the future work.

II. SIP-NET MODELLING LANGUAGE

In this section we introduce the SIP-net modelling language,
showing how it was obtained from generic PN modelling
languages. We present the structural apparatus to create a SIP-
net model, the dynamics of associated to an SIP-net model,
and some important properties of SIP-net models.

A. Structure of SIP-net models

The definition of a generic PN, of type place/transition
system, presented in [2] is the following.

Definition 2.1: A 6-tuple N = (P, T, F, C,M0, W) is a
Petri net if and only if
• (P, T, F) is a basic net, i.e. P , T are disjoint finite sets

and F ⊆ (P×T)∪(T×P) is a binary relation called flow
relation, whose elements are called arcs. The elements of
P and T are called places and transitions, respectively;

• C : P → N ∪ {ω} gives the capacity (ω represents the
infinite capacity) for each set;

• W : F → N \ {0} gives one weight for each arc;
• M0 : P → N ∪ {ω} is the initial marking for net,

respecting the capacities, i.e., ∀p∈P M(p) ≤ C(p).
�

The SIP-net modelling language has been enriched with
respect to the generic PN modelling language in three different
ways:

• two new types of arcs are allowed: enabling arcs (also
known as read arcs, test arcs, or positive context arcs),
and inhibitor arcs (also designated negative context arcs)
[15], [16];

• transitions can have associated guards, which are propo-
sitional formulas where variables represent input signals
of the modeled system, i.e., guards over transitions are
formulas containing external variables, which may affect
the enabling of transitions;

• transitions firing are synchronized with the active edge of
a (global) clock.

Definition 2.2: The structure of a synchronous and in-
terpreted Petri net (written structure of an SIP-net model) is
a tuple N = (P, T, F, E, I,G) such that:

1) (P, T, F) is a basic net;
2) E, I ⊆ P × T are sets of enabling and inhibitor arcs

respectively; the sets E, I and F are expected to be all
disjoint;

3) G : T → PROP is a mapping associating a proposi-
tional formula to each transition.

Often P , T , F , E, I , G are denoted by PN , TN , FN , EN ,
IN , GN respectively. A marking to N is a mapping from PN

into the set {0, 1}. �
Graphically, the places and transitions are represented by

circles and rectangles, respectively. The flow relation elements
are represented by arrows.

The control part of embedded systems has input and output
signals. Although the output signals are represented in the SIP-
net model, associated with places, we do not consider them in
the formalization of the SIP-net model. When analysing the
behaviour of an SIP-net model, it is not necessary to consider
the output signals, because we assume that their influence on
the behaviour of the SIP-net model, if existent, is reflected by
changes in the input signals.

Inhibitor arcs can be used to model a priority between
processes. An inhibitor arc, represented by a dashed line with
a circle, connects a place to a transition and disables the
transition when the place is marked. Consider, for example,
a system in which two processes access a shared resource. A
conflict arises when both processes apply for the resource. To
solve this problem, an inhibitor arc connecting the resource (a
place) to one of the processes can be introduced.

Enabling arcs can be used to model a synchronization
between two processes. An enabling arc, represented by a
dashed line with an arrow, connects a place to a transition and
enables the transition when the place is marked. Nevertheless,
when the transition fires, no token is removed from the place
connected to the transition through an enabling arc.

It is useful for each transition to determine the set of all
places connected to it through a normal, inhibitor or enabled
arc.

267

Definition 2.3: Let N be a structure of an SIP-net model.
For each t ∈ TN :

1) •t = {p | p FN t} is called the preset of t;
2) t• = {p | t FN p} is called the postset of t;
3) �t = {p | p EN t} is the set of places linked with t

through an enabling arc;
4) ◦t = {p | p IN t} is the set of places linked with t

through an inhibitor arc.
For T ′ ⊆ TN , let •T ′ =

⋃
t∈T ′

•t , T ′• =
⋃

t∈T ′ t• ,
�T ′ =

⋃
t∈T ′

�t , and ◦T ′ =
⋃

t∈T ′
◦t . �

As shown later, the behaviour of an SIP-net model is
affected by the interpretation of the variables appearing in the
guards of its transitions (external events). Thus, to simulate the
behaviour of an SIP-net model, every possible valuation of the
variables in the guards of its transitions must be considered.
In rigour, we take a valuation of a net N to be a mapping
from the set of all the variables occurring in the guards of N
into the two-valued set {0, 1}. The set of all valuations to N
is denoted by VN . In the next definitions we consider only
conflict-free SIP-net models.

B. Simultaneous firing in SIP-net models

Now, we attend to the dynamics associated to an SIP-net
model.

Definition 2.4: Let N be the structure of an SIP-net, M a
marking to N , v ∈ VN and t ∈ TN . The transition t is ready
for M and v , ready (t, M, v), if

1) Each input place to t has one token, i.e., ∀p∈ •t M (p) =
1;

2) Each output place to t have no tokens, i.e.,
∀p∈ t• M (p) = 0;

3) Each place connected to t with an enabling arc has one
token, i.e., ∀p∈ �t M (p) = 1;

4) Each place connected to t with an inhibitor arc has no
tokens, i.e., ∀p∈ ◦t M (p) = 0;

5) The interpretation of the guard associated with t using
the valuation v is true.

The set of all ready transitions for M and v is denoted by
Tready(M,v).
The transition t is enabled for M , written as enabled (t, M),
when the first four previous conditions, which are related only
with the places linked to the transitions, are verified. A set
A ⊆ TN is said to be ready, denoted as ready (A), if there
exists a marking M and a valuation v , such that all transitions
in A are ready for M and v . The set A is enabled, written
as enabled (A), if there exists a marking M , such that all
transitions in A are enabled. �

Although the condition 2) of definition 2.4 is not very often
used, it is a way to guarantee the boundedness of net, because
a net describing a control unit should be safe.

Usually, the firing in a classical PN is defined as the firing of
one, and only one, ready transition at each time [2]. So, there
is no simultaneous firings of transitions. The SIP-net token
game differs in several ways from the standard one for PNs:
instead of just one transition firing at a time, all transitions that

are ready to fire must do so; firing of a transition is blocked if
any place in its postset is non-empty. The use of simultaneous
firing of sets of transitions (usually called steps) is discussed
in [17].

Definition 2.5: Let N be the structure of an SIP-net model,
M a marking to N and v ∈ VN . The marking M ′ to N , ob-
tained from M with the valuation v through the simultaneous
firing of all t ∈ TN , ready for M and v , written M[〉vM′ , is
defined as:

∀p∈PN
M ′ (p) =

0 if p ∈ •Tready(M,v)

1 if p ∈ Tready(M,v)
•

M (p) otherwise.

In other words, the input places of all enabled transitions
become empty, one token is added to the output places of all
enabled transitions, and the other places are left unchanged.

�
We can consider the above definition as a mathematical

relation between two markings and one valuation. Thus the
reflexive and transitive closure is defined as follow.

Definition 2.6: Let N be the structure of an SIP-net, and
M a marking to N . A marking M ′ to N is accessible from
M , written M[∗〉M′, if:

1) M = M ′, or
2) ∃M ′′ M[∗〉M′′ ∧ (∃v∈VN

M′′[〉vM′).
The set of all markings to N accessible from M is denoted

by [M〉.
A firing sequence is a sequence with the form
M0[〉v0M1[〉v1 . . .[〉vk−1

Mk[〉vk . . . where k ∈ N, for all i,
Mi is a marking to N , and vi−1 ∈ VN . By definition of
simultaneous firing we can observe that a transition t ∈ TN

can be fired in a firing sequence if there exists a natural i,
such that ready (t, Mi, vi). �

In order to have the behaviour of an SIP-net model com-
pletely defined it must be formed by a structure of an SIP-net
plus a marking to this structure.

Definition 2.7: A pair N = (N, M0) where M0 is the initial
marking to N , is called an SIP-net. �

C. Some Properties of SIP-net models

Since transitions in SIP-net models fire synchronously, one
may observe some conflicts amongst transitions, which are not
present in other models of computation based on PNs.

Definition 2.8: Let N = (N, M0) be an SIP-net, and
t1, t2 ∈ T . The transitions t1 and t2 are in structural conflict
if transitions t1 and t2 have a common pre-place (post-place),
i.e., •t1 ∩ •t2 �= ∅ (t1

• ∩ t2
• �= ∅).

If the transitions t1, t2 are in structural conflict, they are also
in behavioural conflict if there exist an accessible marking
M and a valuation v that enable both transitions. �

Let us now consider the formulation of the liveness property
in the SIP-net modelling language. Often, the verification of
liveness is very expensive and sometimes even impracticable.
To overcome this difficulty, we follow the liveness levels
proposed in [8], some of which reduce the cost of verification.

268

.

.

•
p0

p2

•
p1

p3

t0
x0

t1
x1

t2
x2

t3
x3

Fig. 2. An example of an SIP-net model.

Definition 2.9: Let N = (N, M0) be an SIP-net and t ∈
TN . The transition t is L0-live (or dead) when it can never
be fired for any marking accessible from M0:

∀M ′∈[M0〉 ∀v∈VR
¬ ready (t, M′, v);

The transition t is L1-live, if there exists at least an
accessible marking from M0, for which t can be fired:

∃M ′∈[M0〉 ∃v∈VR
ready (t, M′, v);

The transition t is L4-live (or live), if it is L1-live for all
markings accessible from M0:

∀M∈[M0〉 L1-Live (N, M, t).

The SIP-net N is said to be Lk-live, if every transition in
the SIP-net N is Lk-live, where k = 0, 1, 4. �

We are not considering in this work the liveness levels
L2 and L3, which means respectively for each transition t:
given any natural m, t can be fired at least m times in some
firing sequence; and t appears infinitely, often in some firing
sequence.

III. AN EXAMPLE ON SPECIFYING SIP-NET MODELS
WITH PROMELA

In this section, we present a specification in the PROMELA
language for the illustrative SIP-net model represented in
fig. 2, which is based on the relation, through enabling and
inhibitor arcs, between two similar SIP-nets.

Formally, this SIP-net model is defined by the tuple
(N, M0):
• N = (P, T, F, E, I,G) is the structure of the SIP-net

model, where: P = {p0, p1, p2, p3}, T = {t0, t1, t2, t3},
F = {(p0, t0), (p1, t1), (t0, p2), (t1, p3), (p2, t2), (p3, t3),
(t2, p0), (t3, p1)}, E = {(p3, t2)}, I = {(p0, t1)}
and G = {(t0, x0), (t1, x1), (t2, x2), (t3, x3)};

• M0 = {(p0, 1)(p1, 1)(p2, 0)(p3, 0)} is the initial marking.
The specification of this SIP-net model in PROMELA uses

the following guidelines:
• Each place is represented by a Boolean value and an array

of Booleans, with length equal to the number of places,
is used to represent the set of places;

• Each variable occurring in the guards is represented as a
Boolean variable and the set of variables is represented

1 #define M 4
2 #define Nvar 4
3 #define rd_t0 (p[0] && !p[2] && v[0])
4 #define rd_t1 (p[1] && !p[3] && !p[0] && v[1])
5 #define rd_t2 (p[2] && !p[0] && p[3] && v[2])
6 #define rd_t3 (p[3] && !p[1] && !p[2] && v[2])
7 #define fire_t0 p[0] = 0; p[2] = 1;
8 #define fire_t1 p[1] = 0; p[3] = 1;
9 #define fire_t2 p[2] = 0; p[0] = 1;

10 #define fire_t3 p[3] = 0; p[1] = 1;
11 bool p[M];
12 bool v[Nvar];

Fig. 3. Definitions and declarations in PROMELA.

by an array of Booleans with length equal to the number
of variables.

With these guidelines, we present two approaches to obtain
a PROMELA specification from an SIP-net model. These
approaches differs on the way they treat with external variables
occurring in the guards of SIP-net model. The first one uses an
explicit representation of external variables. The second one
does not use an explicit representation of variables, instead the
semantics of variables are implicitly represented in the options
of PROMELA specification, that is the second of the above
guidelines will be not used.

A. Using Explicit Representation of External Variables

The SIP-net model has four places (p0, p1, p2, p3) and
four different variables in the guards (x0, x1, x2, x3). In
PROMELA, we write the specification shown in lines 1, 2, 11
and 12 in fig. 3 to declare those places and guards. The array p
represents the places (p[i] is the place pi of the SIP-net model)
and the array v represents the set of variables (v[j] is the guard
xj of the SIP-net model) The definition of the enabling and
the firing conditions for each transition uses arrays p and v.
With these representations, ready conditions and firing rules
for each transition are defined from lines 3 to 10 in fig. 3,
where rd ti represents the ready condition of transition ti and
fire ti represents the firing rule of transition ti.

According to the definition of simultaneous firing (def. 2.5),
all ready transitions at a given moment must be fired. There-
fore, the PROMELA specification must include one firing rule
for each of the fifteen possible non-empty combinations of the
three transitions.

There is one (and only one) choice in the do-loop for each
subset of transitions. The choice condition for a subset T ′ of
transitions is constructed by:

1) the conjunction of the ready conditions of all the tran-
sitions in T ′, and

2) the conjunction of the negation of ready conditions
corresponding to each transition not in T ′.

The do-loop may present non-determinism. In the above
case we only have deterministic choices, because at most
only one guard can be made true at a given moment. This
means that we can not have two or more guards simultaneously
true. Informally, given two guards, there is at least one ready
condition of a transition ti which appears uncomplemented
in one of the guard and appears complemented (or negated)

269

1 proctype randomVar(int ivar)
2 {do
3 :: atomic{ v[ivar] = 0 ; }
4 :: atomic{ v[ivar] = 1 ; }
5 od }
6 init{ atomic{
7 run randomVar(0);run randomVar(1);
8 run randomVar(2); run randomVar(3);
9 p[0]=1; p[1]=1; p[2]=0; p[3]=0; /*Initial Marking*/

10 run procParSyn();}}

Fig. 4. PROMELA process for specifying the SIP-net model example.

in the another one. Some of the guards are always false. We
are not interested in considering the guards with all the ready
conditions negated, because there is no action defined to that
guard.

The behaviour of an SIP-net model depends on external
stimuli through the variables occurring in the guards. In this
PROMELA specification, the variables are present on the
ready conditions (see lines 3 to 6 in fig. 3).

In an SIP-net model, nothing is known about the behaviour
of its environment, more precisely the value of the variables
are not modelled by the SIP-net model. Thus, we must
consider all the possibilities for the value of each variable. In
PROMELA, it can be done as illustrated in fig. 4, where the
parameter ivar identifies the variable to be considered. The
do-loop gives non-deterministically the value 0 or 1 to the
considered variable.

Running one process for each variable allows us to simulate
the behaviour of the environment. The main process, for the
SIP-net model example, firstly creates four instances of the
randomVar process, one for each variable, (see lines 7 and 8
in fig. 4). After that, the places are initialized according to the
initial marking. Finally, an instance of the procParSyn pro-
cess is created. The corresponding PROMELA specification is
presented in fig. 4.

To study the appropriateness of the PROMELA specification
for the considered example, its behaviour has been simulated
with the Spin tool. By running the interactive simulation, we
have the possibility to choose one of two different values (0
or 1), for each of the guards x0, x1, x2, and x3. We have
these options in all points of the simulation, which allow us
to control the behaviour of the environment. In the PROMELA
specification, both the controller and the environment run
concurrently. Thus, we obtain a simulation of the system,
whose non-determinism is introduced by external variables.

In this PROMELA specification we are supposing that
changing values of variables is part of system’s behaviour, but
this not the case for the SIP-net model, where the variables
are considered elements of the environment.

Let us see what happens when we are using the Spin tool
to analyse the obtained PROMELA specification.

When simulating the PROMELA specification, since there
is no explicit representation of environment’s behaviour, it is
possible to change the value of all variables in any point of
execution, because as we said before the non-determinism is
introduce by the value of each variable. In this way, when
changing the variables we are defining the set of transitions

to be fired. If none of the guards associated to the enabled
transition, for the selected values, are evaluated to true we
have a situations that the system we are simulating can not go
to one its next states.

When we are simulating this useful, because we are only
manipulating the environment and observing what happens to
the system.

This solution is not adequate for verification of system’s
properties, because it is possible to obtain a path execution
where there are only the actions changing the value of one
variable, which are not actions of the system we are consid-
ering. In this way when we try to verify a system property
we have not the expected result. For example, when we try to
verify on this PROMELA specification the liveness property of
transition t0, which is based on the inspection if for all states
(in the system generated by the PROMELA specification) there
is at least one next state validating the ready condition for
transition t0. When using the Spin tool to verify this property
the obtained result is “not valid”. Running the resulting “trail”
simulation is based on an execution where the initial value
of variable x0 (false) is never changed, and consequently the
transition t0 never becomes ready, because t0 has the variable
x0 as its guard.

B. Without Explicit Representation of External Variables

To overcome this problem, which prevents us from
analysing the behaviour of the system, we adopt a differ-
ent solution. The key idea of our approach to generate the
PROMELA specification is that the semantics of guards are
present, without explicitly representing the variables. This is
possible if we guarantee that in each point of the PROMELA
specification execution there are all the possible choices cor-
responding to the different valuations of the variables.

In the SIP-net model of fig. 2, transitions t0 and t1 are never
enabled for a given marking, because there is a inhibitor arc
from place p0 to transition t1. When analysing the SIP-model
it is not necessary to consider that guards x0 and x1 are both
true.

For a marking which puts a token into the places p2 and
p3 (notice that this marking is accessible from the initial
marking), the transitions t2 and t3 are both enabled. The
variables x2 and x3 permit the sequential (non-concurrent)
firing of transitions t2 and t3, i.e., transition t2 can be fired
without t3 being fired at the same time (or vice-versa). This
happens if x2 is true and x3 is false (or x2 is false and x3
is true). We still can fire these two transitions simultaneously
if x2 and x3 are both true. We are not interested in the case
that transitions x2 and x3 are both false.

Now, we can apply these ideas to the PROMELA spec-
ification for the considered example. Since in this solution
there are no variables in the PROMELA specification, it is
necessary to remove the references to the variables in the
definition of the ready conditions. These new conditions only
include references to places and are therefore called enabled
conditions (see def. 2.4). They have the PROMELA definition
presented in fig. 5.

270

1 #define en_t0 (p[0] && !p[2])
2 #define en_t1 (p[1] && !p[3] && !p[0])
3 #define en_t2 (p[2] && !p[0] && p[3])
4 #define en_t3 (p[3] && !p[1])

Fig. 5. Definition of the enabled conditions.

vi x0 x2 ¬x0 ∧ ¬x2 Transitions
v1 1 1 0 {t0, t1, t2}
v2 1 0 0 {t0, t1}
v3 0 1 0 {t2}
v4 0 0 1 {t3}

Fig. 6. Truth values of guards.

The structure of the main process is a do-loop, whose
guards are based on the conjunction of the conditions cor-
responding to the enabled condition of a given subset of
transitions.

In the solution that uses variables, when we have a valuation
to the variables and a marking, we know that at most only one
line of the do-loop has choice condition that holds true.

With one line in the PROMELA specification for each sub-
set of transitions, we guarantee that the subsets of transitions,
which are not expected to fire, have a false choice condition
associated with them. In the solution without references to
variables, we can not put one line for each subset of transitions.
We select only the subsets of transitions, whose corresponding
guards can be simultaneously true. For each A ⊆ TN , we
write GN (A) to denote

⋃
t∈A{X : (t, X) ∈ GN}. To write

the PROMELA specification for the SIP-net model example,
we select all the consistent sets in {G(A)|∅ ⊂ A ⊆ TN}.

With respect to the SIP-net model in fig. 2, the sets of the
variables in the guards are disjoint and guards could have the
value true or false, so all the sets are consistent.

We most consider only the subsets of transitions which
elements could be enabled for a given marking, otherwise we
are generating a correct PROMELA specification but some of
choices are “dead” code and so they could be removed.

We now change the guards of the transitions of the SIP-net
model, such that: G(t1) = x0, G(t3) = ¬x0 ∧ ¬x2.

The variables occurring in the guards are x0 and x2. The
variable x0 occurs in the guards of transitions t0, t1 and t3,
and the variable x2 occurs in the guards of transitions t2 and
t3. In fig. 6, for each combination of the values for x0 and
x2, the Boolean values of the guards are presented. The last
column shows the set of transitions whose guards are validated
by the valuation (vi) in the row.

Although the guards of the transitions t0, t1 and t2 are
consistent, none of the transitions is simultaneously enabled
with the other two transitions, due to the restrictions imposed
by the structure of the SIP-net model. Thus, by the valuation
v1 in fig. 6, the transitions t0, t1, and t2 can be fired alone.
There exists a marking enabling transitions t2 and t3, but
as we can state in fig. 6 there is no valuation validating
the ready condition for this two transitions. Thus the set
of transitions {t2, t3} is not considered in the do-loop of
PROMELA specification.

IV. RULES TO SPECIFY SIP-NET MODELS WITH
PROMELA

Based on the ideas expressed in the previous sections,
we define more general rules in this section. A PROMELA
specification is constructed from three basic types of objects:
processes, data objects, and messages.

The principal process is called init. Many of PROMELA
notational conventions derive from the C language, including
declaration and initialization of variables. The do-loop state-
ment gives a cyclic non-deterministic choice of one guard, and
each guard has actions associated with it.

For a given SIP-net model, we define that the corresponding
PROMELA specification has three parts: (1) the definition of
the enabled condition for each transition, (2) the definition of
the firing condition for each transition, and (3) the do-loop in
the init function.

The first two parts are straightforward to obtain, because
they only depend upon the structure of the SIP-net model.
The do-loop is harder to obtain, because it must include all
the possible subsets of transitions that may fire simultaneously.
To define the alternative choices of the do-loop, some calcula-
tions must be performed based on the guards of each transition.

Firstly, we calculate the subsets of transitions which may be
simultaneously enabled. Notice that subsets of this set are still
sets of enabled transitions, and thus, we need only to consider
the maximal subsets of enabled transitions, independently of
the valuation of their guards. Let us denote the set of such
maximal subsets by PEMAXS.

Secondly, for each MT ∈ PEMAXS, we calculate its
maximal subsets of ready transitions, i.e., we consider the
maximal subsets of MT whose guards can be made true under
the same valuation. Let T ′ = {t1, . . . , tk} be such a subset of
MT . Although all the transitions in T ′ could be ready to fire
simultaneously, given a marking it may enable only a subset
of the transitions in T ′. Thus when calculating the guards of
the do-loop, we must consider the firing of all its subsets.
Without loss of generality, we study what happens to the subset
T ′ \ {tk}. There exists a marking for which all transitions in
T ′ \ {tk} are enabled and tk is not enabled.

The guard corresponding to the set T ′ \{tk} in the do-loop
is given by the conjunction C1 ∧ C2. Condition C1 is simply
the conjunction of the enabled conditions of the transitions in
T ′ \ {tk}. For condition C2, firstly we calculate the set T ′′ of
transitions which contains the transition tk and the transitions
in the set

⋃
A∈PEMAXS∧A⊃(T ′\{tk}) A \ (T ′ \ {tk}).

Secondly, we calculate the subset T ′′′ of T ′′ consisting of
the transitions not validated by any of the valuations which
validate the transitions in T ′ \ {tk}. Condition C2 is then the
conjunction of the negations of the enabled conditions with
respect to transitions in T ′′′.

Performing the previous calculations to all subset T ′′ of
MT , and all MT in PEMAXS, we obtain a do-loop
modelling the structure of the SIP-net model, where the non-
deterministic choices correspond to the choice of a valuation,
for a given marking.

271

1 type SIPnet = (Structure, Marking, Context)
2 type Structure = [Trans]
3 type Marking = [Place] -- marked places
4 type Context = [Guard]
5 data Trans = Trans TransId [Place]
6 [Place] [Place] Guard [Place]
7 data Place = Place PlaceId
8 type Guard = Formula
9 type TransId = Id

10 type PlaceId = Id
11 type Id = String

Fig. 7. Haskell data types to represent SIP-net models.

1 parsyn :: SIPnet
2 parsyn = [
3 Trans "t0" [Place "p0"] [] [] (Var "x0") [Place "p2"],
4 Trans "t1" [Place "p1"] [] [Palce "p0"]
5 (Var "x1") [Place "p3"],
6 Trans "t2" [Place "p2"] [Place "p3"] []
7 (Var "x2") [Place "p0"],
8 Trans "t3" [Place "p3"] [] [] (Var "x3") [Place "p1"]]
9 prsm30 = [Place "p0",Place "p1"]

10 sparsyn= (parsyn,prsm30,[])

Fig. 8. Haskell specification of the SIP-net model example.

The ready conditions are the basic elements used to specify
the behavioural properties of the SIP-net models. In the
PROMELA specification, there is no explicit representation
of the transitions’ guards. Thus, the ready condition, for a
transition t, is the disjunction of all guards in the do-loop, in
which the enabled condition for t occurs. Notice that the ready
condition of two or more transitions is not the conjunction
of the corresponding ready conditions of those transitions, but
the disjunction of the guards in the do-loop, in which enabled
conditions for all considered transitions occur.

V. THE COMPUTER APPLICATION

In this section, the computer application that was created
to generate the PROMELA specification for a given SIP-net
model is presented. The aplication was written in Haskell.

A. Constructing the Application

In order to describe an SIP-net model in Haskell we use the
data type definition presented in fig. 7, that is we represent an
SIP-net model in Haskell as a triple with the structure of the
net, a marking and a context.

A marking of a net is represented in Haskell as the set of
places which have one token. In Haskell a set is represented
as an Haskell list. Notice that SIP-net models are safe nets,
so a place has at most one token. This allows the use of a set
to represent the marked places. A context is a set of guards,
which is in Haskell a formula of propositional logic.

The structure of an SIP-net model is a set of transitions.
Each transition has a label of identification (TransId), the set of
pre-places, the set of the places linked through enabling arcs,
the set of the places linked through inhibitor arcs, a guard,
and the set of post-places, respectively. For example, the SIP-
net model illustrated in fig. 2 has the Haskell representation
presented in fig. 8.

Next we present functions included in the tool to implement
the calculations described in the previous section. We also

show its usage in the Haskell representation in fig. 8. The
function enabled has the following signature:

1 enabled :: SIPnet -> [[Trans]]

Given an SIP-net model, the program calculates the max-
imal subsets of enabled transitions, which is denoted by
PEMAXS in the previous section. Applying this function
to the SIP-net model, we obtain the following result:

1 *Ex_parsyn> enabled sparsyn
2 [[t1],[t2,t3],[t0,t3]]

For each subset of PEMAXS we calculate the maximal
subsets whose transitions could be simultaneously ready.

Given an SIP-net model and the set of enabled transitions,
it is calculated the set of pairs, such that the first component
has the transitions that can be ready. This ready condition is
determined by the no satisfaction of the enabled condition of
transition in each element of the second component.

B. Using the Application

Using the previous results we can generate the PROMELA
specification for the SIP-net model. Additionally, we generate
the TL conditions to test the potential conflicts in the SIP-net
model. These conditions are based on their ready condition,
already included in the PROMELA specification.

The toPROMELA function creates a String from an SIP-net
model, and has the following signature:

1 toPROMELA :: SIPnet -> String

The result of applying toPROMELA function to a SIP-net
model is a string with the PROMELA specification corre-
sponding to the SIP-net model, that constitute the input to
Spin tool to analyze the properties of the given SIP-net model.
For the considered example we have the following PROMELA
specification:

1 *Ex_parsyn> (putStr.toPROMELA) sparsyn
2 #define en_t0 (p[0] && !p[2])
3 #define en_t1 (p[1] && !p[3] && !p[0])
4 #define en_t2 (p[2] && !p[0] && p[3])
5 #define en_t3 (p[3] && !p[1])
6 #define fire_t0 p[0] = 0; p[2] = 1;
7 #define fire_t1 p[1] = 0; p[3] = 1;
8 #define fire_t2 p[2] = 0; p[0] = 1;
9 #define fire_t3 p[3] = 0; p[1] = 1;

10 /* Enabled Conditions for each transition */
11 #define ready_t0 (en_t0 && en_t3) || (en_t0)
12 #define ready_t1 (en_t1)
13 #define ready_t2 (en_t2 && en_t3) || (en_t2)
14 #define ready_t3 (en_t0 && en_t3) || (en_t3)
15 /* Enabled conditions for transitions
16 in a potential conflict. */
17 bool p0, p1, p2, p3;
18 init{ atomic{ p0 = 1; p1 = 1; p2 = 0; p3 = 0; }
19 do
20 :: en_t0 && en_t3 -> atomic{ fire_t0; fire_t1; }
21 :: en_t2 && en_t3 -> atomic{ fire_t0; fire_t1; }
22 :: en_t0 -> atomic{ fire_t0; }
23 :: en_t1 -> atomic{ fire_t1;}
24 :: en_t2 -> atomic{ fire_t2;}
25 :: en_t3 -> atomic{ fire_t3;}
26 od }

In this PROMELA specification, for each transition, we
have the definitions of: the enabled conditions (between lines 2
and 5), the fire actions (between lines 6 and 9), and the ready
conditions (between lines 10 and 14).

272

These definitions use the variables representing the places
of the net, which are declared in line 17. After that we
have the init process. In line 18 the marking values are
assigned to the places. The do-loop guards, lines between 21
and 25, represent the different sets of transitions which can
fire simultaneously, and the corresponding action to fire the
transitions.

The ready condition, for a transition t, is the disjunction of
all guards in the do-loop, which have an occurrence of enabled
condition for t. This can be seen in the previous example on
the definition of ready conditions. The ready condition of two
or more transitions is not the conjunction of the corresponding
ready conditions to those transitions, but the disjunction of the
guards in the do-loop, in which the enabled conditions for all
considered transitions occurs. The ready conditions are the
basic elements when specifying the behavioural properties of
SIP-net models.

To check if a potential conflict among transitions constitute
a behavioural conflict we need to evaluate the simultaneous
enabling of these transitions, thus we need to have the enabling
conditions of transitions in potential conflict. Thus we decide
to define only the following conditions:
• the ready conditions for each transition (presented be-

tween lines 11 and 14); and
• the ready conditions for each set of transitions in potential

conflict (in the example there are no potential conflicts,
thus no enabling conditions for more than one transition
is defined, but we put commentary on line 15).

C. Verifying SIP-nets Properties
Next, we present the specification and the verification

of properties of the SIP-net models in the context of the
PROMELA specification, using the TL formulas. The three
SIP-net model properties considered here are: (1) behavioural
conflicts freedom, (2) dead-lock freedom, and (3) liveness of
its transitions.

To check the freedom of behavioural conflicts in SIP-net
models, we use the TL formula with the � operator and the
negation of the ready condition corresponding to the set of
transitions that are in conflict. If the transitions in potential
conflict are the transitions ti and tj , the formula is the
following: � ¬ready ti tj.

According to def. 2.9 we can define in TL two levels
of liveness (L1 and L4) in the context of the generated
PROMELA specification. The operators � and ♦ represent,
respectively, the universal, and the existential quantification
over the states of the system.

Given an SIP-net model N and t ∈ TN . The TL formula to
be verified in order to prove that: t is L1-Live is checked by
the formula ♦ ready t; and t is L4-Live is checked by the
formula �♦ ready t. In this way, we can study the behavioural
conflicts freedom, liveness of system’s transitions and also the
absence of dead-locks.

VI. CONCLUSIONS

In this article, an approach to apply the model checking
technique using the Spin tool is presented. This approach

allows important properties of embedded systems, such as live-
ness, deadlock-freedom, and the absence of structural conflicts
among transitions, to be verified. The need to verify properties
of a computer-based system is of paramount importance,
namely when the systems are safety-critical.

In the proposed approach, the behaviour of the embedded
systems (i.e., its control part) is modelled with a variant of
Petri Nets, called SIP-net. When compared to traditional PN
models, SIP-net models present guards associated to transi-
tions, inhibitor and enabling arcs, and synchronous firings of
the transitions. Due to this synchronous nature of the firings,
the description of the SIP-net models with PROMELA is not
trivial, because the Spin tool assumes the existence of a finite-
state system where only one transition fires at each instant.

Since the values of the input signals are not known in the
modelled system, we must consider all their possible values.
In the SIP-net models the input signals are used as variables of
guards. In this way, all possible scenarios for values of guards
must be considered.

Therefore, this work discusses in some detail how SIP-
net models should be specified with the PROMELA language
(input format for the Spin model checker), so that some of
their behaviour properties are verified. This model checking
approach, namely the Haskell program, was already used in a
case study [14].

REFERENCES

[1] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems: Specification. New York, USA: Springer-Verlag, 1992.

[2] W. Reisig, Petri Nets - An introduction, EATCS monographs on theorical
computer science ed. Heidelberg, Germany: Springer-Verlag, 1985.

[3] M. A. Adamski, A. Karatkevich, and M. Wegrzyn, Eds., Design of
Embedded Control Systems. Springer, Berlin, 2005.

[4] A. Yakovlev, L. Gomes, and L. Lavagno, Eds., Hardware Design and
Petri Nets. Springer, Berlin, 2000.

[5] J. M. Fernandes, M. A. Adamski, and A. J. Proença, “VHDL Generation
from Hierarchical Petri Net Specifications of Parallel Controller,” IEE
Proceedings: Computers and Digital Techniques, vol. 144, no. 2, pp.
127–37, Mar. 1997.

[6] M. A. Adamski, “Direct Implementation of Petri Net Specification,” in
7th Int. Conf. on Control Systems and Computer Science, 1987, pp.
74–85.

[7] G. De Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[8] T. Murata, “Petri Nets: Properties, Analysis and Applications,” in
Procedings of the IEEE, April 1989, pp. 541–80.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 2000.

[10] G. J. Holzmann, “Design and validation of computer protocols,” IEEE
Trans. on Software Engineering, vol. 23, no. 5, pp. 279–95, May 1997.

[11] ——, The Spin Model Checker: Primier and Reference Manual.
Addison-Wesley, September 2003.

[12] ——, Design and Validation of Computer Protocols. New Jersey:
Prentice Hall, 1991.

[13] T. C. Ruys, “Towards effective model checking,” Ph.D. dissertation,
University of Twente, Department of Computer Science, Mar. 2001.

[14] O. R. Ribeiro, J. M. Fernandes, and L. F. Pinto, “Model Checking
Embedded Systems with PROMELA,” in 12th IEEE Int. Conf. on the
Eng. of Computer Based Systems (ECBS 2005). IEEE Computer Society
Press, 2005, pp. 378–85.

[15] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1981.

[16] J. Kleijn and M. Koutny, “Process Semantics of P/T-Nets with Inhibitor
Arcs,” in ICATPN, 2000, pp. 261–81.

[17] M. Mukund, “Petri Nets and Step Transition Systems,” Int. Journal of
Foundations of Computer Science, vol. 3, no. 4, pp. 443–78, 1992.

273

